Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4238-4247.doi: 10.3864/j.issn.0578-1752.2024.21.006

• PLANT PROTECTION • Previous Articles     Next Articles

Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould

LI Jie(), LIANG ZhiLin(), SUN Yan, TAN GenJia(), HUAI BaoYu()   

  1. College of Plant Protection, Anhui Agricultural University/Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036
  • Received:2024-06-27 Accepted:2024-08-06 Online:2024-11-01 Published:2024-11-10
  • Contact: TAN GenJia, HUAI BaoYu

Abstract:

【Background】Grey mould, caused by Botrytis cinerea, poses serious threats to tomato production. Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) from plant is involved in the regulation of responses to biotic and abiotic stresses. However, whether tomato SnRK1 is involved in tomato resistance to grey mould remains unclear. 【Objective】In this study, SlSnRK1.2, which was up-regulated in the process of B. cinerea infecting tomato, was used as the research object to clone and analyze its function of regulating grey mould resistance, so as to provide theoretical basis and gene resources for the prevention and control of tomato grey mould. 【Method】The expression patterns of SlSnRK1.2 during the infection stage of B. cinerea and in different tomato tissues were examined through real-time fluorescence quantitative PCR (qRT-PCR); Subcellular localization of SlSnRK1.2 was analyzed using Agrobacterium-mediated transient transformation system; SlSnRK1.2 silencing plants were constructed by tobacco rattle virus (TRV)-mediated gene silencing (VIGS) technology, and the role of SlSnRK1.2 in the interaction between tomato and B. cinerea was preliminarily analyzed. The overexpression plants of SlSnRK1.2 were created by Agrobacterium-mediated tomato genetic transformation system, and the role of SlSnRK1.2 in regulating tomato resistance to grey mould was further clarified. NbSnRK1.2, a homologous gene of SlSnRK1.2, was silenced in N. benthamiana using TRV-mediated gene silencing technology to determine the function of NbSnRK1.2 during the interaction between N. benthamiana and B. cinerea. 【Result】Micro-Tom was used as the wild-type (WT) background, qRT-PCR technology was used to clarify that the transcriptional expression of SlSnRK1.2 was significantly induced by B. cinerea infection. Subcellular localization analysis revealed that SlSnRK1.2 was localized in the cytoplasm and nucleus. qRT-PCR analysis showed that SlSnRK1.2 was expressed in roots, stems, young leaves, mature leaves, flower buds, and flowers of tomato, with the highest relative expression level in the stems. Transient silencing of SlSnRK1.2 attenuated tomato resistance to grey mould, while overexpression of SlSnRK1.2 enhanced tomato resistance to grey mould. On this basis, transient silencing of NbSnRK1.2, a SlSnRK1.2 homologous gene, attenuated tobacco resistance to grey mould. 【Conclusion】SlSnRK1.2 positively regulates tomato resistance to grey mould and can be used as a genetic resource for molecular breeding of tomato resistance to grey mould.

Key words: grey mould of tomato (Solanum lycopersicum), Botrytis cinerea, SlSnRK1.2, disease resistance, virus induced gene silencing (VIGS)

Table 1

Primers used in this study"

引物Primer 序列Sequence (5′-3′) 用途Application
SlSnRK1.2-RT-F GGAAACATTATGCGAGAT 实时荧光定量PCR
qRT-PCR
SlSnRK1.2-RT-R AGGTGACTTGGAAGGGTGTAG
SlActin-RT-F TCTTTCCAATCATTGTGGTGCCTCC
SlActin-RT-R GAGCCTCCAATCCAGACAC
BcActin-RT-F TCCAAGCGTGGTATTCTTACCC
BcActin-RT-R TGGTGCTACACGAAGTTCGTTG
SlSnRK1.2-VIGS-F TAAGGTTACCGAATTCATGAGTTCCAGAGGTGGTGG 基因沉默
VIGS
SlSnRK1.2-VIGS-R GCTCGGTACCGGATCCCCCAGACTTGACATACTCCA
SlSnRK1.2-GFP-F GGGACTCTAGAGGATCCATGAGTTCCAGAGGTGGTGG 亚细胞定位
Subcellular localization
SlSnRK1.2-GFP-R GCTCGAATTCGGATCCTCTTGTGGCCCCTCTAGCTGCC
OE-SlSnRK1.2-F ACACGGGGGACTTTGCAACATGAGTTCCAGAGGTGGTG 番茄过表达载体构建
Overexpression vector construction of tomato
OE-SlSnRK1.2-R CCTCGCCCTTCACGATACATTGTGGCCCCTCTAGCTGC
NbSnRK1.2-VIGS-F TAAGGTTACCGAATTCCCATGGATCCTTTGGTAAAG 基因沉默
VIGS
NbSnRK1.2-VIGS-R GCTCGGTACCGGATCCATCTGCTGGAAAAAATGGCG
NbActin-F ACCAGATTAATGAGCCCAAGAG 实时荧光定量PCR
qRT-PCR
NbActin-R CCAACAGGGACAGTACCAATAC
NbSnRK1.2-RT-F TTACAGCCACAAACAGCTGTG
NbSnRK1.2-RT-R TCTTTCCAATCATTGTGGTGCCTCC

Fig. 1

Relative expression level of SlSnRK1.2 during B. cinerea infection in tomato leaves"

Fig. 2

Subcellular localization (A) and tissue-specific expression analysis (B) of SlSnRK1.2 The statistical analyses were performed using Student’s t-test, different lowercases on the bars indicated significant differences among treatments (P<0.05)"

Fig. 3

Silencing of SlSnRK1.2 reduced the resistance of tomato against grey mould"

Fig. 4

Overexpression of SlSnRK1.2 enhanced the resistance of tomato against grey mould"

Fig. 5

Silencing of NbSnRK1.2 reduced the resistance of tobacco against grey mould"

[1]
杨心彪, 李兴需, 刘睿, 周国林. 鲜食番茄成熟过程中果实营养成分的动态变化. 华中农业大学学报(自然科学版), 2022, 41(3): 191-199.
YANG X B, LI X X, LIU R, ZHOU G L. Dynamic changes of fruit nutrient components during ripening of fresh tomatoes. Journal of Huazhong Agricultural University (Natural Science Edition), 2022, 41(3): 191-199. (in Chinese)
[2]
SHU P, ZHANG S J, LI Y J, WANG X Y, YAO L, SHENG J P, SHEN L. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. Plant Physiology and Biochemistry, 2021, 166: 1-9.
[3]
LIU S M, FU L Y, TAN H H, JIANG J, CHE Z P, TIAN Y E, CHEN G Q. Resistance to boscalid in Botrytis cinerea from greenhouse- grown tomato. Plant Disease, 2021, 105(3): 628-635.
[4]
HABIB W, SAAB C, MALEK R, KATTOURA L, ROTOLO C, GERGES E, BAROUDY F, POLLASTRO S, FARETRA F, DE MICCOLIS ANGELINI R M. Resistance profiles of Botrytis cinerea populations to several fungicide classes on greenhouse tomato and strawberry in Lebanon. Plant Pathology, 2020, 69(8): 1453-1468.
[5]
赵统敏, 余文贵, 赵丽萍, 董友磊, 陈怀谷, 李永灿, 杨玛丽. 番茄抗灰霉病育种研究进展. 江苏农业学报, 2011, 27(5): 1141-1147.
ZHAO T M, YU W G, ZHAO L P, DONG Y L, CHEN H G, LI Y C, YANG M L. Research progress in breeding of tomato resistance to Botrytis cinerea. Jiangsu Journal of Agricultural Sciences, 2011, 27(5): 1141-1147. (in Chinese)
[6]
BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J M, SHEEN J. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156): 938-942.
[7]
RAMON M, RUELENS P, LI Y, SHEEN J, GEUTEN K, ROLLAND F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. The Plant Journal, 2013, 75(1): 11-25.
[8]
RODRIGUEZ M, PAROLA R, ANDREOLA S, PEREYRA C, MARTÍNEZ-NOËL G. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the “Yin-Yang” model? Plant Science, 2019, 288: 110220.
[9]
IM J H, CHO Y H, KIM G D, KANG G H, HONG J W, YOO S D. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana. Plant, Cell & Environment, 2014, 37(10): 2303-2312.
[10]
LOVAS Á, BIMBO A, SZABÓ L, BÁNFALVI Z. Antisense repression of StubGAL83 affects root and tuber development in potato. The Plant Journal, 2003, 33(1): 139-147.
[11]
FENG X, FENG P, YU H L, YU X Y, SUN Q, LIU S Y, MINH T N, CHEN J, WANG D, ZHANG Q, et al. GsSnRK 1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance. Plant, Cell & Environment, 2020, 43(5): 1192-1211.
[12]
HULSMANS S, RODRIGUEZ M, DE CONINCK B, ROLLAND F. The SnRK1 energy sensor in plant biotic interactions. Trends in Plant Science, 2016, 21(8): 648-661.

doi: S1360-1385(16)30010-3 pmid: 27156455
[13]
HAO L H, WANG H, SUNTER G, BISARO D M. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. The Plant Cell, 2003, 15(4): 1034-1048.
[14]
SHEN Q T, LIU Z, SONG F M, XIE Q, HANLEY-BOWDOIN L, ZHOU X P. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. Plant Physiology, 2011, 157(3): 1394-1406.
[15]
SHEN W, HANLEY-BOWDOIN L. SnRK1: A versatile plant protein kinase that limits geminivirus infection. Current Opinion in Virology, 2021, 47: 18-24.
[16]
ZHONG X T, WANG Z Q, XIAO R Y, CAO L G, WANG Y Q, XIE Y, ZHOU X P. Mimic phosphorylation of a βC1 protein encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. Journal of Virology, 2017, 91(16): e00300-17.
[17]
JIANG C, HEI R N, YANG Y, ZHANG S J, WANG Q H, WANG W, ZHANG Q, YAN M, ZHU G R, HUANG P P, LIU H Q, XU J R. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nature Communications, 2020, 11(1): 4382.
[18]
KIM C Y, VO K T X, AN G, JEON J S. A rice sucrose non- fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58: 669-675.
[19]
FILIPE O, DE VLEESSCHAUWER D, HAECK A, DEMEESTERE K, HÖFTE M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Scientific Reports, 2018, 8: 3864.

doi: 10.1038/s41598-018-22101-6 pmid: 29497084
[20]
WANG L, WANG H Y, HE S F, MENG F S, ZHANG C Z, FAN S J, WU J J, ZHANG S Z, XU P F. GmSnRK1.1, a sucrose non-fermenting-1 (SNF1)-related protein kinase, promotes soybean resistance to Phytophthora sojae. Frontiers in Plant Science, 2019, 10: 996.
[21]
HAN X Y, ZHANG L, ZHAO L F, XUE P Y, QI T, ZHANG C L, YUAN H B, ZHOU L X, WANG D W, QIU J L, SHEN Q H. SnRK1 phosphorylates and destabilizes WRKY3 to enhance barley immunity to powdery mildew. Plant Communications, 2020, 1(4): 100083.
[22]
LUO J J, YU W Y, XIAO Y S, ZHANG Y F, PENG F T. FaSnRK1α mediates salicylic acid pathways to enhance strawberry resistance to Botrytis cinerea. Horticultural Plant Journal, 2024, 10(1): 131-144.
[23]
SU D Y, DEVARENNE T P. In vitro activity characterization of the tomato SnRK1 complex proteins. Biochimica et Biophysica Acta - Proteins and Proteomics, 2018, 1866(8): 857-864.
[24]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
[25]
HUAI B Y, YANG Q, WEI X B, PAN Q L, KANG Z S, LIU J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC Plant Biology, 2020, 20(1): 49.

doi: 10.1186/s12870-020-2248-2 pmid: 32000681
[26]
OUYANG Z G, LIU S X, HUANG L H, HONG Y B, LI X H, HUANG L, ZHANG Y F, ZHANG H J, LI D Y, SONG F M. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, members of B3 group of ERF family, are required for resistance to Botrytis cinerea. Frontiers in Plant Science, 2016, 7: 1964.
[27]
汤文倩, 王冬梅. 小麦与叶锈菌互作过程中TaSnRK1的表达分析及其亚细胞定位. 河北农业大学学报, 2021, 44(4): 7-12.

doi: 10.13320/j.cnki.jauh.2021.0059
TANG W Q, WANG D M. Expression analysis and subcellular localization of TaSnRK1 during the interaction between wheat and Puccinia triticina. Journal of Hebei Agricultural University, 2021, 44(4): 7-12. (in Chinese)
[28]
罗静静, 张亚飞, 张淑辉, 彭福田, 肖元松. 草莓蔗糖非发酵-1-相关蛋白激酶1(SnRK1)α亚基编码基因的克隆及表达分析. 植物生理学报, 2018, 54(8): 1341-1348.
LUO J J, ZHANG Y F, ZHANG S H, PENG F T, XIAO Y S. Cloning and expression analysis of sucrose non-fermenting-1-related protein kinase 1 (SnRK1) α-subunit gene in strawberry. Plant Physiology Journal, 2018, 54(8): 1341-1348. (in Chinese)
[29]
LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development. Journal of Experimental Botany, 2014, 65(3): 799-807.

doi: 10.1093/jxb/ert474 pmid: 24453229
[30]
EMANUELLE S, DOBLIN M S, STAPLETON D I, BACIC A, GOOLEY P R. Molecular insights into the enigmatic metabolic regulator, SnRK1. Trends in Plant Science, 2016, 21(4): 341-353.

doi: S1360-1385(15)00281-2 pmid: 26642889
[31]
CHEN W, LI Y, YAN R B, REN L, LIU F, ZENG L Y, SUN S N, YANG H H, CHEN K R, XU L, LIU L J, FANG X P, LIU S Y. SnRK1.1-mediated resistance of Arabidopsis thaliana to clubroot disease is inhibited by the novel Plasmodiophora brassicae effector PBZF1. Molecular Plant Pathology, 2021, 22(9): 1057-1069.
[1] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[2] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[5] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[6] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[7] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[8] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[9] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[10] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[11] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[12] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[13] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[14] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[15] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!