Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 837-855.doi: 10.3864/j.issn.0578-1752.2022.05.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat

MA HongXiang1(),WANG YongGang1,GAO YuJiao1,HE Yi2,JIANG Peng2,WU Lei2,ZHANG Xu2()   

  1. 1Agricultural College of Yangzhou University/Jiangsu Co-innovation Center of Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genome & Molecular Breeding, Yangzhou 225009, Jiangsu
    2Jiangsu Academy of Agricultural Sciences/CIMMYT-JAAS Joint Research Center for Wheat Disease/Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing 210014
  • Received:2021-07-23 Accepted:2021-08-27 Online:2022-03-01 Published:2022-03-08
  • Contact: Xu ZHANG E-mail:mahx@yzu.edu.cn;xuzhang@jaas.ac.cn

Abstract:

Fusarium head blight (FHB) caused by Fusarium graminearum complex, is one of the most disastrous diseases seriously affecting yield and quality in wheat. Wheat kernels infected by Fusarium pathogen produce Fusarium mycotoxin, especially deoxynivalenol (DON), which may threaten the health of human beings and livestock. Breeding and application FHB resistant varieties is effective to control the disease and mycotoxin. Breeding for the resistance to FHB in wheat was commenced in 1950s in China. A national network on FHB research in wheat was established in 1970s. Inoculation methods were established and widely used for evaluating FHB resistance. Sumai 3, Wangshuibai and other resources with high resistance to FHB were selected and applied worldwide. Release of Yangmai 158 and Ningmai 9 with desirable agronomic traits and moderate resistance to FHB was a breakthrough in wheat breeding for FHB resistance. Such varieties have not only been widely applied in wheat production, but also produced more than 20 wheat varieties as parents of each variety. In addition to conventional breeding, chromosome engineering was used for transfer alien germplasm into wheat cultivated varieties, somaclonal variation and double haplotype produced by cell engineering techniques broadened genetic background and improved breeding efficiency in wheat genetic improvement for FHB resistance. The outbreak of FHB in North America in 1990s initiated the attention to FHB research in the United States and Europe. International cooperation prompted the exchange on material, technology and information in wheat breeding for FHB resistance. As results, significant progress in the research of FHB resistance type, inoculation techniques and evaluation index, germplasm development, QTL mapping, gene cloning, marker assisted selection and breeding for FHB resistance has been made. More than 600 QTL associated with FHB resistance were identified and located on all 21 chromosomes of wheat by using bi-parents linkage mapping and whole genome association analysis. Seven major genes/QTL were named as Fhb1-Fhb7. For the major QTL, Fhb1, associated with FHB resistance derived from Sumai 3 and Wangshuibai, the key candidate gene was cloned and validated, functional markers were developed and effectively used for marker assisted selection and new varieties possessing Fhb1 were released. The Fhb7 gene from Thinopyrum ponticum has also been isolated and used to improve FHB resistance in wheat. Pyramiding multiple QTL by marker assisted selection enhanced the resistance to FHB in wheat base on QTL fine mapping and close linked marker development. In the future, we should establish accurate phenotypic evaluation systems for evaluating the resistance to Fusarium head blight, strengthen the discovery of novel resistance germplasms and genes, isolate key genes related to FHB resistance and uncover their molecular mechanism, combine marker-assisted selection or genome selection with conventional breeding to continuously improve FHB resistance, breed wheat varieties with FHB resistance significantly improved and excellent agronomic traits.

Key words: wheat, genetics, breeding, Fusarium head blight, mycotoxin

Fig. 1

Fusarium symptom by using spore sprayed (left) and single floret injection (right) 7 days after inoculation"

Table 1

Varieties derived from Ningmai 9 and their FHB resistance level"

品种
Variety
审定号
Released code
亲本
Parents
抗性等级
Resistance
level
镇麦5号Zhenmai 5 苏审麦200406 Jiangsu200406 扬麦158/宁麦9号 Yangmai 158/Ningmai 9 MR
宁麦14 Ningmai 14 苏审麦200601 Jiangsu200601 宁麦9号系统选择Ningmai 9 system selection MR
宁麦13 Ningmai 13 国审麦2006004 National2006004 宁麦9号系统选择Ningmai 9 system selection MR
镇麦8号Zhenmai 8 国审麦2006008 National2006008 扬麦158/宁麦9号 Yangmai 158/Ningmai 9 MS
生选4号Shengxuan 4 苏审麦200606 Jiangsu200606 宁麦8号/宁麦9号 DH Ningmai 8/Ningmai 9 DH MR
扬辐麦4号Yangfumai 4 苏审麦200801 Jiangsu200801 宁麦8号/宁麦9号辐照Ningmai 8/Ningmai 9 irradiation MR
生选6号Shengxuan 6 国审麦2009004 National2009004 宁麦8号/宁麦9号 DH Ningmai 8/Ningmai 9 DH R
宁麦16 Ningmai 16 国审麦2009003 National2009003 宁麦8号/宁麦9号 Ningmai 8/Ningmai 9 MR
扬麦18
Yangmai 18
苏审麦200901
Jiangsu200901
4×宁麦9号/3/6×扬麦158//88-128/NNP045
4×Niangmai 9/3/6×Yangmai1 58//88-128/NNP045
MR
南农0686 Nannong 0686 国审麦2010003 National2010003 MV964091/宁麦9号MV964091/Ningmai 9 MR
扬麦21 Yangmai 21 苏审麦201102 Jiangsu201102 宁麦9号/红卷芒Ningmai 9/HJM MR
宁麦20 Ningmai 20 苏审麦201202 Jiangsu201202 Y18//宁麦8号/宁麦9号DH Y18//Ningmai 8/Ningmai 9 DH R
宁麦18 Ningmai 18 国审麦2012003 National2012003 宁麦9号*3/杨93-111 Ningmai 9*3/Yang 93-111 MR
苏麦8号 Sumai 8 苏审麦201302 Jiangsu201302 宁麦9号/扬麦11 Ningmai 9/Yangmai 11 MS
宁麦21 Ningmai 21 苏审麦201303 Jiangsu201303 宁麦9号/扬麦158//宁麦9号Ningmai 9/Yangmai 158//Ningmai 9 MR
苏麦9号 Sumai 9 徽审麦201303 Anhui201303 宁麦9号/扬麦11 Ningmai 9/Yangmai 11 R
宁麦24 Ningmai 24 徽审麦201509 Anhui201509 宁麦9号系统选择Ningmai 9 system selection MR
宁麦26 Ningmai 26 苏审麦2016004 Jiangsu2016004 宁9351/宁麦9号 Ning 9351/Ningmai 9 MR
苏麦11 Sumai 11 国审麦2016002 宁麦9号/扬麦11 Ningmai 9/Yangmai 11 MS
苏麦10号Sumai 10 徽审麦2016014 Anhui2016014 宁麦9号/扬麦11 Ningmai 9/Yangmai 11 MR
徽麦202 Huimai 202 徽审麦2016024 Anhui2016024 宁麦9号/扬麦158 Ningmai 9/Yangmai 158 MR
苏隆128 Sunong 128 徽审麦2016007 Anhui2016007 5E007/宁麦9号5E007/Ningmai 9 MR
光明麦1311 Guangmingmai 1311 国审麦20180005 National20180005 3E158/宁麦9 3E158/Ningmai 9 MR
农麦126 Nongmai 126 国审麦20180008 National20180008 扬麦16/宁麦9号Yangmai 16/Ningmai 9 MS
扬辐麦8号 Yangfumai 8 国审麦2018011 National2018011 宁麦8号/宁麦9号//扬麦11 Ningmai 8/Ningmai 9//Yangmai 11 MR
中垦麦212 Zhongkeng 212 国审麦20200005 National2020005 郑麦9023/宁麦9号Zhengmai 9023/Ningmai 9 MS
凯麦1778 Kaimai 1778 皖审麦20210026 Anhui20210026 宁麦9号/扬麦158 Ningmai 9/Yangmai 158 MR
扬麦36 Yangmai 36 国审麦20210012 National20210012 宁麦9号/扬麦152//镇麦9号Ningmai 9/Yangmai 152//Zhengmai 9 MR

Table 2

Varieties with resistance or moderate resistance to FHB in national trial"

年份
Year
审定品种数
No. of released varieties
抗或中抗品种数
No. of varieties with resistance or moderate resistance to FHB
品种
Varieties
抗性等级
FHB resistance
亲本
Parents
Fhb1位点
Fhb1 allele
2001 13 0
2002 0 0
2003 45 0
2004 25 0
2005 22 1 扬麦17 Yangmai 17 MR 92F101/川育21526 92F101/Chuanyu 21526 -
2006 32 1 宁麦13 Ningmai13 MR 宁麦9号系选 System selection from Ningmai 9 +
2007 30 1 镇麦168 Zhengmai 168 MR 苏麦6号/97G59 Sumai 6/97G59 -
2008 20 2 宁麦15 Ningmai 15 MR 宁9914系选 System selection from Ning 9914 +
淮麦21 Huaimai 21 MR 淮麦17/豫麦54 Huaimai 17/Yumai 54 -
2009 33 2 宁麦16 Ningmai 16 MR 宁麦8号/宁麦9号 Ningmai 8/ Ningmai 9 +
生选6号Shnegxuan 6 R 宁麦8号/宁麦9号 Ningmai 8/ Ningmai 9 +
2010 22 1 南农0686 Nannong 0686 MR MV964091/宁麦9号MV964091/Ningmai 9 +
2011 18 0 -
2012 16 2 宁麦18 Ningmai 18 MR 宁9312/扬93-111 Ning 9312/Yang 93-111 +
苏麦188 Sumai 188 MR 扬辐麦2号系选 System selection from Yangmai 2 -
2013 25 1 宁麦23 Ningmai 23 MR 宁9543/扬麦158//宁9543 Ning 9543/Yangmai 158//Ning 9543 +
2014 21 0 -
2015 34 1 华麦6号 Huamai 6 MR 扬麦13/苏麦6号 Yangmai 13/Sumai 6 -

Table 3

Varieties with improved resistance to FHB in 2017-2020 in national trial"

年份
Year
审定品
种数
No. of released varieties
长江中下游中抗品种
Varieties with moderate resistance
to FHB in the middle to lower
reaches of Yangtze River
黄淮麦区中感品种
Varieties with moderate susceptible
to FHB in the reaches of Yellow
River to Huai River
长江上游中感品种
Varieties with moderate susceptible to FHB in the upper reaches of Yangtze River
东北春麦区中感品种
Varieties with moderate susceptible to FHB in the Northeast China
2017 26 宁麦26 Ningmai 26 恒进麦8号、天益科麦5号、瑞华麦523
Hengjinmai 8, Tianyikemai 5, Ruihuamai 523
2018 77 光明麦1311、华麦1028、扬麦28、扬辐麦8号
Guangmingmai 1311, Huamai 1028, Yangmai 28, Yangfumai 8
瑞华麦516
Ruihuamai 516
川麦601、川农32 Chuanmai 601, Chuannong 32 北麦16、垦红24、龙辐麦23
Beimai 16, Kenhong 24, Longfumai 23
2019 59 宁麦27、苏研麦017、扬辐麦9号、扬麦30、中麦5051
Ningmai 27, Suyanmai 017, Yangfumai 9, Yangmai 30, Zhongmai 5051
安科1401、郑麦0943、中麦4072
Anke 1401, Zhengmai 0943, Zhongmai 4072
龙垦401、龙垦402 Longken 401, Longken 402
2020 106 扬辐麦10号、镇麦13、扬麦24、
丰麦216、宁麦28、华麦8号
Yangfumai 10, Zhenmai 13, Yangmai 24, Fengmai 216, Ningmai 28, Huamai 8
中麦578、天益科麦6号、西农501、淮麦43、濮麦087、涡麦606、荷麦23、中育9302、大平原1号、西农369、平麦189、农麦168
Zhongmai 578, Tianyikemai 6, Xinong 501, Huaimai 43, Pumai 087, Guomai 606, Hemai 23, Zhongyu 9302, Dapingyuan 1, Xinong 369, Pingmai 189, Nongmai 168
[1] FIGUEROA M, HAMMOND-KOSACK K E, SOLOMON P S. A review of wheat disease-a field perspective. Molecular Plant Pathology, 2018, 19(6):1523-1536.
doi: 10.1111/mpp.12618
[2] DWEBA C C, FIGLAN S, SHIMELIS H A, MOTAUNG T E, SYDENHAM S, MWADZINGENI L, TSILO T J. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 2017, 91:114-122.
doi: 10.1016/j.cropro.2016.10.002
[3] 戴松恩, 姜秉权, 王焕如. 小麦品种抗赤霉病之育种问题. 农报, 1941, 6:616-625.
DAI S E, JIANG B Q, WANG H R. Problems related to breeding for scab resistance of wheat varieties. Agricultural Reports, 1941, 6:616-625. (in Chinese)
[4] 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望. 遗传, 2018, 40(10):858-873.
ZHANG A M, YANG W L, LI X, SUN J Z. Current status and perspective on research against Fusarium head blight in wheat. Hereditas, 2018, 40(10):858-873. (in Chinese)
[5] LIU D J. Breeding wheat for scab resistance-a worldwide hard nut to crack//LI Z S. Proceedings of International Conference on Wheat Genetics and Breeding-Perspectives of the 21st Century for Wheat Genetics and Breeding. Beijing: Agriculture Publisher, 2021: 4-7.
[6] 马忠华, 陈云, 尹燕妮. 小麦赤霉病流行成灾原因分析及对策防控探讨. 中国科学基金, 2020, 34(4):464-469.
MA Z H, CHEN Y, YIN Y N. Epidemiological analysis and management strategies of Fusarium head blight of wheat. Science Foundation in China, 2020, 34(4):464-469. (in Chinese)
[7] BECHTEL D, KALEIKAU L, GAINES R, SEITZ L. The effects of Fusarium graminearum infection on wheat kernels. Cereal Chemistry, 1985, 62:191-197.
[8] 徐闰成, 陈洁明. 小麦赤霉病流行预测初步研究. 植物保护学报, 1964, 3(4):405-412.
XU R C, CHEN J M. A preliminary study on the forecasting of epiphytotics of head blight of wheat. Acta Phytophylactics Sinica, 1964, 3(4):405-412. (in Chinese)
[9] 李汉卿, 傅纯彦. 黑龙江省小麦赤霉病的初步研究. 植物保护学报, 1964, 3(3):225-232.
LI H Q, FU C Y. A preliminary study of wheat scab in Heilongjiang province. Acta Phytophylactics Sinica, 1964, 3(3):225-232. (in Chinese)
[10] 程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 范金萍. 控制小麦赤霉病流行的主要因素分析. 江苏农业学报, 2008, 19(1):55-58.
CHENG S H, ZHANG Y, ZHANG B Q, GAO D R, WU H Y, LU C B, LÜ G F, FAN J P. Analysis of main factors for control wheat scab epidemic. Jiangsu Journal of Agricultural Sciences, 2008, 19(1):55-58. (in Chinese)
[11] 赵圣菊, 姚彩文. 厄尼诺与小麦赤霉病大流行关系的研究. 气象科学研究院院刊, 1989, 4(2):214-218.
ZHAO S J, YAO C W. A study on the relationship between the El Nino and the great prevailence of the wheat scab. Journal of Academy of Meteorological Science, 1989, 4(2):214-218. (in Chinese)
[12] 居为民, 高苹, 武金岗. 太湖地区小麦赤霉病与ENSO事件之关系及其预报. 科技通报, 2001, 17(3):22-26.
JU W M, GAO P, WU J G. Relationship of ENSO to wheat gibberellin in the area of Taihu lake and its prediction. Bulletin of Science and Technology, 2001, 17(3):22-26. (in Chinese)
[13] DILL-MACKY R, JONES R K. Effects of previous crop and tillage on Fusarium head blight of wheat. Phytopathology, 1999, 89:S21.
[14] 乔玉强, 曹承富, 赵竹, 杜世州, 张耀兰, 刘永华, 张四华. 秸秆还田与施氮量对小麦产量和品质及赤霉病发生的影响. 麦类作物学报, 2013, 33(4):758-764.
QIAO Y Q, CAO C F, ZHAO Z, DU S Z, ZHANG Y L, LIU Y H, ZHANG S H. Effect of straw-returning and N-fertilizer application on yield, quality and occurrence of Fusarium head blight of wheat. Journal of Triticeae Crops, 2013, 33(4):758-764. (in Chinese)
[15] 周明国, 叶钟音, 刘经芬. 杀菌剂抗性研究进展. 南京农业大学学报, 1994, 17(3):33-41.
ZHOU M G, YE Z Y, LIU J F. Progress of fungicide resistance research. Journal of Nanjing Agricultural University, 1994, 17(3):33-41. (in Chinese)
[16] 叶钟音, 周明国. 江淮地区小麦赤霉病菌对多菌灵耐药性的测定. 植物保护学报, 1985, 12:188-189.
YE Z Y, ZHOU M G. Determination of tolerance to methyl-2- benzimidazole carbamate in wheat scab in Jiang Huai area. Journal of Plant Protection, 1985, 12:188-189. (in Chinese)
[17] 黄冲, 姜玉英, 吴佳文, 邱坤, 杨俊杰. 2018年我国小麦赤霉病重发特点及原因分析. 植物保护, 2019, 45(2):160-163.
HUANG C, JIANG Y Y, WU J W, QIU K, YANG J J. Occurrence characteristics and reason analysis of wheat head blight in 2018 in China. Plant Protection, 2019, 45(2):160-163. (in Chinese)
[18] CHEN Y, KIRSTIE H C, MA Z. Fusarium graminearum trichothecene mycotoxins, regulation and management. Annual Review of Phytopathology, 2019, 57:15-39.
doi: 10.1146/phyto.2019.57.issue-1
[19] 陈云, 王建强, 杨荣明, 马忠华. 小麦赤霉病发生危害形势及防控对策. 植物保护, 2017, 43(5):11-17.
CHEN Y, WANG J Q, YANG R M, MA Z H. Current situation and management strategies of Fusarium head blight in China. Plant Protection, 2017, 43(5):11-17. (in Chinese)
[20] KOHLI M M, DE ACKERMANN M D. Resistance to Fusarium head blight in South American wheat germplasm//ALCONADA M T M, CHULZE S N. Fusarium Head Blight in Latin America. Dordrecht: Springer Press, 2013: 263-297.
[21] WILSON W W, MCKEE G, NGANJE W, DAHL B, BANGSUND D. Economic impact of USWBSI’s Scab Initiative to reduce FHB. Agribusiness and Applied Economics Report, 2017, 26:774.
[22] APONYI I, NAGY G, PRINCZINGER G, KAJATI I. Fusarium infection of wheat seeds in Hungary between 1970 and 1997. Cereal Research Communications, 1998, 26:253-258.
doi: 10.1007/BF03543496
[23] SCUDAMORE K. Fate of Fusarium mycotoxins in the cereal industry: Recent UK studies. World Mycotoxin Journal, 2008, 1(3):315-323.
doi: 10.3920/WMJ2008.x034
[24] WEGULO S N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins, 2012, 4:1157-1180.
doi: 10.3390/toxins4111157
[25] EDWARDS S. Zearalenone risk in European wheat. World Mycotoxin Journal, 2011, 4(4):433-438.
doi: 10.3920/WMJ2011.1293
[26] QIU J, XU J, SHI J. Fusarium toxins in Chinese wheat since the 1980s. Toxins, 2019, 11(5):e248.
[27] SELVARAJ J, ZHAO Y, SANGARE L, XING, FG, ZHOU, L, WANG, Y, XUE, XF, LI, Y, LIU, Y. Limited survey of deoxynivalenol in wheat from different crop rotation fields in Yangtze-Huaihe river basin region of China. Food Control, 2015, 53:151-155.
doi: 10.1016/j.foodcont.2015.01.021
[28] JIANG D F, CHEN J D, LI F H, LI W, YU L L, ZHENG F J, WANG X L. Deoxynivalenol and its acetyl derivatives in bread and biscuits in Shandong province of China. Food Additives & Contaminants Part B-Surveillance, 2018, 11(1):43-48.
[29] MONTES R, SEGARRA R, CASTILLO M A. Trichothecenes in breakfast cereals from the Spanish retail market. Journal of Food Composition and Analysis, 2012, 27:38-44.
doi: 10.1016/j.jfca.2012.05.004
[30] GOTTSCHALK C, BARTHEL J, ENGELHARDT G, BAUER J, MEYER K. Simultaneous determination of type A, B and D trichothecenes and their occurrence in cereals and cereal products. Food Additives and Contaminants, 2009, 26(9):1273-1289.
[31] MARCIN B, RENATA J, KRYSTYNA S, MAREK R, MIECZYSŁAW W O. An LC-IT-MS/MS-based method to determine trichothecenes in grain. Products Food Analytical Methods, 2014, 7:1056-1065.
[32] SCHROEDER H W, CHRISTENSEN J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 1963, 53:831-838.
[33] MILLER J D, YOUNG J C, SAMPSON D R. Deoxynivalenol and Fusarium head blight resistance in spring cereals. Journal of Phytopathology, 1985, 113:359-367.
doi: 10.1111/jph.1985.113.issue-4
[34] SNIJDERS C H A, PERKOWSKI J. Effect of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology, 1990, 80:566-570.
doi: 10.1094/Phyto-80-566
[35] MESTERHAZY A. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, 1995, 114:377-386.
doi: 10.1111/pbr.1995.114.issue-5
[36] BAI G H, PLATTNER R, DESJARDINS A, KOLB F L. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breeding, 2001, 120(1):1-6.
doi: 10.1046/j.1439-0523.2001.00562.x
[37] 程顺和, 杨士敏, 张伯桥, 季开祯, 赵步洪, 高德荣. 小麦对赤霉病抗扩展性鉴定方法的研究. 中国农业科学, 1994, 27(2):45-49.
CHENG S H, YANG S M, ZHANG B Q, JI K Z, ZHAO B H, GAO D R. Preliminary study on the identification method of wheat scab resistance to spread. Scientia Agricultura Sinica, 1994, 27(2):45-49. (in Chinese)
[38] 王裕中, 杨新宁, 肖庆璞. 小麦赤霉病抗性鉴定技术的改进及其抗源的开拓. 中国农业科学, 1982, 15(5):67-77.
WANG Y Z, YANG X N, XIAO Q P. The improvement of identification technique of scab resistance of wheat and the development of resistant sources. Scientia Agricultura Sinica, 1982, 15(5):67-77. (in Chinese)
[39] LEMMENS M, BUERSTMAYR H, KRSKA R, SCHUHMACHER R, GRAUSGRUBER H, RUCKENBAUER P. The effect of inoculation treatment and long-term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. European Journal of Plant Pathology, 2004, 110:299-308.
doi: 10.1023/B:EJPP.0000019801.89902.2a
[40] BUERSTMAYR H, STEINER B, HARTL L, GRIESSER M, ANGERER N, LENGAUER D, MIEDANER T, SCHNEIDER B, LEMMENS M. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat: II. Resistance to fungal penetration and spread. Theoretical and Applied Genetics, 2003, 107:503-508.
doi: 10.1007/s00122-003-1272-6
[41] MESTERHAZY A. Updating the breeding philosophy of wheat to Fusarium head blight: Resistance components, QTL identification and phenotyping-a review. Plants, 2020, 9:1702.
doi: 10.3390/plants9121702
[42] BAI G H, SHANER G. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 2004, 42:135-161.
doi: 10.1146/phyto.2004.42.issue-1
[43] 张凯鸣, 马鸿翔, 陆维忠, 蔡志祥, 陈怀谷, 袁生. 小麦赤霉病与DON积累抗性及其相关SSR位点差异. 作物学报, 2006, 32(12):1788-1795.
ZHANG K M, MA H X, LU W Z, CAI Z X, CHEN H G, YUAN S. Resistance to Fusarium head blight and deoxynivalenol accumulation and allele variation of related SSR markers in wheat. Acta Agronomica Sinica, 2006, 32(12):1788-1795. (in Chinese)
[44] MESTERHAZY A. How to avoid toxigenic problems in animal husbandry? Journal of Veterinary Science and Research, 2020, 5(2):197.
[45] HE Y, AHMAD D, ZHANG X, ZHANG Y, WU L, JIANG P, MA H. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat. BMC Plant Biology, 2018, 18:67.
doi: 10.1186/s12870-018-1286-5
[46] GONG X, HE X, ZHANG Y, LI L, SUN Z, BAI G, SINGH P K, LI T. Development of an evaluation system for Fusarium resistance in wheat grains and its application in assessment of the corresponding effects of Fhb1. Plant Disease, 2020, 104:2210-2216.
doi: 10.1094/PDIS-12-19-2584-RE
[47] MA H, ZHANG X, YAO J, CHENG S. Breeding for the resistance to Fusarium head blight of wheat in China. Frontiers of Agricultural Science and Engineering, 2019, 6(3):251-264.
doi: 10.15302/J-FASE-2019262
[48] BUERSTMAYR H, BAN T, ANDERSON J A. QTL mapping and marker assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breeding, 2009, 128:1-26.
doi: 10.1111/pbr.2009.128.issue-1
[49] BUERSTMAYR M, STEINER B, BUERSTMAYR H. Breeding for Fusarium head blight resistance in wheat-Progress and challenges. Plant Breeding, 2020, 139(3):429-454.
doi: 10.1111/pbr.v139.3
[50] WALDRON B L, MORENO-SEVILL B J, ANDERSON A R, STACK W, FROHBERG R C. RFLP mapping of QTL for fusarium head blight resistance in wheat. Crop Science, 1999, 39:805-811.
doi: 10.2135/cropsci1999.0011183X003900030032x
[51] BAI G H, KOLB F, SHANER L G, DOMIER L L. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology, 1999, 89:343-348.
doi: 10.1094/PHYTO.1999.89.4.343
[52] ANDERSON J A, STACK R W, LIU S, WALDRON B L, FJELD A D, COYNE C, MORENO-SEVILLA B, FETCH J M, SONG Q J, CREGAN P B, FROHBERG R C. DNA markers for Fusarium head blight resistance QTLs its two wheat populations. Theoretical and Applied Genetics, 2001, 102:1164-1168.
doi: 10.1007/s001220000509
[53] ZHANG X, ZHOU M P, REN L J, BAI G H, MA H X, SCHOLTEN O E, GUO P G, LU W Z. Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica, 2004, 139:59-64.
doi: 10.1007/s10681-004-2298-9
[54] LIN F, XUE S L, ZHANG Z Z, ZHANG C Q, KONG Z X, YAO G Q, TIAN D G, ZHU H L, LI C J, CAO Y, WEI J B, LUO Q Y, MA Z Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419·Wangshuibai population: II Type I resistance. Theoretical and Applied Genetics, 2006, 112:528-535.
doi: 10.1007/s00122-005-0156-3
[55] LI T, BAI G H, WU S Y, GU S L. Quantitative trait loci for resistance to Fusarium head blight in the Chinese wheat landrace Huangfangzhu. Euphytica, 2012, 185(1):93-102.
doi: 10.1007/s10681-012-0631-2
[56] LI T, BAI G H, WU S Y, GU S L. Quantitative trait loci for resistance to Fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theoretical and Applied Genetics, 2011, 122(8):1497-1502.
doi: 10.1007/s00122-011-1549-0
[57] ZHANG X H, PAN H Y, BAI G H. Quantitative trait loci responsible for Fusarium head blight resistance in Chinese landrace Baishanyuehuang. Theoretical and Applied Genetics, 2012, 125(3):495-502.
doi: 10.1007/s00122-012-1848-0
[58] CAI J, BAI G H. Quantitative trait loci for Fusarium head blight resistance in Huangcandou× ‘Jagger’ wheat population. Crop Science, 2014, 54(6):2520-2528.
doi: 10.2135/cropsci2013.12.0835
[59] SHEN X, ZHOU M, LU W, OHM H. Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theoretical and Applied Genetics, 2003, 106(6):1041-1047.
doi: 10.1007/s00122-002-1133-8
[60] BOURDONCLE W, OHM H W. Quantitative trait loci for resistance to Fusarium head blight in recombinant inbred wheat lines from the cross Huapei 57-2/Patterson. Euphytica, 2003, 131(1):131-136.
doi: 10.1023/A:1023056207513
[61] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018, 44(4):473-482.
ZHU Z W, XU D A, CHENG S H, GAO C B, XIA X C, HAO Y F, HE Z H. Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agronomica Sinica, 2018, 44(4):473-482. (in Chinese)
[62] 胡文静, 张春梅, 吴迪, 陆成彬, 董亚超, 程晓明, 张勇, 高德荣. 长江中下游小麦抗赤霉病品种的筛选与部分农艺性状分析. 中国农业科学, 2020, 53(21):4313-4321.
HU W J, ZHANG C M, WU D, LU C B, DONG Y C, CHENG X M, ZHANG Y, GAO D R. Screening for resistance to Fusarium head blight and agronomic traits of wheat germplasms from Yangtze River region. Scientia Agricultura Sinica, 2020, 53(21):4313-4321. (in Chinese)
[63] ZHANG P, GUO C, LIU Z, BERNARDO A, MA H, JIANG P, SONG G, BAI G. Quantitative trait loci for Fusarium head blight resistance in wheat cultivars Yangmai 158 and Zhengmai 9023. The Crop Journal, 2021, 9(1):143-153.
doi: 10.1016/j.cj.2020.05.007
[64] YAN H S, LI G Q, SHI J X, TIAN S S, ZHANG X Q, CHENG R, WANG X, YUAN Y, CAO S Y, ZHOU J Y, KONG Z X, JIA H Y, MA Z Q. Genetic control of Fusarium head blight resistance in two Yangmai 158-derived recombinant inbred line populations. Theoretical and Applied Genetics, 2021, 134:3037-3049
doi: 10.1007/s00122-021-03876-1
[65] JIANG P, ZHANG X, WU L, HE Y, ZUANG W, CHENG X, GE W, MA H, KONG L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathology, 2020, 69:249-258.
doi: 10.1111/ppa.v69.2
[66] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46(2):157-165.
HU W J, ZHANG Y, LU C B, WANG F J, LIU J D, JIANG Z N, WANG J P, ZHU Z W, XU X T, HAO Y F, HE Z H, GAO D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agronomica Sinica, 2020, 46(2):157-165. (in Chinese)
[67] ZHU Z, XU X, FU L, WANG F, DONG Y, FANG Z, WANG W, CHEN Y, GAO C B, HE Z, XIA X, HAO Y. Molecular mapping of quantitative trait loci for Fusarium head blight resistance in a doubled haploid population of Chinese bread wheat. Plant Disease, 2021, 105(5):1339-1345.
doi: 10.1094/PDIS-06-20-1186-RE
[68] XU Q, XU F, QIN D, LI M, FEDAK G, CAO W, YANG L J, DONG J. Molecular mapping of QTLs conferring Fusarium head blight resistance in Chinese wheat cultivar Jingzhou 66. Plants, 2020, 9:1021
doi: 10.3390/plants9081021
[69] YANG J, BAI G H, SHANER G E. Novel quantitative trait loci (QTL) for Fusarium head blight resistance in wheat cultivar Chokwang. Theoretical and Applied Genetics, 2005, 111(8):1571-1579.
doi: 10.1007/s00122-005-0087-z
[70] SOMERS D J, FEDAK G, SAVARD M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46(4):555-564.
doi: 10.1139/g03-033
[71] MARDI M, PAZOUKI L, DELAVAR H, KAZEMI M B, GHAREYAZIE B, STEINER B, NOLZ R, LEMMENS M, BUERSTMAYR H. QTL analysis of resistance to Fusarium head blight in wheat using a Frontana-derived population. Plant Breeding, 2006, 125(4):313-317.
doi: 10.1111/pbr.2006.125.issue-4
[72] ITTU M, SAULESCU N N, HAGIMA I, ITTU G, MUSTATEA P. Association of fusarium head blight resistance with gliadin loci in a winter wheat cross. Crop Science, 2000, 40:62-67.
doi: 10.2135/cropsci2000.40162x
[73] SHEN X R, ITTU M, OHM H W. Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Science, 2003, 43:850-857.
doi: 10.2135/cropsci2003.8500
[74] GERVAIS L, DEDRYVER F, MORLAIS J Y, BODUSSEAU V, NEGRE S, BILOUS M, GROOS C, TROTTET M. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theoretical and Applied Genetics, 2003, 106:961-970.
doi: 10.1007/s00122-002-1160-5
[75] PAILLARD S, SCHNURBUSCH T, TIWARI R, MESSMER M, WINZELER M, KELLER B, SCHACHERMAYR G. QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109:323-332.
doi: 10.1007/s00122-004-1628-6
[76] SEMAGN K, SKINNES H, BJORNSTAD A A, MAROY G, TARKEGNE Y. Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from Arina and NK93604. Crop Scince, 2007, 47:294-303.
[77] DRAEGER R, GOSMAN N, STEED A, CHANDLER E, THOMSETT M, SRINIVASACHARY, SCHONDELMAIER J, BUERSTMAYR H, LEMMENS M, SCHMOLKE M, MESTERHAZY A, NOCHOLSOM P. Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theoretical and Applied Genetics, 2007, 115(5):617-625.
doi: 10.1007/s00122-007-0592-3
[78] SCHMOLKE M, ZIMMERMANN G, BUERSTMAYR H, SCHWEIZER G, MIEDANER T, KORZUN V, EBMEYER E, HARTL L. Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theoretical and Applied Genetics, 2005, 111:747-756.
doi: 10.1007/s00122-005-2060-2
[79] KLAHR A, ZIMMERMANN G, WENZEL G, MOHLER V. Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica, 2007, 154:17-28.
doi: 10.1007/s10681-006-9264-7
[80] SCHMOLKE M, ZIMMERMANN G, SCHWEIZER G, MIEDANER T, KORZUN V, EBMEYER E, HARTL L. Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breeding, 2008, 127:459-446.
doi: 10.1111/pbr.2008.127.issue-5
[81] LIU S, ABATE Z A, LU H, MUSKET T, DAVIS G L, MCKENDRY A L. QTL associated with Fusarium head blight resistance in the soft red winter wheat Ernie. Theoretical and Applied Genetics, 2007, 115(3):417-427.
doi: 10.1007/s00122-007-0577-2
[82] ISLAM M S, BROWN-GUEDIRA G, VAN SANFORD D, OHM H, DONG Y H, MCKENDRY A L. Novel QTL associated with the Fusarium head blight resistance in Truman soft red winter wheat. Theoretical and Applied Genetics, 2016, 207(3):571-592.
[83] OTTO C D, KIANIAN S F, ELIAS E M, STACK R W, JOPPA L R. Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Molecular Biology, 2002, 48:625-632.
doi: 10.1023/A:1014821929830
[84] KUMAR S, STACK R W, FRIESEN T L, FARIS J D. Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology, 2007, 97:592-597.
doi: 10.1094/PHYTO-97-5-0592
[85] STEED A, CHANDLER E, THOMSETT M, GOSMAN N, FAURE S, NICHOLSON P. Identification of type I resistance to Fusarium head blight controlled by a major gene located on chromosome 4A of Triticum macha. Theoretical and Applied Genetics, 2005, 111:521-529.
doi: 10.1007/s00122-005-2043-3
[86] BUERSTMAYR M, LEMMENS M, STEINER B, BUERSTMAYR H. Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha X T. aestivum population. Theoretical and Applied Genetics, 2011, 123(2):293-306.
doi: 10.1007/s00122-011-1584-x
[87] MALIHIPOUR A, GILBERT J, FEDAK G, BRULE-BABEL A, CAO W G. Mapping the A genome for QTL conditioning resistance to Fusarium head blight in a wheat population with Triticum timopheevii background. Plant Disease, 2017, 101(1):11-19.
doi: 10.1094/PDIS-02-16-0144-RE
[88] QI L L, PUMPHREY M Q, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117(7):1155-1166.
doi: 10.1007/s00122-008-0853-9
[89] CAINONG J C, BOCKUS W W, FENG Y, CHEN P, QI L, SEHGAL S K, DANILOVA T V, KOO D H, FRIEBE B, GILL B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensisin to wheat. Theoretical and Applied Genetics, 2015, 128:1019-1027.
doi: 10.1007/s00122-015-2485-1
[90] SHEN X, KONG L, OHM H. Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theoretical and Applied Genetics, 2004, 108(5):808-813.
doi: 10.1007/s00122-003-1492-9
[91] ECKARD J T, GLOVER K D, MERGOUM M, ANDERSON J A, GONZALEZHERNANDEZ J L. Multiple Fusarium head blight resistance loci mapped and pyramided onto elite spring wheat Fhb1backgrounds using an IBD-based linkage approach. Euphytica, 2015, 204(1):63-79.
doi: 10.1007/s10681-014-1333-8
[92] ECKARD J T, GONZALEZ-HERNANDEZ J L, CAFFE M, BERZONSKY W, BOCKUS W W, MARAIS G F, BAENZIGER P S. Native Fusarium head blight resistance from winter wheat cultivars ‘Lyman’, ‘Overland’, ‘Ernie’, and ‘Freedom’ mapped and pyramided onto ‘Wesley’-Fhb1 backgrounds. Molecular Breeding, 2015, 35(1):6.
doi: 10.1007/s11032-015-0200-1
[93] LI T, ZHANG D D, ZHOU X L, BAI G H, LI L, GU S L. Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties. Euphytica, 2016, 207(3):551-561.
doi: 10.1007/s10681-015-1539-4
[94] ZHU Z, CHEN L, ZHANG W, YANG L, ZHU W, LI J, LIU Y, TONG H, FU L, LIU J, RASHEED A, XIA X, HE Z, HAO Y, GAO C. Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Frontiers in Plant Science, 2020, 11:206.
doi: 10.3389/fpls.2020.00206
[95] HU W, GAO D, WU H, LIU J, ZHANG C, WANG J, JIANG Z, LIU Y, LI D, ZHANG Y, LU C. Genome-wide association mapping revealed syntenic loci QFhb-4AL and QFhb-5DL for Fusarium head blight resistance in common wheat. BMC Plant Biology, 2020, 20:29.
doi: 10.1186/s12870-019-2177-0
[96] WU L, ZHANG Y, HE Y, JIANG P, ZHANG X, MA H. Genome-wide association mapping of resistance to Fusarium head blight spread and deoxynivalenol accumulation in Chinese elite wheat germplasm. Phytopathology, 2019, 109:1208-1216.
doi: 10.1094/PHYTO-12-18-0484-R
[97] LIU S, PUMPHREY, GILL B S, TRICK H N, ZHANG J X, DOLEZEL J, CHALHOUB B, ANDERSON J A. Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Research Communications, 2008, 36(suppl B):195-201.
doi: 10.1556/CRC.36.2008.Suppl.B.15
[98] RAWAT N, PUMPHREY M O, LIU S, ZHANG X, TIWARI V K, ANDO K, TRICK H N, BOCKUS W W, AKHUNOV E, ANDERSON J A, GILL B S. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nature Genetics, 2016, 48:1576-1580.
doi: 10.1038/ng.3706
[99] HE Y, ZHANG X, ZHANG Y, DAWOOD A, WU L, JIANG P, MA H. Molecular characterization and expression of PFT, a FHB resistance gene at the Fhb1 QTL in wheat. Phytopathology, 2018, 108:730-736.
doi: 10.1094/PHYTO-11-17-0383-R
[100] SU Z Q, BERNARDO A, TIAN B, CHEN H, WANG S, MA H X, CAI S B, LIU D T, ZHANG D D, LI T, TRICK H, ST A P, YU J M, ZHANG Z Y, BAI G H. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 2019, 51(7):1099-1105.
doi: 10.1038/s41588-019-0425-8
[101] LI G, ZHOU J, JIA H, GAO Z, FAN M, LUO Y, ZHOU P, XUE S, LI N, YUAN Y, MA S, KONG Z, JIA L, AN X, JIANG G, LIU W, CAO W, ZHANG R, FAN J, XU X, LIU Y, KONG Q, ZHENG S, WANG Y, QIN B, CAO S, DING Y, SHI J, YAN H, WANG X, RAN C, MA Z. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019, 51(7):1106-1112.
doi: 10.1038/s41588-019-0426-7
[102] LAGUDAH E S, KRATTINGER S G. A new player contributing to durable Fusarium resistance. Nature Genetics, 2019, 51:1070-1071.
doi: 10.1038/s41588-019-0454-3
[103] GUO J, ZHANG X, HOU Y, CAI J, SHEN X, ZHOU T, XU H, OHM H W, WANG H, LI A, HAN F, WANG H, KONG L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015, 128:2301-2316.
doi: 10.1007/s00122-015-2586-x
[104] WANG H W, SUN S L, GE W Y, ZHAO L F, HOU B Q, WANG K, LYU ZF, CHEN L Y, XU S S, GOU J, LI M, SU P S, LI X F, WANG G P, BO C Y, FANG X J, ZHUANG W W, CHENG X X, WU J W, DONG L H, CHEN W Y, LI W, XIAO G L, ZHAO J X, HAO Y C, XU Y, GAO Y, LIU W J, LIU, Y H, YIN H Y, LI J Z, LI X, ZHAO Y, WANG X Q, NI F, MA X, LI A F, XU S S, BAI G H, NEVO E, GAO C X, OHM H, KONG L R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
[105] 钱存鸣, 杨学明, 姚国才, 姚金保, 周朝飞, 王利明. 优质高产小麦新品种宁麦13的选育与应用. 江苏农业科学, 2006(5):36-37.
QIAN C M, YANG X M, YAO G C, YAO J B, ZHOU C F, WANG L M. Breeding and application of superior quality and high yield wheat cultivar Ningmai 13. Jiangsu Agricultural Sciences, 2006(5):36-37. (in Chinese)
[106] 钱存鸣, 姚金保, 姚国才, 杨学明, 马鸿翔, 周朝飞. 优质高产小麦新品种宁麦14的选育与应用. 江苏农业科学, 2008(3):89-90.
QIAN C M, YAO J B, YAO G C, YANG X M, MA H X, ZHOU C F. Breeding and application of superior quality and high yield wheat cultivar Ningmai 14. Jiangsu Agricultural Sciences, 2008(3):89-90. (in Chinese)
[107] 殷琴, 朱晓燕, 刘晓霞, 黄奇. 不同播种期对扬富麦101生长发育与产量的影响分析. 农业科技通讯, 2017(9):110-113.
YIN Q, ZHU X Y, LIU X X, HUANG Q. The analysis of growth and yield affected by sowing time in Yangfumai 101. Bulletin of Agricultural Science and Technology, 2017(9):110-113. (in Chinese)
[108] 刘思衡, 巫升鑫, 李始明, 方毅敏, 许文真. 小麦对赤霉病超亲抗性的选育研究. 中国农业科学, 1996, 29(3):93-95.
LIU S H, WU S X, LI S M, FANG Y M, XU W Z. Studies on the breeding of transgressive resistance to scab in wheat. 1996, Scientia Agricultura Sinica, 1996, 29(3):93-95.
[109] 周朝飞, 夏穗生, 钱存鸣, 姚国才, 沈建新. 关于小麦赤霉病育种问题的探讨. 中国农业科学, 1987, 20(2):19-25.
ZHOU C F, XIA S S, QIAN C M, YAO G C, SHEN J X. On the problem of wheat breeding for scab resistance. Scientia Agricultura Sinica, 1987, 20(2):19-25. (in Chinese)
[110] 柏贵华, 周朝飞, 钱存鸣, 葛永福. 小麦新品种(系)抗赤霉病研究. 江苏农业科学, 1989(7):20-22.
BAI G H, ZHOU C F, QIAN C M, GE Y F. A study of scab-resistance in new wheat cultivars and advanced lines. Jiangsu Agricultural Sciences, 1989(7):20-22. (in Chinese)
[111] 程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 王朝顺. 小麦抗赤霉病育种2 条技术路线的探讨. 扬州大学学报(农业与生命科学版), 2003, 24(1):59-62.
CHENG S H, ZHANG Y, ZHANG B Q, GAO D R, WU H Y, LU C B, LÜ G F, WANG C S. Discussion of two ways of breeding scab resistance in wheat. Journal of Yangzhou University (Agricultural and Life Science Edition), 2003, 24(1):59-62. (in Chinese)
[112] 钱存鸣, 周朝飞, 姚国才, 姚金保, 盛培英, 杨学明. 小麦新品种宁麦9号选育与应用. 江苏农业科学, 1999(3):19-20.
QIAN C M, ZHOU C F, YAO G C, YAO J B, SHENG P Y, YANG X M. Breeding and application of novel wheat cultivar Ningmai 9. Jiangsu Agricultural Sciences, 1999(3):19-20. (in Chinese)
[113] 蒋国樑, 吴兆苏, 陈兆夏, 黄德崇, 肖庆璞, 陈怀谷, 朱涵, 方毅敏. 小麦抗赤霉病基因库建拓研究. 中国农业科学, 1992, 25(6):30-37.
JIANG G L, WU Z S, CHEN Z X, HUANG D C, XIAO Q P, CHEN H G, ZHU H, FANG Y M. Studies on the development of scab-resistance gene pool in wheat. Scientia Agricultura Sinica, 1992, 25(6):30-37. (in Chinese)
[114] 翟虎渠, 刘秉华. 矮败小麦创制与应用. 中国农业科学, 2009, 42(12):4127-4131.
ZHAI H Q, LIU B H. The innovation of dwarf male sterile wheat and its application in wheat breeding. Scientia Agriculture Sinica, 2009, 42(12):4127-4131. (in Chinese)
[115] 刘宗镇, 汪志远, 黄德崇, 赵文俊, 黄晓敏, 姚泉洪, 孙锡娟, 杨银妹. 小麦赤霉病抗性及抗性资源利用. 作物学报, 1991, 7(增刊. ): 65-70.
LIU Z Z, WANG Z Y, HUANG D C, ZHAO W J, HUANG X M, YAO Q H, SUN X J, YANG Y M. Generality of scab-resistance transgression in wheat and utilization of scab-resistance genetic resources. Acta Agriculturae Shanghai, 1991, 7(suppl.):65-70. (in Chinese)
[116] WAN Y F, YEN C, YANG J L, QUAN L F. Evaluation of Roegneria for resistance to head scab caused by Fusarium graminearum Schwabe. Genetic Resources and Crop Evolution, 1997, 44:211-215.
doi: 10.1023/A:1008643617661
[117] 陈佩度, 王兆悌, 王苏玲, 黄丽, 王裕中, 刘大钧. 将大赖草种质转移给普通小麦的研究-抗赤霉病异附加系选育. 遗传学报, 1995, 22:380-386.
CHEN P D, WANG Z T, WANG S L, HUANG L, WANG Y Z, LIU D J. Transfer of useful germplasm for Leymus racemosus Lam. to common wheat. Development of addition lines with wheat scab resistance. Acta Genetica Sinica, 1995, 22:380-386. (in Chinese)
[118] 翁益群, 刘大钧. 鹅观草与普通小麦属间杂种F1的形态、赤霉病抗性和细胞遗传学研究. 中国农业科学, 1989, 22(5):1-7.
WENG Y Q, LIU D J. Morphology, scab resistance and cytogenetics of intergeneric hybrids of Triticum aestivum L. with Roegneria C. Koch species. Scientia Agricultura Sinica, 1989, 22(5):1-7. (in Chinese)
[119] CAI X, CHEN P D, XU S S, OLIVER R E, CHEN X. Utilization of alien genes to enhance Fusarium head blight resistance in wheat-A review. Euphytica, 2005, 142:309-318.
doi: 10.1007/s10681-005-2437-y
[120] 马鸿翔, 陆维忠. 小麦赤霉病抗性改良研究进展. 江苏农业学报, 2010, 26(1):197-203.
MA H X, LU W Z. Progress on genetic improvement for resistance to Fusarium head blight in wheat. Jiangsu Journal of Agricultural Sciences, 2010, 26(1):197-203. (in Chinese)
[121] 陆维忠, 程顺和, 沈晓蓉, 周朝飞, 章静娟, 王裕中. 细胞工程在小麦抗赤霉病育种中的利用. 江苏农业学报, 1998, 14(1):9-14.
LU W Z, CHENG S H, SHEN X R, ZHOU C F, ZHANG J J, WANG Y Z. Study on utilization of cell engineering in breeding wheat for scab resistance. Jiangsu Journal of Agricultural Sciences, 1998, 14(1):9-14. (in Chinese)
[122] 陆维忠, 程顺和, 马鸿翔, 马谈斌, 周淼平, 张伯桥, 李浩兵, 张旭. 优质高产抗赤霉病小麦新品种生选3号. 江苏农业学报, 2003(2):69.
LU W Z, CHENG S H, MA H X, MA T B, ZHOU M P, ZHANG B Q, LI H B, ZHANG X. A new wheat variety with high quality, high yield and resistance to wheat scab-Shengxuan 3. Jiangsu Journal of Agricultural Sciences, 2003(2):69. (in Chinese)
[123] 陆维忠, 马鸿翔. 高产抗赤霉病小麦新品种生选6号的选育. 江苏农业科学, 2010(5):153-154.
LU W Z, MA H X. Breeding for new variety Shengxuan 6 with high yield and resistance to FHB. Jiangsu Agricultural Sciences, 2010(5):153-154. (in Chinese)
[124] 陆维忠, 姚金保, 马鸿翔. 抗赤霉病小麦新品种宁麦20的选育. 江苏农业科学, 2013(7):86-87.
LU W Z, YAO J B, MA H X. Breeding for new variety Ningmai 20 with resistance to FHB. Jiangsu Agricultural Sciences, 2013(7):86-87. (in Chinese)
[125] ZHOU W, KOLB F L, YU J, BAI G, BOZE L K, DOMIER L L. Molecular characterization of Fusarium head blight resistance in Wangshuibai with simple sequence repeat and amplified fragment length polymorphism markers. Genome, 2004, 47(6):1137-1143.
doi: 10.1139/g04-069
[126] PUMPHREY M O, BERNARDO R, ANDERSON J A. Validating the QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Science, 2007, 47:200-206.
doi: 10.2135/cropsci2006.03.0206
[127] BERNARDO A, BAI G H, YU J B, KOLB F, BOCKUS W, DONG Y H. Registration of near-isogenic winter wheat germplasm contrasting in for Fusarium head blight resistance. Journal of Plant Registration, 2014, 8(1):106-108.
doi: 10.3198/jpr2013.05.0021crgs
[128] MIEDANER T, WILDE F, STEINER B, BUERSTMAYR H, KORZUN V, EBMEYER E. Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in a European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theoretical and Applied Genetics, 2006, 112:562-569.
doi: 10.1007/s00122-005-0163-4
[129] 陆成彬, 程顺和, 吴荣林, 胡云花, 范金萍, 王朝顺, 张伯桥. 扬麦13抗赤霉病品系的分子标记辅助选育. 麦类作物学报, 2010, 30(6):1058-1064.
LU C B, CHENG S H, WU R L, HU Y H, FAN J P, WANG C S, ZHANG B Q. Breeding the lines with resistance to fusarium head blight of wheat cultivar Yangmai 13 by molecular marker assisted selection. Journal of Triticeae Crops, 2010, 30(6):1058-1064. (in Chinese)
[130] SALAMEH A, BUERSTMAYR M, STEINER B, NEUMAYER A, LEMMENS M, BUERSTMAYR H. Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Molecular Breeding, 2011, 28(4):485-494.
doi: 10.1007/s11032-010-9498-x
[131] MA Z, XIE W, LI G, JIA H, ZHOU J, KONG Z, LI N, YUAN Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 2020, 133(5):1541-1568.
doi: 10.1007/s00122-019-03525-8
[132] SHAKOOR N, LEE S, MOCKLER T C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 2017, 38:184-192.
doi: 10.1016/j.pbi.2017.05.006
[133] CHEN Y, SONG W, XIE X, WANG Z, GUAN P, PENG H, JIAO Y, NI Z, SUN Q, GUO W. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in Triticeae Tribe as a pilot practice in the plant pan-genomic era. Molecular Plant, 2020, 13(12):1694-1708.
doi: 10.1016/j.molp.2020.09.019
[134] 葛文扬, 孙思龙, 王宏伟, 孔令让. 天然“转基因”使小麦获得赤霉病抗性. 自然杂志, 2020, 42(4):340-346.
GE W Y, SUN S L, WANG H W, KONG L R. Natural “transgenic” conferring Fusarium head blight resistance in wheat. Chinese Journal of Nature, 2021, 42(4):340-346. (in Chinese)
[135] ZHENG T, HUA C, LI L, SUN Z, YUAN M, BAI G, HUMPHREYS G, LI T. Integration of meta-QTL discovery with omics: Towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. The Crop Journal, 2021, 9(4):739-749.
doi: 10.1016/j.cj.2020.10.006
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[15] YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!