Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (8): 1510-1523.doi: 10.3864/j.issn.0578-1752.2020.08.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan(),CUI Cui(
)
[1] | GREEN J M . Current state of herbicides in herbicide-resistant crops. Pest Management Science, 2014,70(9):1351-1357. |
[2] | DONG B, QIAN W, HU J . Dissipation kinetics and residues of florasulam and tribenuron-methyl in wheat ecosystem. Chemosphere, 2015,120:486-491. |
[3] | MAZUR B J, FALCO S C . The development of herbicide resistant crops. Annual Review of Plant Biology, 1989,40(1):441-470. |
[4] | YU C Y, DONG J G, HU S W, XU AI X . Exposure to trace amounts of sulfonylurea herbicide tribenuron-methyl causes male sterility in 17 species or subspecies of cruciferous plants. BMC Plant Biology, 2017,17(1):95-11. |
[5] | YU C, HU S, HE P, SUN G, ZHANG C, YU Y . Inducing male sterility in Brassica napus L. by a sulphonylurea herbicide, tribenuron-methyl. Plant Breeding, 2006,125(1):61-64. |
[6] | 周清元, 王倩, 叶桑, 崔明圣, 雷维, 郜欢欢, 赵愉风, 徐新福, 唐章林, 李加纳, 崔翠 . 苯磺隆胁迫下油菜萌发期相关性状的全基因组关联分析. 中国农业科学, 2019,52(3):399-413. |
ZHOU Q Y, WANG Q, YE S, CUI M S, LEI W, GAO H H, ZHAO Y F, XU X F, TANG Z L, LI J N, CUI C . Genome-wide association analysis of tribenuron-methyl tolerance related traits in Brassica napus L. under germination. Scientia Agricultura Sinica, 2019,52(3):399-413. (in Chinese) | |
[7] | 孙妍妍, 曲高平, 黄谦心, 吕金洋, 郭媛, 胡胜武 . 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记. 中国油料作物学报, 2015,37(5):589-595. |
SUN Y Y, QU G P, HUANG Q X, LÜ J Y, GUO Y, HU S W . SNP markers for acetolactate synthase genes from tribenuron-methyl resistant mutants in Brassica napus L. Chinese Journal of Oil Crop Sciences, 2015,37(5):589-595. (in Chinese) | |
[8] | 杜慧平, 杜慧玲 . 苯磺隆在土壤中的消解动态和残留测定. 山西农业科学, 2015(1):50-53. |
DU H P, DU H L . Tribenuron-methly degradation dynamics and residual in soil. Journal of Shanxi Agricultural Sciences, 2015(1):50-53. (in Chinese) | |
[9] | NGUYEN T C, ABRAMS S R, FRIEDT W, SNOWDON R J . Quantitative trait locus analysis of seed germination, seedling vigour and seedling-regulated hormones in Brassica napus. Plant Breeding, 2018,137(3):388-401. |
[10] | YU X, YANG A, JAMES A T . Selecting soybeans for sulfonylurea herbicide tolerance: A comparative proteomic study of seed germinations. Crop and Pasture Science, 2017,68(1):27-32. |
[11] | 王倩, 崔翠, 叶桑, 崔明圣, 赵愉风, 林呐, 唐章林, 李加纳, 周清元 . 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价. 作物学报, 2018,44(8):1169-1184. |
WANG Q, CUI C, YE S, CUI M S, ZHAO Y F, LIN N, TANG Z L, LI J N, ZHOU Q Y . Screening and comprehensive evaluation of germplasm resources with tribenuron-methyl tolerance at germination stage in rapeseed ( Brassica napus L.). Acta Agronomica Sinica, 2018,44(8):1169-1184. (in Chinese) | |
[12] | 李慧慧, 张鲁燕, 王建康 . 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010,36(6):918-931. |
LI H H, ZHANG L Y, WANG J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010,36(6):918-931. (in Chinese) | |
[13] | LI Z, MEI S, MEI Z, LIU X, FU T, ZHOU G, TU J . Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape ( Brassica napus). Euphytica, 2014,197(3):341-353. |
[14] | BASNET R K, DUWAL A, TIWARI D N, XIAO D, MONAKHOS S, BUCHER J, MALIEPAARD C . Quantitative trait locus analysis of seed germination and seedling vigor in Brassica rapa reveals QTL hotspots and epistatic interactions. Frontiers in Plant Science, 2015,6:1032. |
[15] | LANG L, XU A, DING J, ZHANG Y, ZHAO N, TIAN Z, LIU Y, WANG Y, LIU X, LIANG F H, ZHANG B B, QIN M F, DALELHAN J, HUANG Z . Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Frontiers in Plant Science, 2017,8:1000. |
[16] | 荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊 . 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014,40(4):629-635. |
JIAN H J, XIAO Y, LI J N, MA Z Z, WEI L J, LIU L Z . QTL Mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agronomica Sinica, 2014,40(4):629-635. (in Chinese) | |
[17] | GUAN Q, ZHANG Y X, XU X L, SUN D Q, LI S Y, LIN H, PAN L Y, MA Y H . Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agricultural Sciences, 2008,1:102-104. |
[18] | LIU C, SUKUMARAN S, CLAVERIE E, SANSALONI C, DREISIGACKER S, REYNOLDS M . Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Molecular Breeding, 2019,39(3):34. |
[19] | 刘列钊, 李加纳 . 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014,47(1):24-32. |
LIU L Z, LI J N . QTL Mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Scientia Agricultura Sinica, 2014,47(1):24-32. (in Chinese) | |
[20] | 侯林涛, 王腾岳, 荐红举, 王嘉, 李加纳, 刘列钊 . 甘蓝型油菜盐胁迫下幼苗鲜重和干重 QTL 定位及候选基因分析. 作物学报, 2017,43(2):179-189. |
HOU L T, WANG T Y, JIAN H J, WANG J, LI J N, LIU L Z . QTL Mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agronomica Sinica, 2017,43(2):179-189. (in Chinese) | |
[21] | LIU W, BAI S, ZHAO N, JIA S, LI W, ZHANG L, WANG J . Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum(L.). BMC Plant Biology, 2018,18(1):225. |
[22] | 吴学莉, 易丽聪, 侯凡, 吴江生, 姚璇, 刘克德 . 表达播娘蒿突变基因DsALS-108的抗苯磺隆甘蓝型油菜植株构建. 农业生物技术学报, 2016,24(4):469-477. |
WU X L, YI L C, HOU F, WU J S, YAO X, LIU K D . Generation of tribenuron-methyl herbicide resistant rapeseed( Brasscia napus) plants expressing mutated gene Ds ALS-108 of flixweed (Descurainia sophia). Journal of Agricultural Biotechnology, 2016,24(4):469-477. (in Chinese) | |
[23] | 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松 . 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012,45(20):4326-4334. |
HU M L, PU H M, GAO J Q, LONG W H, QI C K, ZHANG J F, CHEN S . Inheritance and gene cloning of an ALS inhabiting herbicide resistant mutant line M9 in Brassica napus. Scientia Agricultura Sinica, 2012,45(20):4326-4334. (in Chinese) | |
[24] | 周清元 . 甘蓝型油菜新种质资源创建及其株型性状遗传分析[D]. 重庆: 西南大学, 2013. |
ZHOU Q Y . Study on germplasm creation of Brassica napus and genetic analysis of plant-type characters[D]. Chongqing: Southwest University, 2013. (in Chinese) | |
[25] | 郜欢欢, 叶桑, 王倩, 王刘艳, 王瑞莉, 陈柳依, 唐章林, 李加纳, 周清元, 崔翠 . 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选. 作物学报, 2019,45(9):1416-1430. |
GAO H H, YE S, WANG Q, WANG L Y, WANG R L, CHEN L Y, TANG Z L, LI J N, ZHOU Q Y, CUI C . Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus. Acta Agronomica Sinica, 2019,45(9):1416-1430. (in Chinese) | |
[26] | KOSAMBI D D . The estimation of map distances from recombination values. Annals of Eugenics, 1944,12:172-175. |
[27] | 任义英, 崔翠, 王倩, 唐章林, 徐新福, 林呐, 殷家明, 李加纳, 周清元 . 油菜主花序角果密度及其相关性状的全基因组关联分析. 中国农业科学, 2018,51(6):1020-1033. |
REN Y Y, CUI C, WANG Q, TANG Z L, XU X F, LIN N, YIN J M, LI J N, ZHOU Q Y . Genome-wide association analysis of silique density on racemes and its component traits in Brassica napus L. Scientia Agricultura Sinica, 2018,51(6):1020-1033. (in Chinese) | |
[28] | 阎志红, 刘文革, 赵胜杰, 何楠, 王俊良 . NaCl 胁迫对不同西瓜种质资源发芽的影响. 植物遗传资源学报, 2006(2):220-225. |
YAN Z H, LIU W G, ZHAO S J, HE N, WANG J L . Effect of NaCl stress on germination of different watermelon varieties. Journal of Plant Genetic Resources, 2006(2):220-225. (in Chinese) | |
[29] | 唐建明, 王勇, 方雅琴 . 油菜田常用除草剂药害及规避措施. 杂草科学, 2010(1):64-66. |
TANG J M, WANG Y, FANG Y Q . Herbicide phytotoxicity and evasion measures in rape fields. Journal of Weeds, 2010(1):64-66. (in Chinese) | |
[30] | 张宝娟, 赵惠贤, 胡胜武 . 苯磺隆对甘蓝型油菜中双 9 号的杀雄效果. 中国油料作物学报, 2010,32(4):467-471. |
ZHANG B J, ZHAO H X, HU S W . Male sterile-inducing ability of tribenuron-methyl to rapeseed cultivar Zhongshuang 9. Chinese Journal of Oil Crop Sciences, 2010,32(4):467-471. (in Chinese) | |
[31] | 付三雄, 周晓婴, 戚存扣 . 苯磺隆对甘蓝型油菜的杀雄效果及对其靶标 ALS 活性的影响. 江西农业学报, 2019,31(2):8-12. |
FU S X, ZHOU X Y, QI C K . Male-sterile-inducing efficiency of tribenuron-methyl and its effect on activity of acetolactate synthase in Brassica napus. Acta Agriculturae Jiangxi, 2019,31(2):8-12. (in Chinese) | |
[32] | 信晓阳, 曲高平, 张荣, 庞红喜, 吴强, 王发禄, 胡胜武 . 不同品种油菜对苯磺隆耐药性差异的鉴定. 西北农业学报, 2014,23(7):68-74. |
XIN X Y, QU G P, ZHANG R, PANG H X, WU Q, WANG F L, HU S W . Identification of the tribenuron-methyl tolerance in different rapeseed genotypes. Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(7):68-74. (in Chinese) | |
[33] | 缪颖, 伍炳华 . 植物抗逆性的获得与信息传导. 植物生理学通讯, 2001(1):71-76. |
MIAO Y, WU B H . The acquirement of stress response characteristics and signal transduction in plants. Plant Physiology Communications, 2001(1):71-76. (in Chinese) | |
[34] | NIU Y, FIGUEROA P, BROWSE J . Characterization of JAZ- interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. Journal of Experimental Botany, 2011,62(6):2143-2154. |
[35] | 吴平治, 李东屏 . 拟南芥中MATE基因家族的研究进展. 遗传, 2006,28(7):906-910. |
WU P Z, LI D P . Advances in the study of MATE gene family in Arabidopsis. Genetic, 2006,28(7):906-910. (in Chinese) | |
[36] | CHEN L, LIU Y, LIU H, KANG L, GENG J, GAI Y, LI Y . Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS ONE, 2015,10(3):e0118578. |
[37] | SHITAN N, MINAMI S, MORITA M, HAYASHIDA M, ITO S, TAKANASHI K, OMOTE H, MORIYAMA Y, SUGIYAMA A, GOOSSENS A, MORIYASU M, YAZAKI K . Involvement of the Leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS ONE, 2014,9(9):e108789. |
[38] | HE X . Think positively: The structural basis of cation-binding and coupling of the multidrug and toxic-compound extrusion (MATE) transporter family. University of California, San Diego, 2010. |
[39] | SHOJI T . ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: A common theme among diverse detoxification mechanisms. International Review of Cell & Molecular Biology, 2014,309:303. |
[40] | LU P, MAGWANGA R O, GUO X, KIRUNGU J N, LU H, CAI X, PENG R . Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress. Genes, Genomes, Genetics, 2018,8(7):2483-2500. |
[41] | WANG H, SEO J K, GAO S, CUI X, JIN H . Silencing of AtRAP, a target gene of a bacteria-induced small RNA, triggers antibacterial defense responses through activation of LSU2 and down-regulation of GLK1. New Phytologist, 2017,215(3):1144-1155. |
[42] | LI M, YU Q, HAN H, VILA-AIUB M, POWLES S B . ALS herbicide resistance mutations in Raphanus raphanistrum: Evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Management Science, 2013,69(6):689-695. |
[43] | XU X, LIU G, CHEN S, LI B, LIU X, WANG X, FAN C Q, WANG G Q, NI H . Mutation at residue 376 of ALS confers tribenuron-methyl resistance in flixweed ( Descurainia sophia) populations from Hebei province, China. Pesticide Biochemistry and Physiology, 2015,125:62-68. |
[44] | HAN H, YU Q, PURBA E, LI M, WALSH M, FRIESEN S, POWLES S B . A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Management Science, 2012,68(8):1164-1170. |
[45] | SHIMIZU M, GOTO M, HANAI M, SHIMIZU T, IZAWA N, KANAMOTO H, TOMIZAWA K, YOKOTA A, KOBAYASHI H . Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiology, 2008,147(4):1976-1983. |
[46] | SIMINSZKY B, CORBIN F T, WARD E R, FLEISCHMANN T J, DEWEY R E . Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the USA, 1999,96(4):1750-1755. |
[47] | BAI S, LIU W, WANG H, ZHAO N, JIA S, ZOU N, GUO W, WANG J . Enhanced herbicide metabolism and metabolic resistance genes identified in tribenuron-methyl resistant Myosoton aquaticum L. Journal of Agricultural and Food Chemistry, 2018,66(37):9850-9857. |
[48] | YU Q, POWLES S . Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiology, 2014,166(3):1106-1118. |
[49] | IWAKAMI S, KAMIDATE Y, YAMAGUCHI T, ISHIZAKA M, ENDO M, SUDA H, NAGAI K, SUNOHARA Y, TOKI S, UCHINO A, TOMINAGA T . CYP 81A P450s are involved in concomitant cross-resistance to acetolactate synthase and acetyl-CoA carboxylase herbicides in Echinochloa phyllopogon. New Phytologist, 2019,221(4):2112-2122. |
[50] | NARUSAKA M, SEKI M, UMEZAWA T, ISHIDA J, NAKAJIMA M, ENJU A, SHINOZAKI K . Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 2004,55(3):327-342. |
[51] | ZIMMERLIN A, DURST F . Aryl hydroxylation of the herbicide diclofop by a wheat cytochrome P450 monooxygenase: substrate specificity and physiological activity. Plant Physiology, 1992,100(2):874-881. |
[52] | BAEK Y S, GOODRICH L V, BROWN P J, JAMES B T, MOOSE S P, LAMBERT K N, RIECHERS D E . Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain sorghum. Frontiers in Plant Science, 2019,10:192. |
[53] | GAINES T A, LORENTZ L, FIGGE A, HERRMANN J, MAIWALD F, OTT M C, HAN H, BUSI R, YU Q, POWLES S B, BEFFA R . RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. The Plant Journal, 2014,78(5):865-876. |
[54] | CUMMINS I, WORTLEY D J, SABBADIN F, HE Z, COXON C R, STRAKER H E, SELLARS J D, KNIGHT K, EDWARDS L, HUGHES D, KAUNDUN S S, HUTCHINGS S J, STEEL P G, EDWARDS R . Key role for a glutathione transferase in multiple- herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the USA, 2013,110(15):5812-5817. |
[55] | OOSTERHUIS B, VUKMAN K, VÁGI E, GLAVINAS H, JABLONKAI I, KRAJCSI P . Specific interactions of chloroacetanilide herbicides with human ABC transporter proteins. Toxicology, 2008,248(1):45-51. |
[56] | MENG J J, QIN Z W, ZHOU X Y, XIN M . An ATP-binding cassette transporter gene from Cucumis Sativus L., Csabc19, is involved in propamocarb stress in Arabidopsis thaliana. Plant molecular Biology Reporter, 2016,34(5):947-960. |
[57] | MOREIRA L F, ZOMER S J, MARQUES S M . Modulation of the multixenobiotic resistance mechanism in Daniorerio hepatocyte culture (ZF-L) after exposure to glyphosate and Roundup®. Chemosphere, 2019,228:159-165. |
[1] | CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216. |
[2] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[3] | TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502. |
[4] | ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. |
[5] | WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990. |
[6] | XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807. |
[7] | LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768. |
[8] | LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341. |
[9] | PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103. |
[10] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[11] | LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483. |
[12] | CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081. |
[13] | GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898. |
[14] | HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508. |
[15] | WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277. |
|