Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2720-2738.doi: 10.3864/j.issn.0578-1752.2025.14.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of Active Centromeric Retrotransposons of Rye and Their Response to Stress

WU CuiCui1(), WANG RuoYu1, MA Chi1, HE MeiYue1, YIN XiaoKang1, FENG JiaYi1, ZHOU BinHan1, JIANG YuFan1, JIN HanBing1, ZHAO LiLi1, SUN Ji1, FANG ZhengWu1, CHENG Ling1, ZHU ZhanWang2, LIU YiKe2, ZHANG YingXin1,*(), WANG ShuPing1,*()   

  1. 1 College of Agriculture, Yangtze University/Key Laboratory of Green and Efficient Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Jingzhou 434025, Hubei
    2 Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064
  • Received:2025-02-05 Accepted:2025-04-02 Online:2025-07-17 Published:2025-07-17
  • Contact: ZHANG YingXin, WANG ShuPing

Abstract:

【Objective】Centromeric retrotransposons (CR) play an important role in maintaining chromosomal stability of Poaceae species. Rye (Secale cereale L. cv. Imperial), a valuable genetic donor for wheat improvement, showed enhanced stress tolerance and disease resistance, the centromeric regions of which are enriched with CR. Screen active rye specific CR (CR of Rye, CRR) and study their transposition patterns under stress conditions, would help elucidate the mechanisms of the possible influence of transposable elements (TEs) transposition on genome stability of rye under stress conditions. 【Method】To identify intact CRR, the rye genome was subjected to de novo annotation of TEs using bioinformatics tools. Semi-quantitative analysis was applied to screen highly expressed CRR in both leaves and roots of rye. Quantitative real-time PCR (qRT-PCR), methylation-specific PCR (MSP), and transposon display (TD) techniques were used to analyze the expression and methylation level, and transposition activity of the screened CRR in leaves and roots of abiotic stressed rye seedlings (at the one-tip-two-leaf stage), including salt, ABA, H2O2, PEG, low temperature, and high temperature. 【Result】Seventeen CRR were identified, and seven have intact structure (CRR1, CRR2, CRR3, CRR4, CRR5, CRR7, and CRR11). Semi-quantitative analysis revealed CRR2, CRR4, and CRR7 were highly expressed in both leaves and roots. Structural analysis of the three CRR indicated that they could encode all the enzymes necessary for TE transposition (reverse transcriptase, ribonuclease H, and integrase), with CRR7 also encoded a Gag protein. Under normal conditions, CRR2, CRR4, and CRR7 were basically expressed, which were upregulated by stress treatments, the methylation level of CRR7 changed most under stressed conditions, followed by CRR2 and CRR4. Additionally, the copy number of the three CRR was dynamically changed under stress conditions. Under different stress conditions, the insertion and excision frequency of CRR was different under different stress conditions, but the overall excision frequency was higher than the insertion frequency.【Conclusion】The higher of the sequence homology between the 5’ and 3’ LTRs of CRR, the higher of the transcriptional activity of CRR; active CRR have basical transcriptional level under normal conditions, the transcription and transposition activity of which were upregulated by stress stimuli, which were primarily regulated by post-transcriptional regulatory mechanisms. Genomic rearrangement might be the main factor affecting the copy number of CRR in stress conditions.

Key words: rye, centromere, transposon element, adversity stress, methylation, transposition activity

Fig. 1

Phylogenetic tree, structure and expression of CRR in rye leaves and roots A: Phylogenetic tree and structure analysis of CRR; B: Expression analysis of CRR in rye leaves and roots"

Fig. 2

Structure analysis of the three CRR in rye A: Structural analysis of CRR; B: Sequence homology analysis of the 5′LTR and 3′LTR region of CRR; C: Analysis of cis-acting elements located in 5′LTR of CRR"

Fig. 3

Expression analysis of CRR in leaves and roots of stress-treated rye seedlings A: CRR2; B: CRR4; C: CRR7; LT: Low temperature; HT: High temperature. *: Significant at P<0.05 level; **: Significant at P<0.01 level; ***: Significant at the P<0.001 level. The same as below"

Fig. 4

Methylation level analysis of the CRR in leaves and roots of stress-treated rye seedlings A: CRR2; B: CRR4; C: CRR7; m: Marker; M: Methylation band; U: Demethylation band"

Fig. 5

Copy number dynamic analysis of CRR in leaves and roots of stress-treated rye seedlings A:CRR2;B:CRR4;C:CRR7"

Fig. 6

TD analysis of CRR2 A: CRR2-NaCl-leaf; B: CRR2-ABA-leaf; C: CRR2-H2O2-leaf; D: CRR2-PEG-leaf; E: CRR2-low temperature-leaf; F: CRR2-high temperature-leaf; G: CRR2-NaCl-root; H: CRR2-ABA-root; I: CRR2-H2O2-root; J: CRR2-PEG-root; K: CRR2-low temperature-root; L: CRR2-high temperature-root"

Fig. 7

TD analysis of CRR4 A: CRR4-NaCl-leaf; B: CRR4-ABA-leaf; C: CRR4-H2O2-leaf; D: CRR4-PEG-leaf; E: CRR4-low temperature-leaf; F: CRR4-high temperature-leaf; G: CRR4-NaCl-root; H: CRR4-ABA-root; I: CRR4-H2O2-root; J: CRR4-PEG-root; K: CRR4-low temperature-root; L: CRR4-high temperature-root"

Fig. 8

TD analysis of CRR7 A: CRR7-NaCl-leaf; B: CRR7-ABA-leaf; C: CRR7-H2O2-leaf; D: CRR7-PEG-leaf; E: CRR7-low temperature-leaf; F: CRR7-high temperature-leaf; G: CRR7-NaCl-root; H: CRR7-ABA-root; I: CRR7-H2O2-root; J: CRR7-PEG-root; K: CRR7-low temperature-root; L: CRR7-high temperature-root"

[1]
SANAN-MISHRA N, ABDUL KADER JAILANI A, MANDAL B, MUKHERJEE S K. Secondary siRNAs in plants: Biosynthesis, various functions, and applications in virology. Frontiers in Plant Science, 2021, 12: 610283.
[2]
HAN M, PERKINS M H, NOVAES L S, XU T, CHANG H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Frontiers in Genetics, 2023, 14: 1290146.
[3]
HAYWARD A, GILBERT C. Transposable elements. Current Biology, 2022, 32(17): R904-R909.
[4]
MILLER J T, DONG F, JACKSON S A, SONG J, JIANG J. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics, 1998, 150(4): 1615-1623.

doi: 10.1093/genetics/150.4.1615 pmid: 9832537
[5]
ANANIEV E V, PHILLIPS R L, RINES H W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(22): 13073-13078.
[6]
ZHONG C X, MARSHALL J B, TOPP C, MROCZEK R, KATO A, NAGAKI K, BIRCHLER J A, JIANG J M, DAWE R K. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. The Plant Cell, 2002, 14(11): 2825-2836.
[7]
PIETZENUK B, MARKUS C, GAUBERT H, BAGWAN N, MEROTTO A, BUCHER E, PECINKA A. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biology, 2016, 17(1): 209.
[8]
ELLINGHAUS D, KURTZ S, WILLHOEFT U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 2008, 9: 18.
[9]
VICIENT C M, CASACUBERTA J M. Impact of transposable elements on polyploid plant genomes. Annals of Botany, 2017, 120(2): 195-207.

doi: 10.1093/aob/mcx078 pmid: 28854566
[10]
CAPY P. Classification and nomenclature of retrotransposable elements. Cytogenetic and Genome Research, 2005, 110(1/2/3/4): 457-461.
[11]
LLORENS C, FUTAMI R, COVELLI L, DOMÍNGUEZ-ESCRIBÁ L, VIU J M, TAMARIT D, AGUILAR-RODRÍGUEZ J, VICENTE- RIPOLLES M, FUSTER G, BERNET G P, et al. The Gypsy Database (GyDB) of mobile genetic elements: Release 2.0. Nucleic Acids Research, 2011, 39(Database issue): D70-D74.
[12]
NEUMANN P, NAVRÁTILOVÁ A, KOBLÍŽKOVÁ A, KEJNOVSKÝ E, HŘIBOVÁ E, HOBZA R, WIDMER A, DOLEŽEL J, MACAS J. Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mobile DNA, 2011, 2(1): 4.

doi: 10.1186/1759-8753-2-4 pmid: 21371312
[13]
ZHANG Y X, FAN C M, LI S S, CHEN Y H, WANG R R, ZHANG X Q, HAN F P, HU Z M. The diversity of sequence and chromosomal distribution of new transposable element-related segments in the rye genome revealed by FISH and lineage annotation. Frontiers in Plant Science, 2017, 8: 1706.

doi: 10.3389/fpls.2017.01706 pmid: 29046683
[14]
NAISH M, ALONGE M, WLODZIMIERZ P, TOCK A J, ABRAMSON B W, SCHMÜCKER A, MANDÁKOVÁ T, JAMGE B, LAMBING C, KUO P, et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science, 2021, 374(6569): eabi7489.
[15]
WLODZIMIERZ P, RABANAL F A, BURNS R, NAISH M, PRIMETIS E, SCOTT A, MANDÁKOVÁ T, GORRINGE N, TOCK A J, HOLLAND D, et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature, 2023, 618(7965): 557-565.
[16]
周芳. 黄瓜着丝粒重复序列的组成与分布分析[D]. 南京: 南京农业大学, 2022.
ZHOU F. Composition and distribution of centromeric repeats in cucumber[D]. Nanjing: Nanjing Agricultural University, 2022. (in Chinese)
[17]
HEUBERGER M, KOO D H, AHMED H I, TIWARI V K, ABROUK M, POLAND J, KRATTINGER S G, WICKER T. Evolution of Einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mobile DNA, 2024, 15(1): 16.

doi: 10.1186/s13100-024-00326-9 pmid: 39103880
[18]
SHARMA A, PRESTING G G. Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Molecular Genetics and Genomics, 2008, 279(2): 133-147.

doi: 10.1007/s00438-007-0302-5 pmid: 18000683
[19]
NEUMANN P, YAN H H, JIANG J M. The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics, 2007, 176(2): 749-761.

doi: 10.1534/genetics.107.071902 pmid: 17409063
[20]
NEUMANN P, NOVÁK P, HOŠTÁKOVÁ N, MACAS J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 2019, 10: 1.

doi: 10.1186/s13100-018-0144-1 pmid: 30622655
[21]
SU H D, LIU Y L, LIU C, SHI Q H, HUANG Y H, HAN F P. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. The Plant Cell, 2019, 31(9): 2035-2051.

doi: 10.1105/tpc.19.00133 pmid: 31311836
[22]
ROQUIS D, ROBERTSON M, YU L, THIEME M, JULKOWSKA M, BUCHER E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Research, 2021, 49(18): 10431-10447.
[23]
MILYAEVA P A, KUKUSHKINA I V, KIM A I, NEFEDOVA L N. Stress induced activation of LTR retrotransposons in the Drosophila melanogaster genome. Life, 2023, 13(12): 2272.
[24]
International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
[25]
LING H Q, MA B, SHI X L, LIU H, DONG L L, SUN H, CAO Y H, GAO Q, ZHENG S S, LI Y, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 2018, 557(7705): 424-428.
[26]
MASCHER M, GUNDLACH H, HIMMELBACH A, BEIER S, TWARDZIOK S O, WICKER T, RADCHUK V, DOCKTER C, HEDLEY P E, RUSSELL J, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544(7651): 427-433.
[27]
LI G W, WANG L J, YANG J P, HE H, JIN H B, LI X M, REN T H, REN Z L, LI F, HAN X, et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 2021, 53(4): 574-584.

doi: 10.1038/s41588-021-00808-z pmid: 33737755
[28]
LIU C, HUANG Y H, GUO X R, YI C Y, LIU Q, ZHANG K B, ZHU C L, LIU Y, HAN F P. Young retrotransposons and non-B DNA structures promote the establishment of dominant rye centromere in the 1RS.1BL fused centromere. New Phytologist, 2024, 241(2): 607-622.
[29]
EVTUSHENKO E V, LEVITSKY V G, ELISAFENKO E A, GUNBIN K V, BELOUSOV A I, ŠAFÁŘ J, DOLEŽEL J, VERSHININ A V. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics, 2016, 17: 337.

doi: 10.1186/s12864-016-2667-5 pmid: 27146967
[30]
BIMPONG D, ZHAO L L, RAN M Y, ZHAO X Z, WU C C, LI Z Q, WANG X, CHENG L, FANG Z W, HU Z M, et al. Transcriptomic analysis reveals the regulatory mechanisms of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in response to waterlogging stress in rye (Secale cereale L.). BMC Plant Biology, 2024, 24(1): 534.
[31]
NIAN L L, LIU X L, YANG Y B, ZHU X L, YI X F, HAIDER F U. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L. PLoS ONE, 2021, 16(6): e0252213.
[32]
MANI B, AGARWAL M, KATIYAR-AGARWAL S. Comprehensive expression profiling of rice tetraspanin genes reveals diverse roles during development and abiotic stress. Frontiers in Plant Science, 2015, 6: 1088.

doi: 10.3389/fpls.2015.01088 pmid: 26697042
[33]
周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应. 作物学报, 2023, 49(4): 966-977.

doi: 10.3724/SP.J.1006.2023.21023
ZHOU B H, YANG Z, WANG S P, FANG Z W, HU Z M, XU Z S, ZHANG Y X. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses. Acta Agronomica Sinica, 2023, 49(4): 966-977. (in Chinese)
[34]
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.

doi: 10.1093/molbev/msab120 pmid: 33892491
[35]
BAILEY T L, JOHNSON J, GRANT C E, NOBLE W S. The MEME suite. Nucleic Acids Research, 2015, 43(W1): W39-W49.
[36]
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[37]
ZHOU Y B, LI Y, QI X L, LIU R B, DONG J H, JING W H, GUO M M, SI Q L, XU Z S, LI L C, et al. Overexpression of V-type H+ pyrophosphatase gene EdVP 1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Scientific Reports, 2020, 10(1): 5020.
[38]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.
[39]
FELDMAN M, LEVY A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192(3): 763-774.

doi: 10.1534/genetics.112.146316 pmid: 23135324
[40]
MA M X, LIU J H, SONG Y J, LI L, LI Y F. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus. PLoS ONE, 2013, 8(2): e52670.
[41]
KOLACSEK O, IZSVÁK Z, IVICS Z, SARKADI B, ORBÁN T I. Quantitative analysis of DNA transposon-mediated gene delivery:The Sleeping Beauty system as an example. Iconcept Press Ltd, 2014, 7(1): 112-123.
[42]
SHAN X H, LIU Z L, DONG Z Y, WANG Y M, CHEN Y, LIN X Y, LONG L K, HAN F P, DONG Y S, LIU B. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Molecular Biology and Evolution, 2005, 22(4): 976-990.
[43]
PAN Y P, BO K L, CHENG Z H, WENG Y Q. The loss-of-function GLABROUS3mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biology, 2015, 15(1): 302.
[44]
MERIÇ S, AYAN A, GÜNDÜZ B, ÖZPIRINÇCI C, ÇELIK Ö, ATAK Ç. Investigation of Tos17 LTR retrotransposon movements in rice (Oryza sativa L.) under nickel and boron stress. Cereal Research Communications, 2024, 52(4): 1299-1312.
[45]
YANG L L, ZHANG X Y, WANG L Y, LI Y G, LI X T, YANG Y, SU Q, CHEN N, ZHANG Y L, LI N, DENG C L, LI S F, GAO W J. Lineage-specific amplification and epigenetic regulation of LTR- retrotransposons contribute to the structure, evolution, and function of Fabaceae species. BMC Genomics, 2023, 24(1): 423.
[46]
OKAMOTO H, HIROCHIKA H. Silencing of transposable elements in plants. Trends in Plant Science, 2001, 6(11): 527-534.

pmid: 11701381
[47]
ZHANG P P, MBODJ A, SOUNDIRAMOURTTY A, LLAURO C, GHESQUIÈRE A, INGOUFF M, KEITH SLOTKIN R, PONTVIANNE F, CATONI M, MIROUZE M. Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nature Communications, 2023, 14(1): 5236.
[48]
GASPAROTTO E, BURATTIN F V, DI GIOIA V, PANEPUCCIA M, RANZANI V, MARASCA F, BODEGA B. Transposable elements co-option in genome evolution and gene regulation. International Journal of Molecular Sciences, 2023, 24(3): 2610.
[49]
MIYAO A, YAMANOUCHI U. Transposable element finder (TEF): Finding active transposable elements from next generation sequencing data. BMC Bioinformatics, 2022, 23(1): 500.

doi: 10.1186/s12859-022-05011-3 pmid: 36418944
[50]
MA J X, JACKSON S A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Research, 2006, 16(2): 251-259.

pmid: 16354755
[1] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[2] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[3] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[4] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[5] CHEN YuMei, ZHANG CongCong, HU LiRong, FANG Hao, DOU JinHuan, GUO Gang, WANG Yan, LIU QiaoXiang, WANG YaChun, XU Qing. Effect of Heat Stress on DNA Methylation of GNAS Promoter Region in Dairy Cows [J]. Scientia Agricultura Sinica, 2023, 56(12): 2395-2406.
[6] DongHua LI,YaWei FU,ChenXi ZHANG,YanFang CAO,WenTing LI,ZhuanJian LI,XiangTao KANG,GuiRong SUN. Genome-Wide Identification and Characterization of Transposable Elements in Xichuan Black-Bone Chicken [J]. Scientia Agricultura Sinica, 2020, 53(7): 1491-1500.
[7] ZHANG FangFang,MA NingBo,YUE ShanChao,LI ShiQing. Evaluation of Nitrogen Supply Capacity of Paddy and Wheat Rotation Soil in Hanzhong Basin by Different Determination Methods [J]. Scientia Agricultura Sinica, 2020, 53(19): 3996-4009.
[8] WEI ZhiBiao, BAI ZhaoHai, MA Lin, ZHANG FuSuo. Yield Gap of Alfalfa, Ryegrass and Oat Grass and Their Influence Factors in China [J]. Scientia Agricultura Sinica, 2018, 51(3): 507-522.
[9] Tao ZHANG, FuHui SI, YuXi ZHANG, ShuPeng GAI. Effect of Exogenous Gibberellin on DNA Methylation Level and Expression of Related Enzyme Genes in Tree Peony Floral Buds [J]. Scientia Agricultura Sinica, 2018, 51(18): 3561-3569.
[10] LIU Huan, ZHANG XinQuan, MA Xiao, ZHANG RuiZhen, HE GuangWu, PAN Ling, JIN MengYa. Construction of EST-SSR Fingerprinting Based on Fluorescence Detection Technology for Italian Ryegrass [J]. Scientia Agricultura Sinica, 2017, 50(3): 437-450.
[11] HUANG Ting, MA Xiao, ZHANG Xin-quan, ZHANG Xin-yue, ZHANG Rui-zhen, FU Kai-xin. Comparation of SSR Molecular Markers Analysis of Annual Ryegrass Varieties in DUS Testing [J]. Scientia Agricultura Sinica, 2015, 48(2): 381-389.
[12] ZHU Hong-ju, LIU Wen-ge, ZHAO Sheng-jie, LU Xu-qiang, HE Nan, DOU Jun-ling, GAO Lei. Comparison Between Tetraploid Watermelon(Citrullus lanatus) and Its Diploid Progenitor of DNA Methylation Under NaCl Stress [J]. Scientia Agricultura Sinica, 2014, 47(20): 4045-4055.
[13] LU Xu-Ke, WANG De-Long, YIN Zu-Jun, WANG Jun-Juan, FAN Wei-Li, WANG Shuai, ZHAO Xiao-Jie, ZHANG Tian-Bao, YE Wu-Wei. Genomic DNA Methylation Polymorphism Analysis of Cotton Under NaCl and Na2CO3 Stress [J]. Scientia Agricultura Sinica, 2014, 47(16): 3132-3142.
[14] HUANG Yun-Yu, ZHANG Hai-Jun, XING Yan-Xia, QI Yan, SUN Qian-Qian, ZHOU Chun-Lei, ZHAO Bing, GUO Yang-Dong. Effects of NaCl Stress on Seed Germination and DNA Methylation Status Detected by MSAP Analysis in Cucumber [J]. Scientia Agricultura Sinica, 2013, 46(8): 1646-1656.
[15] ZHOU Yang, LUO Hua, LI Bo-Jiang, JIA Chao, XIE Zhuang, ZHAO Xing-Bo, ZHONG Jin-Cheng, LI Qi-Fa. mRNA Expression Level and Promoter Methylation of DDX4 Gene in Testes of Yak and Cattle-Yak [J]. Scientia Agricultura Sinica, 2013, 46(3): 630-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!