Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 4094-4106.doi: 10.3864/j.issn.0578-1752.2024.20.014

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Nitrogen Nutrition Diagnosis Method Based on Mobile Phone Image of Summer Maize Canopy

QI Xin(), WANG Yang, HUANG YuFang, YE YouLiang, GUO YuLong(), ZHAO YaNan()   

  1. College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046
  • Received:2024-04-24 Accepted:2024-07-01 Online:2024-10-16 Published:2024-10-24
  • Contact: GUO YuLong, ZHAO YaNan

Abstract:

【Objective】Convenient and accurate diagnosis of crop nitrogen (N) status is the key to achieve precise crop fertilization and rational utilization of N resources. In recent years, the application of digital cameras and other tools in crop nutrition diagnosis has attracted wide attention. In this study, the smart phone cameras were used to obtain maize canopy images, and nitrogen nutrition diagnosis technology based on mobile phone cameras was established and improved. The reliability of traditional image mean method and histogram method for nitrogen nutrition diagnosis was compared to find out the best model for nitrogen nutrition diagnosis of summer maize. 【Method】Based on the experiment of N fertilizer amount in the field, the canopy image of summer maize at jointing stage was obtained by smartphone camera. Six color indices, including G/R, G/B, NRI [R/(R+G+B)], NGI [G/(R+G+B)], NBI [B/(R+G+B)] and (G-R)/(R+G+B), were extracted from summer maize canopy images, and the histogram sensitive interval were established, respectively, to analyze their relationship with leaf N content and yield of maize. The determination coefficient (R2) and root mean square error (RMSE) were used to determine the relationship between the mean color index model and the histogram model. Mean absolute percentage error (MAPE) was used to simulate and estimate the stability and accuracy of leaf N content and yield in maize compared with different index models. Then, the N nutrition diagnosis model based on mobile phone camera acquisition of summer maize canopy images was established. 【Result】N application significantly affected leaf N content, yield, canopy image hue and vegetation coverage of maize. The peak b of the histogram changes with the increase of leaf N content. Compared with the mean color index method in canopy images, the index histogram method was suitable for N diagnosis among different varieties. The color index (G-R)/(R+G+B) histogram could better reflect crop coverage and overall color information. The index histogram also showed a good correlation with leaf N content and yield. Based on the neural network model to validate the accuracy evaluation indicators of the dataset, the MAPE and RMSE values of leaf N content and yield in maize in the exponential histogram model were lower than those in the exponential mean model, and the R2 reached 0.753, which was greater than that in the exponential mean model. The validation results of the exponential histogram model showed a MAPE value of 5.80% and an RMSE value of 0.07, indicating high estimation accuracy and strong generalization ability. The results indicated that the color parameter index histogram of canopy images had higher accuracy and stronger robustness in estimating leaf N content and yield, and could effectively utilize the characteristics of maize leaf coverage, color, etc., with good stability.【Conclusion】Therefore, the neural network model established by using smartphones to obtain digital images of maize canopy and combining them with the color index histogram method of canopy images has good application effects and improves estimation accuracy. As a new method, it has good potential in rapid and non-destructive diagnosis of maize N nutrition and precise fertilization.

Key words: nitrogen nutrition diagnosis, mobile phone camera, summer maize, canopy, neural network model, digital image technology

Fig. 1

Schematic diagram of summer maize canopy image processing and analysis"

Table 1

Leaf N content and yield of summer maize at jointing stage under different nitrogen fertilizer rates"

品种 Cultivar 氮水平 Nitrogen level 叶片含氮量 Leaf N content (%) 产量 Yield (kg·hm-2)
登海605
Denghai 605,DH605
N0 0.77±0.14b 5766±1817b
N120 0.86±0.03b 8612±738a
N180 1.07±0.04a 9469±772a
N240 0.98±0.12ab 8499±522a
N360 0.86±0.15b 6297±591b
平均Mean 0.91 7729
CV (%) 12.24 12.76
科玉188
Keyu 188,KY188
N0 0.57±0.02b 7202±1642a
N120 0.89±0.08a 8131±200a
N180 0.92±0.07a 8956±1418a
N240 0.84±0.10a 8592±1022a
N360 0.97±0.11a 9037±987a
平均Mean 0.84 8384
CV(%) 8.51 12.79

Table 2

Mean values of the color parameters of canopy images of summer maize at jointing stage"

品种
Cultivar
氮水平
Nitrogen level
色彩参数 Color parameter
G/R G/B NRI NGI NBI (G-R)/(R+G+B)
登海605
Denghai 605,DH605
N0 0.93±0.24a 1.55±0.26a 0.25±0.04a 0.31±0.07a 0.16±0.04a 0.07±0.02a
N120 0.99±0.22a 1.61±0.22a 0.26±0.03a 0.33±0.06a 0.18±0.04a 0.07±0.03a
N180 1.07±0.15a 1.59±0.36a 0.28±0.05a 0.36±0.06a 0.21±0.03a 0.07±0.01a
N240 1.10±0.09a 1.66±0.12a 0.27±0.01a 0.36±0.02a 0.20±0.01a 0.09±0.01a
N360 1.01±0.04a 1.60±0.02a 0.27±0.00a 0.34±0.01a 0.19±0.01a 0.07±0.01a
平均Mean 0.15 0.20 0.03 0.04 0.03 0.02
CV(%) 14.90 12.44 10.51 12.98 13.89 24.31
科玉188
Keyu 188,KY188
N0 0.97±0.03a 2.15±0.28a 0.32±0.03a 0.38±0.03a 0.18±0.02ab 0.05±0.02a
N120 0.95±0.02a 1.54±0.34b 0.27±0.02bc 0.34±0.03a 0.20±0.02a 0.05±0.01a
N180 0.93±0.12a 1.54±0.21b 0.25±0.02c 0.34±0.04a 0.21±0.03a 0.05±0.01a
N240 0.89±0.30a 1.47±0.43b 0.19±0.04d 0.29±0.10a 0.13±0.08b 0.07±0.03a
N360 0.97±0.02a 1.85±0.18ab 0.31±0.01ab 0.37±0.02a 0.20±0.01a 0.05±0.01a
平均Mean 0.10 0.29 0.02 0.05 0.03 0.02
CV(%) 10.68 17.50 9.94 14.073 18.902 28.69

Table 3

Correlation between mean color parameters, leaf N content and yield of summer maize at jointing stage"

品种
Cultivar
色彩参数
Color parameter
叶片含氮量
Leaf N content
(%)
产量
Yield
(kg·hm-2)
登海605
Denghai 605,
DH605
G/R 0.334 0.563
G/B 0.166 0.406
NRI 0.256 0.568
NGI 0.301 0.560
NBI 0.368 0.632
(G-R)/(R+G+B) 0.299 0.392
科玉188 Keyu 188,KY188 G/R 0.159 -0.460
G/B -0.237 -0.610
NRI -0.193 -0.326
NGI 0.082 -0.530
NBI 0.417 -0.166
(G-R)/(R+G+B) -0.017 -0.244

Fig. 2

Histogram of summer maize at the jointing stage (the histogram uses (G-R)/(R+G+B) as an example) A: Maize canopy image after ENVI processing; B: Color index histogram of canopy image with different leaf N content in KY188; C: Histogram of color index under minimum leaf N content of different corn varieties; D: Histogram of color index under maximum leaf N content different maize varieties"

Table 4

Correlation coefficient between color index histogram and leaf N content and yield of summer maize at jointing stage"

品种
Cultivar
色彩参数
Color parameter
叶片含氮量
Leaf N content
(%)
产量
Yield
(kg·hm-2)
登海605
Denghai 605,
DH605
G/R 0.456 0.345
G/B -0.342 -0.416
NRI 0.588 0.689
NGI -0.070 -0.031
NBI 0.432 0.526
(G-R)/(R+G+B) -0.633 -0.588
科玉188
Keyu 188,
KY188
G/R 0.493 0.660
G/B -0.121 -0.667
NRI 0.796 0.250
NGI 0.394 0.625
NBI 0.244 -0.257
(G-R)/(R+G+B) -0.550 -0.590

Fig. 3

Comparison of image mean value correlations and histogram correlations"

Fig. 4

Relationship between leaf N content and yield estimation and measured values based on the mean value of summer maize canopy image information"

Fig. 5

Relationship between leaf N content and yield estimation and measured value based on histogram of summer maize canopy image information"

Table 5

Comparison of errors in neural network models"

模型
Model
指标
Indicators
训练数据集 Training dataset 验证数据集 Validation dataset R2
MAPE (%) RMSE MAPE (%) RMSE
指数均值
Color parameter mean
叶片含氮量 Leaf N content 20.48 0.211 14.60 0.223 0.265
产量 Yield 12.97 1362.953 15.56 1481.131 0.435
指数直方图
Color parameter histogram
叶片含氮量 Leaf N content 10.92 0.126 5.80 0.070 0.753
产量 Yield 10.42 1177.432 9.20 918.267 0.653
[1]
赵亚南, 宿敏敏, 吕阳, 况福虹, 陈轩敬, 张跃强, 石孝均. 减量施肥下小麦产量、肥料利用率和土壤养分平衡. 植物营养与肥料学报, 2017, 23(4): 864-873.
ZHAO Y N, SU M M, Y, KUANG F H, CHEN X J, ZHANG Y Q, SHI X J. Wheat yield, nutrient use efficiencies and soil nutrient balance under reduced fertilizer rate. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 864-873. (in Chinese)
[2]
赵亚南, 徐霞, 黄玉芳, 孙笑梅, 叶优良. 河南省小麦、玉米氮肥需求及节氮潜力. 中国农业科学, 2018, 51(14): 2747-2757. doi: 10.3864/j.issn.0578-1752.2018.14.012.
ZHAO Y N, XU X, HUANG Y F, SUN X M, YE Y L. Nitrogen requirement and saving potential for wheat and maize in Henan Province. Scientia Agricultura Sinica, 2018, 51(14): 2747-2757. doi: 10.3864/j.issn.0578-1752.2018.14.012. (in Chinese)
[3]
魏雪, 贾彪, 兰宇, 马胜利, 马健祯, 蒋鹏, 孙权. 智能手机图像参数与玉米氮素营养状况关联解析. 生态学杂志, 2021, 40(8): 2656-2664.
WEI X, JIA B, LAN Y, MA S L, MA J Z, JIANG P, SUN Q. Correlation analysis between smartphone image parameters and nitrogen nutrition states of maize. Chinese Journal of Ecology, 2021, 40(8): 2656-2664. (in Chinese)

doi: DOI: 10.13292/j.1000-4890.202108.034
[4]
石蒙蒙, 王雪峰, 袁莹, 陈飞飞, 黄川腾, 王鹏, 陈星京. 基于冠层图像的海南粗榧苗期生长状态无损监测方法研究. 植物营养与肥料学报, 2023, 29(11): 2181-2192.
SHI M M, WANG X F, YUAN Y, CHEN F F, HUANG C T, WANG P, CHEN X J. Non-destructive monitoring of Cephalotaxus mannii growth status at seedling stage based on canopy images. Journal of Plant Nutrition and Fertilizers, 2023, 29(11): 2181-2192. (in Chinese)
[5]
郭松, 常庆瑞, 郑智康, 蒋丹垚, 高一帆, 宋子怡, 姜时雨. 基于无人机高光谱影像的玉米叶绿素含量估测. 江苏农业学报, 2022, 38(4): 976-984.
GUO S, CHANG Q R, ZHENG Z K, JIANG D Y, GAO Y F, SONG Z Y, JIANG S Y. Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images. Jiangsu Journal of Agricultural Sciences, 2022, 38(4): 976-984. (in Chinese)
[6]
INTARAVANNE Y, SUMRIDDETCHKAJORN S. Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer. Computers and Electronics in Agriculture, 2015, 116: 228-233.
[7]
凌启鸿, 王绍华, 丁艳锋, 李刚华. 关于用水稻“顶3顶4叶叶色差”作为高产群体叶色诊断统一指标的再论证. 中国农业科学, 2017, 50(24): 4705-4713. doi: 10.3864/j.issn.0578-1752.2017.24.004.
LING Q H, WANG S H, DING Y F, LI G H. Re-evaluation of using the color difference between the top 3rd leaf and the 4th leaf as a unified indicator for high-yielding rice. Scientia Agricultura Sinica, 2017, 50(24): 4705-4713. doi: 10.3864/j.issn.0578-1752.2017.24.004. (in Chinese)
[8]
BURGOS-ARTIZZU X P, RIBEIRO A, TELLAECHE A, PAJARES G, FERNÁNDEZ-QUINTANILLA C. Analysis of natural images processing for the extraction of agricultural elements. Image and Vision Computing, 2010, 28(1): 138-149.
[9]
武改红, 冯美臣, 杨武德, 王超, 孙慧, 贾学勤, 张松, 乔星星. 冬小麦叶片SPAD值高光谱估测的预处理方法. 生态学杂志, 2018, 37(5): 1589-1594.
WU G H, FENG M C, YANG W D, WANG C, SUN H, JIA X Q, ZHANG S, QIAO X X. Hyperspectral pretreatment methods on leaf SPAD value prediction in winter wheat. Chinese Journal of Ecology, 2018, 37(5): 1589-1594. (in Chinese)
[10]
周琼, 杨红云, 杨珺, 孙玉婷, 孙爱珍, 杨文姬. 基于BP神经网络和概率神经网络的水稻图像氮素营养诊断. 植物营养与肥料学报, 2019, 25(1): 134-141.
ZHOU Q, YANG H Y, YANG J, SUN Y T, SUN A Z, YANG W J. Feasibility study of BP neural network and probabilistic neural network for nitrogen nutrition diagnosis of rice images. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 134-141. (in Chinese)
[11]
张立周, 王殿武, 张玉铭, 程一松, 李红军, 胡春胜. 数字图像技术在夏玉米氮素营养诊断中的应用. 中国生态农业学报, 2010, 18(6): 1340-1344.
ZHANG L Z, WANG D W, ZHANG Y M, CHENG Y S, LI H J, HU C S. Diagnosis of N nutrient status of corn using digital image processing technique. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1340-1344. (in Chinese)
[12]
贺英, 邓磊, 毛智慧, 孙杰. 基于数码相机的玉米冠层SPAD遥感估算. 中国农业科学, 2018, 51(15): 66-77. doi: 10.3864/j.issn.0578-1752.2018.15.005.
HE Y, DENG L, MAO Z H, SUN J. Remote sensing estimation of canopy SPAD value for maize based on digital camera. Scientia Agricultura Sinica, 2018, 51(15): 66-77. doi: 10.3864/j.issn.0578-1752.2018.15.005. (in Chinese)
[13]
张玲, 陈新平, 贾良良. 基于无人机可见光遥感的夏玉米氮素营养动态诊断参数研究. 植物营养与肥料学报, 2018, 24(1): 261-269.
ZHANG L, CHEN X P, JIA L L. Parameter research of using UAV-based visible spectral analysis technology in dynamical diagnosis of nitrogen status of summer maize. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 261-269. (in Chinese)
[14]
张珏, 田海清, 李哲, 李斐, 史树德. 基于数码相机图像的甜菜冠层氮素营养监测. 农业工程学报, 2018, 34(1): 157-163.
ZHANG J, TIAN H Q, LI Z, LI F, SHI S D. Nitrogen nutrition monitoring of beet canopy based on digital camera image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 157-163. (in Chinese)
[15]
JIA B, HE H B, MA F Y, DIAO M, JIANG G Y, ZHENG Z, CUI J, FAN H. Use of a digital camera to monitor the growth and nitrogen status of cotton. The Scientific World Journal, 2014(6): 171-192
[16]
BENDIG J, BOLTEN A, BENNERTZ S, BROSCHEIT J, EICHFUSS S, BARETH G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing, 2014, 6(11): 10395-10412.
[17]
翟勇全, 魏雪, 运彬媛, 马健祯, 贾彪. 基于无人机图像参数对滴灌条件下玉米氮素营养的动态诊断. 中国农业气象, 2022, 43(4): 308-320.
ZHAI Y Q, WEI X, YUN B Y, MA J Z, JIA B. Dynamic diagnosis of nitrogen nutrition in maize under drip irrigation condition based on UAV image parameters. Chinese Journal of Agrometeorology, 2022, 43(4): 308-320. (in Chinese)
[18]
FERNANDEZ-GALLEGO J A, KEFAUVER S C, VATTER T, APARICIO GUTIÉRREZ N, NIETO-TALADRIZ M T, ARAUS J L. Low-cost assessment of grain yield in durum wheat using RGB images. European Journal of Agronomy, 2019, 105: 146-156.
[19]
ALI A M. Development of an algorithm for optimizing nitrogen fertilization in wheat using GreenSeeker proximal optical sensor. Experimental Agriculture, 2020, 56(5): 688-698.
[20]
陈奕山. 小农户在中国农业现代化进程中的作用及处境变化. 中国农业大学学报(社会科学版), 2021, 38(4): 19-30.
CHEN Y S. The role of small farm household and the change of their situation in agricultural modernization process. Journal of China Agricultural University (Social Sciences), 2021, 38(4): 19-30. (in Chinese)
[21]
夏莎莎, 张聪, 李佳珍, 李红军, 张玉铭, 胡春胜. 基于手机相机获取玉米叶片数字图像的氮素营养诊断与推荐施肥研究. 中国生态农业学报, 2018, 26(5): 703-709.
XIA S S, ZHANG C, LI J Z, LI H J, ZHANG Y M, HU C S. Diagnosis of nitrogen nutrient and recommended fertilization in summer corn using leaf digital images of cellphone camera. Chinese Journal of Eco-Agriculture, 2018, 26(5): 703-709. (in Chinese)
[22]
贾彪, 贺正. 基于手机图像反演的滴灌玉米光响应曲线特征参数研究. 农业机械学报, 2019, 50(7): 229-236.
JIA B, HE Z. Inversion of light response curve characteristic parameters of maize based on cellphone images. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 229-236. (in Chinese)
[23]
齐欣. 基于手机图像的冬小麦冠层数字图像氮素营养诊断模型[D]. 郑州: 河南农业大学, 2021.
QI X. Nitrogen nutrition diagnosis model of winter wheat canopy digital image based on mobile phone image[D]. Zhengzhou: Henan Agricultural University, 2021. (in Chinese)
[24]
周琼. 基于机器视觉和高光谱的水稻氮素营养诊断方法研究[D]. 南昌: 江西农业大学, 2019.
ZHOU Q. Study on diagnosis method of rice nitrogen nutrition based on machine vision and hyperspectral[D]. Nanchang: Jiangxi Agricultural University, 2019. (in Chinese)
[25]
于涧, 洪欣, 于泽翔, 马涛. 基于BP神经网络的江苏省粮食产量预测. 沈阳师范大学学报(自然科学版), 2023, 41(4): 316-320.
YU J, HONG X, YU Z X, MA T. Prediction of grain yield in Jiangsu Province based on BP neural network. Journal of Shenyang Normal University (Natural Science Edition), 2023, 41(4): 316-320. (in Chinese)
[26]
运彬媛, 张昊, 翟勇全, 马健祯, 姬丽, 李稼润, 金学兰, 贾彪. 基于土壤氮素水平的玉米冠层SPAD值估算方法. 生态学杂志, 2024, 43(5): 1488-1497.
YUN B Y, ZHANG H, ZHAI Y Q, MA J Z, JI L, LI J R, JIN X L, JIA B. Estimation method for canopy SPAD values of maize based on soil nitrogen level. Chinese Journal of Ecology, 2024, 43(5): 1488-1497. (in Chinese)

doi: 10.13292/j.1000-4890.202405.005
[27]
李媛媛, 常庆瑞, 刘秀英, 严林, 罗丹, 王烁. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算. 农业工程学报, 2016, 32(16): 135-142.
LI Y Y, CHANG Q R, LIU X Y, YAN L, LUO D, WANG S. Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135-142. (in Chinese)
[28]
廉世勋, 李承志, 吴振国, 张华京, 毛向辉. 农用转光剂及转光膜开发进展. 中国塑料, 2000, 14(9): 1-5.
LIAN S X, LI C Z, WU Z G, ZHANG H J, MAO X H. Progress in development of light conversion agents and films for agriculture. China Plastics, 2000, 14(9): 1-5. (in Chinese)
[29]
QI X, ZHAO Y N, HUANG Y F, WANG Y, QIN W, FU W, GUO Y L, YE Y L. A novel approach for nitrogen diagnosis of wheat canopies digital images by mobile phones based on histogram. Scientific Reports, 2021, 11: 13012.

doi: 10.1038/s41598-021-92431-5 pmid: 34155294
[30]
ADAMSEN F J, PINTER P J Jr, BARNES E M, LAMORTE R L, WALL G W, LEAVITT S W, KIMBALL B A. Measuring wheat senescence with a digital camera. Crop Science, 1999, 39(3): 719-724.
[31]
李井会, 朱丽丽, 宋述尧. 数字图像技术在马铃薯氮素营养诊断中的应用. 中国马铃薯, 2006, 20(5): 257-260.
LI J H, ZHU L L, SONG S Y. Diagnosis of N status of potato using digital image processing technique. Chinese Potato Journal, 2006, 20(5): 257-260. (in Chinese)
[32]
李红军, 张立周, 陈曦鸣, 张玉铭, 程一松, 胡春胜. 应用数字图像进行小麦氮素营养诊断中图像分析方法的研究. 中国生态农业学报, 2011, 19(1): 155-159.
LI H J, ZHANG L Z, CHEN X M, ZHANG Y M, CHENG Y S, HU C S. Image analysis method in application of digital image on diagnosing wheat nitrogen status. Chinese Journal of Eco-Agriculture, 2011, 19(1): 155-159. (in Chinese)
[33]
贾良良. 应用数字图像技术与土壤植株测试进行冬小麦氮营养诊断[D]. 北京: 中国农业大学, 2003.
JIA L L. Diagnosis of N status of winter wheat using digital image processing and soil-plant testing techniques[D]. Beijing: China Agricultural University, 2003. (in Chinese)
[34]
魏全全, 李岚涛, 任涛, 王振, 王少华, 李小坤, 丛日环, 鲁剑巍. 基于数字图像技术的冬油菜氮素营养诊断. 中国农业科学, 2015, 48(19): 3877-3886. doi: 10.3864/j.issn.0578-1752.2015.19.010.
WEI Q Q, LI L T, REN T, WANG Z, WANG S H, LI X K, CONG R H, LU J W. Diagnosing nitrogen nutrition status of winter rapeseed via digital image processing technique. Scientia Agricultura Sinica, 2015, 48(19): 3877-3886. doi: 10.3864/j.issn.0578-1752.2015.19.010. (in Chinese)
[35]
WAN L, CEN H Y, ZHU J P, ZHANG J F, ZHU Y M, SUN D W, DU X Y, ZHAI L, WENG H Y, LI Y J, LI X R, BAO Y D, SHOU J Y, HE Y. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer-a case study of small farmlands in the South of China. Agricultural and Forest Meteorology, 2020, 291: 108096.
[1] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[2] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[3] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[4] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
[5] LIU ShuiMiao, GUAN XiaoKang, ZHAO ZhiHeng, WANG JingHui, LIU ShiLong, GAO PeiMeng, WANG YanLi, WU PengNian, GAO ChenKai, LI YuMing, SHAO Jing, YU HaoLin, WANG TongChao, WEN PengFei. Residual Effects of Tillage Regime on Soil Moisture Dynamics, Grain Filling Characteristics and Yield of Summer Maize in Wheat-Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2024, 57(18): 3568-3585.
[6] ZHAO HuaRong, ZHOU GuangSheng, QI Yue, GENG JinJian, TIAN XiaoLi. Effects of Sowing Date Adjustment on Yield and Quality of Winter Wheat and Summer Maize in Northern Area of North China [J]. Scientia Agricultura Sinica, 2024, 57(15): 2964-2985.
[7] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[8] LIU Meng, ZHANG Yao, GE JunZhu, YANG YongAn, WU XiDong, HOU HaiPeng. Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years [J]. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995.
[9] YU HaoDong, CHU ZhenYu, WANG ShunYuan, GUO YanQing, REN BaiZhao, ZHANG JiWang. Effects of Different Controlled Nitrogen Ratios on Leaf Senescence and Grain Filling Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3511-3529.
[10] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[11] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] FANG MengYing, LU Lin, WANG QingYan, DONG XueRui, YAN Peng, DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[15] GENG WenJie, LI Bin, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!