Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5097-5109.doi: 10.3864/j.issn.0578-1752.2021.23.014

• HORTICULTURE • Previous Articles     Next Articles

Correlation Analysis of Auxin Involved in the Process of Petal Abscission of Tree Peony Luoyanghong Cut Flowers by Ethylene Promoting

YE Di1(),SHI Jiang1,GAO ShuangCheng1,WANG ZhanYing2,SHI GuoAn1()   

  1. 1College of Mudan, Henan University of Science and Technology/Luoyang Key Laboratory of Peony Biology, Luoyang 471023, Henan
    2Research Institute of Peony, Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471000, Henan
  • Received:2021-02-10 Accepted:2021-04-19 Online:2021-12-01 Published:2021-12-06
  • Contact: GuoAn SHI E-mail:yedi1208@163.com;gashi1963@163.com

Abstract:

【Objective】The aim of this study was to explore the physiological mechanisms of petal wilting and abscission during the senescence of cut tree peony flowers, so as to provide the theoretical basis for better development of storage and preservation technology of cut tree peony flowers.【Method】The cut flowers were pretreated with deionized water (CK), 20 µL·L-1 ethylene antagonist Correxian (AVB), 20 µL·L-1 ethylene releasing agent ethephon (CEPA), and 20 µL·L-1 Correxian for 1 h, respectively, followed by 20 µL·L-1 ethephon 1 h (AVB+CEPA). The flowers were then placed in individual vases filled with distilled water. The morphology of the petals absciss zone cells were observed by using a microscope. The petal anti-falling ability was determined by using the tensile test during the vase cutting process. The physiological effects of different pretreatments were observed respectively using the physiological and biochemical methods to determine the ethylene and auxin metabolism, the absciss zone hydrolysis-related enzyme activities, and the relative expressions of PsETR1, PsCTR1, PsEIN3, PsERF1, PsYUCCA10, PsPIN1, PsPME1, PsPG1 and PsBG1 genes. 【Result】 The results showed that the basal petal of the cut tree peony Luoyanghong had a clear separation layer structure. AVB significantly delayed the occurrence of ethylene climacteric in cut flowers, and decreased the ethylene release peak by 34.9% (P<0.05), while the petal anti-falling ability was improved. The activities of polygalaturonase (PG), β-glucosidase (BG) and the expressions of PsPG1 and PsBG1 genes at the base of the petals absciss zone were reduced, which delayed the senescence process of cut tree peony flowers, thus significantly extended its vase life. Nevertheless, the exogenous CEPA significantly accelerated the release rate of endogenous ethylene in the petals, increased the activities of IAA oxidase (IAAO), PG and BG, accelerated the senescence of the absciss zone cells in the petals of cut flowers, and reduced the petal anti-falling ability, thus promoted its wilting and falling. Meanwhile, the vase life and the optimal viewing period of AVB+CEPA composite pretreatment were not much different from control, so CEPA could partially offset the physiological effects of AVB. 【Conclusion】 For the ethylene sensitive cut tree peony Luoyanghong, endogenous auxin was involved in the process of ethylene promoting the abscission of petal absciss zone cells. The control of ethylene was the basic way to improve the quality of Luoyanghong cut flowers.

Key words: tree peony, cut flowers, absciss zone, ethylene, auxin, abscission

Table 1

The primer sequences for qRT-PCR"

基因
Gene
正向引物序列(5′-3′)
Foward primer sequence
反向引物序列(5′-3′)
Reverse primer sequence
预期大小
Expected size (bp)
PsD-GAPDH TGTTCACTCCATCACTGCTAC ACATCCACAGTAGGAACACGA 189
PsETR1 CGTGGGTCGTCAGAGTGTGT CCTTGCACCTGCCGTTCTTG 153
PsCTR1 CTCAACCCAGCCGTACAGACAT CGGGCAGTAAACAACAGAAAAT 182
PsEIN3 TTTGTGAGCTTTGGGGGTGT GCCAACTCTGCAACACGAAA 190
PsERF1 AGTCGGAAAGGAGCTAGGGT TTCAGACACCGACGAACACC 147
PsYUCCA10 CAACATACGTGCCAAGAG GGTAGCCACCACCAGAAA 206
PsPIN1 GGCCGTTGTCCCTCTCTATG AAAGGGGTACGGCGAAGATG 125
PsPME1 ATGCTTGGACGGTCTGAT GCTGGAGGTATGGATTTC 193
PsPG1 GATGCGTCTTCTCTTCCT GGTTTCGTCACATTCTAC 190
PsBG1 ATTTCTACTCCCCGCCAT GGGGCTTTGTTGTTCACT 195

Fig. 1

Observation of cell morphology at the basal petal (The arrowhead shows the separation layer)"

Fig. 2

The morphology changes of cut tree peony flowers in vases"

Table 2

Changes of quality of cut tree peony flowers in vase"

预处理 Pretreatment 瓶插寿命 Vase life (d) 最佳观赏期 Best viewing period (d) 最大花径 Maximum diameter (cm)
CK 5.9±0.3a 4.5±0.5a 11.15±2.2b
AVB 6.0±0.0a 4.5±0. 5a 12.19±1.6ab
CEPA 4.8±0.4b 4.1±0.6b 12.84±1.6a
AVB+CEPA 5.8±0.4ab 4.3±0.6ab 12.84±1.3a

Fig. 3

Changes of the anti-falling force of cut tree peony flowers in vase"

Fig. 4

Changes of ethylene release rate, ACC content, ACS and ACO activities"

Fig. 5

Changes of IAA contents and IAAO activity in the basal petals of cut tree peony flowers"

Fig. 6

Changes of hydrolytic enzymes activity at the basal petals of cut tree peony flowers"

Fig. 7

The related gene expressions of ethylene signal transduction pathway"

Fig. 8

The relative expression of PsYUCCA10 and PsPIN1 in the petals of cut tree peony flowers in vase"

Fig. 9

The relative expression of PsPME1, PsPG1 and PsBG1 in the petals of cut flowers"

[1] MA N, MA C, LIU Y, SHAHID M O, WANG C P, GAO J P. Petal senescence: A hormone view. Journal of Experimental Botany, 2018, 69(4):719-732.
doi: 10.1093/jxb/ery009
[2] DANAEE E, MOSTOFI Y, MORADI P. Effect of GA3 and BA on postharvest quality and vase life of Gerbera (Gerbera jamesonii. cv. Good Timing) cut flowers. Horticulture, Environment, and Biotechnology, 2011, 52(2):140-144.
doi: 10.1007/s13580-011-1581-7
[3] LIAO W B, ZHANG M L, HUANG G B, YU J H. Hydrogen peroxide in the vase solution increases vase life and keeping quality of cut Oriental×Trumpet hybrid lily ‘Manissa’. Scientia Horticulturae, 2012, 139(139):32-38.
doi: 10.1016/j.scienta.2012.02.040
[4] 苏筱雨, 李文娟. 不同瓶插液配方对香石竹切花保鲜效果的影响. 北方园艺, 2014(1):133-136.
SU X Y, LI W J. Influence of different preservatives formula on preservation effect of carnation cut flower. Northern Horticulture, 2014(1):133-136.(in Chinese)
[5] 方华, 王春蕾, 廖伟彪, 张静, 霍建强, 黄登静, 牛丽涓, 王波. 一氧化氮通过调控水分和抗氧化酶活性参与脱落酸延缓切花月季衰老. 园艺学报, 2019(5):901-909.
FANG H, WANG C L, LIAO W B, ZHANG J, HUO J Q, HUANG D J, NIU L J, WANG B. NO is involved in ABA-regulated senescence of cut roses by maintaining water content and increasing antioxidant enzyme activities. Acta Horticulturae Sinica, 2019(5):901-909.(in Chinese)
[6] SHI J, TIAN Z, SHI G A. Effect of exogenous hydrogen peroxide or ascorbic acid on senescence in cut flowers of tree peony (Paeonia suffruticosa Andr.). Journal of Horticultural Science & Biotechnology, 2015, 90(6):689-694.
[7] 周琳, 贾培义, 刘娟, 王玮然, 霍志鹏, 董丽. 乙烯对‘洛阳红’牡丹切花开放和衰老进程及内源乙烯生物合成的影响. 园艺学报, 2009(2):239-244.
ZHOU L, JIA P Y, LIU J, WANG W R, HUO Z P, DONG L. Effect of ethylene on cut flowers of tree peony ‘Luoyang Hong' opening and senescence process and endogenous ethylene biosynthesis. Acta Horticulturae Sinica, 2009(2):239-244. (in Chinese)
[8] 史国安, 杨正申, 王长忠, 金志伟, 韩向阳. 温度和化学药剂对牡丹切花乙烯释放及贮藏品质影响. 北方园艺, 1997, 21(6):62-63.
SHI G A, YANG Z S, WANG C Z, JIN Z W, HAN X Y. Effects of temperature and chemical agents on ethylene release and storage quality of cut peony flowers. Northern Horticulture, 1997, 21(6):62-63. (in Chinese)
[9] 史国安, 郭香凤, 韩建国, 孙鲜明, 杨正申. 牡丹开花和衰老期间乙烯及脂质过氧化的研究. 西北农业大学学报, 1999, 27(5):50-53.
SHI G A, GUO X F, HAN J G, SUN X M, YANG Z S. A study on ethylene production and lipid peroxidization in florescence and flower senescence of Paeonia suffruticosa. Acta Universitatis Agriculturalis Boreali-Occidentalis, 1999, 27(5):50-53. (in Chinese)
[10] 史国安, 郭香凤, 张国海, 包满珠. 牡丹开花和衰老期间花瓣糖代谢的研究. 园艺学报, 2009, 36(8):1184-1190.
SHI G A, GUO X F, ZHANG G H, BAO M Z. Analysis of sugar metabolism during florescence and flower senescence of tree peony petal. Acta Horticulturae Sinica, 2009, 36(8):1184-1190. (in Chinese)
[11] 史国安, 郭香凤, 李春丽, 范丙友, 施江, 包满珠. 牡丹花枝不同发育时期各器官乙烯释放和ACC含量的变化. 园艺学报, 2010, 37(1):77-82.
SHI G A, GUO X F, LI C L, FAN B Y, SHI J, BAO M Z. Changes on ethylene release and ACC content of peony flowers at different development stages. Acta Horticulturae Sinica, 2010, 37(1):77-82. (in Chinese)
[12] 史国安, 郭香凤, 张国海, 高双成, 范丙友, 包满珠. 不同发育时期牡丹切花瓶插生理特性的研究. 园艺学报, 2010, 37(3):449-456.
SHI G A, GUO X F, ZHANG G H, GAO S C, FAN B Y, BAO M Z. Studies of vasing physiological characteristics of cut peony flowers in various development stages. Acta Horticulturae Sinica, 2010, 37(3):449-456. (in Chinese)
[13] ZHANG C, LIU M, FU J X, WANG Y J, DONG L. Exogenous sugars involvement in senescence and ethylene production of tree peony ‘Luoyang Hong’ cut flowers. Korean Journal of Horticultural Science and Technology, 2012, 30(6):718-724.
doi: 10.7235/hort.2012.12089
[14] 高树林, 张超, 杜丹妮, 刘爱青, 董丽. 乙烯和葡萄糖处理对‘洛阳红’牡丹切花花色和花青素苷合成的影响. 园艺学报, 2015, 42(7):1356-1366.
GAO S L, ZHANG C, DU D N, LIU A Q, DONG L. Effect of glucose and ethylene on flower color and anthocyanin biosynthesis in tree peony ‘Luoyang Hong’ cut flower. Acta Horticulturae Sinica, 2015, 42(7):1356-1366. (in Chinese)
[15] 王凯轩, 王依, 史田, 丁熙柠, 袁军辉, 史国安, 胡永红. 雷帕霉素预处理延缓牡丹'洛阳红'切花衰老的生理效应. 园艺学报, 2020, 47(10):1956-1968.
WANG K X, WANG Y, SHI T, DING X N, YUAN J H, SHI G A, HU Y H. Physiological effects of rapamycin pretreatment on delaying the senescence of cut flower in tree peony ‘Luoyanghong’. Acta Horticulturae Sinica, 2020, 47(10):1956-1968. (in Chinese)
[16] PATTERSON S E, BLEECKER A B. Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiology, 2004, 134(1):194-203.
doi: 10.1104/pp.103.028027
[17] ROBERTS J A, ELLIOTT K A, GONZALEZ-CARRANZA Z H. Abscission, dehiscence, and other cell separation processes. Annual Review of Plant Biology, 2002, 53:131-158.
doi: 10.1146/arplant.2002.53.issue-1
[18] MICHAELI R, PHILOSOPH-HADAS S, RIOV J, SHAHAK Y, RATNER K, MEIR S. Chillinginduced leaf abscission of Ixora coccinea plants. III. Enhancement by high light via increased oxidative processes. Physiologia Plantarum, 2010, 113(3):338-345.
doi: 10.1034/j.1399-3054.2001.1130306.x
[19] PATHARKAR O R, WALKER J C. Floral organ abscission is regulated by a positive feedback loop. Proceedings of the National Academy of Sciences of the USA, 2015, 112(9):2906-2911.
[20] 崔娅松, 陈庆富, 霍冬敖, 李洪有. 植物落花落果的分子机理研究进展. 广西植物, 2018, 38(9):1234-1247.
CUI Y S, CHEN Q F, HUO D A, LI H Y. Research progress on molecular mechanism of plant falling flowers and fruits. Guihaia, 2018, 38(9):1234-1247. (in Chinese)
[21] OSBORNE D J, MORGAN P W. Abscission. Critical Reviews in Plant Sciences, 1989, 8(2):103-129.
doi: 10.1080/07352688909382272
[22] VAN NOCKER S. Development of the abscission zone. Stewart Postharvest Review, 2009, 5(1):1-6.
[23] 郑丽媛, 魏霞, 周可, 向佳, 李燕, 刘宝玉, 何光华, 凌英华, 赵芳明. 携带主效落粒基因的水稻染色体片段代换系Z481的鉴定及和SH6(t)定位. 科学通报, 2016, 61(7):748-758.
ZHENG L Y, WEI X, ZHOU K, XIANG J, LI Y, LIU B Y, HE G H, LING Y H, ZHAO F M. Identification of a rice chromosome segment substitution line Z481 carrying a major gene for seed shattering and mapping of SH6(t). Chinese Science Bulletin, 2016, 61(7):748-758. (in Chinese)
[24] GAO Y R, LIU Y, LIANG Y, LU J Y, JIANG C Y, FEI Z J, JIANG C Z, MA C, GAO J P. Rosa hybrida RhERF1 and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation. The Plant Journal, 2019, 99(6):1159-1171.
doi: 10.1111/tpj.v99.6
[25] MENG J, ZHOU Q, ZHOU X, FANG H X, JI S J. Ethylene and 1-MCP treatments affect leaf abscission and associated metabolism of Chinese cabbage. Postharvest Biology and Technology, 2019, 157:110963.
doi: 10.1016/j.postharvbio.2019.110963
[26] MEIR S, PHILOSOPH-HADAS S, SUNDARESAN S, SELVARAJ K S V, BURD S, OPHIR R, KOCHANEK B, REID M S, JIANG C Z, LERS A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiology, 2010, 154(4):1929-1956.
doi: 10.1104/pp.110.160697
[27] ZHAO Y D. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annual Review of Plant Biology, 2018, 69:417-435.
doi: 10.1146/arplant.2018.69.issue-1
[28] PARRA-LOBATO M C, GOMEZ-JIMENEZ M C. Polyamine- induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. Journal of Experimental Botany, 2011, 62(13):4447-4465.
doi: 10.1093/jxb/err124
[29] BUNYA-ATICHART K, KETSA S, VAN DOORN W. Ethylene- sensitive and ethylene-insensitive abscission in Dendrobium: Correlation with polygalacturonase activity. Postharvest Biology and Technology, 2011, 60(1):71-74.
doi: 10.1016/j.postharvbio.2010.11.006
[30] SINGH A P, PANDEY S P, RAJLUXMI, PANDEY S, NATH P, SANE A P. Transcriptional activation of a pectate lyase gene, RbPel1, during petal abscission in rose. Postharvest Biology and Technology, 2011, 60(2):143-148.
doi: 10.1016/j.postharvbio.2010.12.014
[31] PATHARKAR O R, WALKER J C. Core mechanisms regulating developmentally timed and environmentally triggered abscission. Plant Physiology, 2016, 172(1):510-520.
doi: 10.1104/pp.16.01004
[32] LIANG Y, JIANG C Y, LIU Y, GAO Y R, LU J Y, AIWAILI P, FEI Z J, JIANG C Z, HONG B, MA C, GAO J P. Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). The Plant Cell, 2020, 32(11):3485-3499.
doi: 10.1105/tpc.19.00695
[33] 洪亚平. 花的精细解剖和结构观察新方法及应用. 北京: 中国林业出版社, 2017.
HONG Y P. New Method and Application of Fine Anatomy and Structure Observation of Flowers. Beijing: China Forestry Press, 2017. (in Chinese)
[34] 王哲, 史国安, 马雪情, 范丙友. 芍药‘桃花飞雪’开花衰老期间乙烯代谢生理机制的研究. 园艺学报, 2014, 41(11):2268-2274.
WANG Z, SHI G A, MA X Q, FAN B Y. The ethylene metabolism in flowers of Chinese peony ‘Taohua feixue’ during opening and senescence. Acta Horticulturae Sinica, 2014, 41(11):2268-2274. (in Chinese)
[35] LIZADA M C, YANG S F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Analytical Biochemistry, 1979, 100(1):140-145.
doi: 10.1016/0003-2697(79)90123-4
[36] FERNÁNDEZ-MACULET J C, YANG S F. Extraction and partial characterization of the ethylene-forming enzyme from apple fruit. Plant Physiology, 1992, 99(2):751-754.
doi: 10.1104/pp.99.2.751
[37] KATO M, HYODO H. Purification and characterization of ACC oxidase and increase in its activity during ripening of pear fruit. Journal of the Japanese Society for Horticultural Science, 1999, 68(3):551-557.
[38] YANG J C, ZHANG J H, WANG Z Q, ZHU Q S, WANG W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 2001, 127(1):315-323.
doi: 10.1104/pp.127.1.315
[39] 张志良. 植物生理学实验指导. 第二版. 北京: 高等教育出版社, 1991.
ZHANG Z L. Experimental Guidance of Plant Physiology. 2nd ed. Beijing: Higher Education Press, 1991. (in Chinese)
[40] LOHANI S, TRIVEDI P K, NATH P. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 2004, 31(2):119-126.
doi: 10.1016/j.postharvbio.2003.08.001
[41] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2007.
CAO J K, JIANG W B, ZHAO Y M. Physiological and Biochemical Experiment Guidance for Fruits and Vegetables After Harvest. Beijing: China Light Industry Press, 2007. (in Chinese)
[42] TIEMAN D M, CIARDI J A, TAYLOR M G, KLEE H J. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. The Plant Journal, 2001, 26(1):47-58.
doi: 10.1046/j.1365-313x.2001.01006.x
[43] KE M Y, GAO Z, CHEN J Q, QIU Y T, ZHANG L S, CHEN X. Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biology, 2018, 18(1):143.
doi: 10.1186/s12870-018-1357-7
[44] 任雪岩, 刘光财, 李国鹏, 叶春海, 丰锋, 王俊宁. 乙烯利和1-MCP对菠萝蜜果实中AheAATAheERF表达的影响. 中国农业科学, 2019, 52(21):3890-3902.
REN X Y, LIU G C, LI G P, YE C H, FENG F, WANG J N. Effects of ethephon and 1-MCP on the expression of AheAAT gene and AheERF transcription factors in jackfruit fruit. Scientia Agricultura Sinica, 2019, 52(21):3890-3902. (in Chinese)
[45] DU M M, SPALDING E P, GRAY W M. Rapid auxin-mediated cell expansion. Annual Review of Plant Biology, 2020, 71:379-402.
doi: 10.1146/annurev-arplant-073019-025907
[46] 王彦昌, 李天来, 侯建平. 乙烯处理对番茄离体小花柄脱落的影响. 园艺学报, 2003, 30(5):554-558.
WANG Y C, LI T L, HOU J P. Effect of ethylene on abscission of tomato pedicel in vitro. Acta Horticulturae Sinica, 2003, 30(5):554-558.(in Chinese)
[47] 齐明芳, 李天来, 许涛, 曹霞. 园艺作物器官脱落相关酶的研究进展. 北方园艺, 2007(6):62-65.
QI M F, LI T L, XU T, CAO X. Advance of organ abscission research on horticultural plants. Northern Horticulture, 2007(6):62-65. (in Chinese)
[48] 宋莉萍, 刘金辉, 郑殿峰, 冯乃杰. 不同时期叶喷植物生长调节剂对大豆花荚脱落率及多聚半乳糖醛酸酶活性的影响. 植物生理学报, 2011, 47(4):356-362.
SONG L P, LIU J H, ZHENG D F, FENG N J. Effects of different plant growth regulators on abscission rate and polygalacturonase activities of soybean flowers and pods by spraying in different stages. Plant Physiology Communications, 2011, 47(4):356-362. (in Chinese)
[49] 胡志辉, 汪艳杰, 陈禅友. 喷施细胞分裂素对豇豆花荚脱落率及花荚酶活性的影响. 植物科学学报, 2016, 34(3):439-445.
HU Z H, WANG Y J, CHEN C Y. Effects of spraying cytokinin on abscission rate and enzymic activity of flowers and pods of cowpea. Plant Science Journal, 2016, 34(3):439-445. (in Chinese)
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[3] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[4] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[5] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
[6] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[7] WU ShiYang,YANG XiaoYi,ZHANG YanWen,HOU DianYun,XU HuaWei. Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology [J]. Scientia Agricultura Sinica, 2021, 54(18): 3805-3817.
[8] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
[9] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[10] ZHAO Xue,WANG Feng,WANG WenJing,LIU XiaoFeng,BIAN ShiQuan,LIU YanHua,LIU XinMin,DU YongMei,ZHANG ZhongFeng,ZHANG HongBo. Splicing Property Analyses of the NRSE1 Element from Tobacco PR3b mRNA After Fusion Expression with GUS Gene [J]. Scientia Agricultura Sinica, 2020, 53(8): 1524-1531.
[11] DU YanMin,WANG WenHui,JIA XiaoHui,TONG Wei,WANG Yang,ZHANG XinNan. The Effects of Different Oxygen Concentration on Postharvest Physiology and Storage Quality of Yali Pear [J]. Scientia Agricultura Sinica, 2020, 53(23): 4918-4928.
[12] HAO YanRong,DU Wei,HOU SiYu,WANG DongHang,FENG HongMei,HAN YuanHuai,ZHOU MeiLiang,ZHANG KaiXuan,LIU LongLong,WANG JunZhen,LI HongYing,SUN ZhaoXia. Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum [J]. Scientia Agricultura Sinica, 2020, 53(23): 4738-4749.
[13] Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation [J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147.
[14] MA Ning,WANG ChaoFan,FANG DongLu,DING MengTing,YAO JiaLei,YANG WenJian,HU QiuHui. Flavor Variation of Flammulina velutipes in Polyethylene Film Packaging During the Cold Storage [J]. Scientia Agricultura Sinica, 2019, 52(8): 1435-1448.
[15] WANG JiaHui,GU KaiDi,WANG ChuKun,YOU ChunXiang,HU DaGang,HAO YuJin. Analysis of Apple Ethylene Response Factor MdERF72 to Abiotic Stresses [J]. Scientia Agricultura Sinica, 2019, 52(23): 4374-4385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!