ZHANG Rui-qi; RONG Man; ZHANG Shou-zhong; HU Lin; XU Wei-gang; CHEN Pei-du
[1]Greffeuille V, Abecassis J, Rousset M, Oury F X, Faye A, Pellerin-Lullien V. Grain characterization and milling behaviour of near-isogenic lines differing by hardness. Theoretical and Applied Genetics, 2006, 114: 1-12. [2]Symes K J. The inheritance of grain hardness in wheat as measured by the particle size index. Australian Journal of Agricultural Research, 1965, 16(2): 113-123. [3]Law C N, Young C F, Brown J W S, Snape J W, Worland J W. The study of grain protein control in wheat using whole chromosome substitution lines// Seed Protein Improvement by Nuclear Techniques. International Atomic Energy Agency, Vienna, 1978: 483-502. [4]Sourdille P, Perretant M R, Charmet G, Leroy P, Gautier M F, Joudrier P, Nelson J C, Sorrells M E, Bernard M. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theoretical and Applied Genetics, 1996, 93: 580-586. [5]Perretant M R, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier M H, Branlard G, Bernard S, Bernard M. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theoretical and Applied Genetics, 2000, 100: 1167-1175. [6]Crepieux S, Lebreton C, Flament P, Charmet G. Application of a new IBD-based mapping method to common wheat breeding population: Analysis of kernel hardness and dough strength. Theoretical and Applied Genetics, 2005, 111: 1409-1419. [7]Arbelbide M, Yu J, Bernardo R. Power of mixed-model QTL mapping from phenotypic, pedigree and marker data in self-pollinated crops. Theoretical and Applied Genetics, 2006, 112: 876-884. [8]Hong B H, Rubenthaler G L, Allan R E. Wheat pentosansⅠcultivar variation and relationship to kernel hardness. Cereal Chemistry, 1989, 66: 369-373. [9]Bettge A D, Morris C F. Relationship among grain hardness, pentosan fractions and end-use quality of wheat. Cereal Chemistry, 2000, 77(2): 241-247. [10]Panozzo J F, Hannah M C, O′Brien L, Bekes F. The relationship of free lipids and flour protein to breadmaking quality. Journal of Cereal Science, 1993, 17(1): 47-62. [11]Morrison W R, Law C N, Wylie L J, Coventry A M, Seekings J. The effect of group 5 chromosomes on the free polar lipids and breadmaking quality of wheat. Journal of Cereal Science, 1989, 9(1): 41-51. [12]Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1,Glu-B, and Glu-D1 which code for the high-molecular- weight subunits of glutenin in hexaploid wheat. Cereal Research Communication, 1983, 11: 29-35. [13]Yamamori M, Quynh N T. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theoretical and Applied Genetics, 2000, 100: 32-38. [14]Yamamori M, Endo T R. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theoretical and Applied Genetics, 1996, 93: 275-281. [15]Yamamori M, Fujita S, Hayakawa K. Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylase. Theoretical and Applied Genetics, 2000, 101: 21-29. [16]Sharp P J, Kreis M, Shewry P. Location of β-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75: 286-290. [17]Gautier M F, Cosson P, Guirao A, Alary R, Jourdier P. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Science, 2000, 153: 81-91. [18]Massa A N, Morris C F, Gill B S. Sequence diversity of puoindoline-a, puoindoline-b and the grain softness protein genes in Aegilops tauschii Coss. Crop Science, 2004, 44: 1808-1816. [19]张瑞奇, 胡 琳, 王秀娥, 张守忠, 马燕欣, 陈佩度. 黄淮冬麦区不同时期主推品种淀粉合成酶基因分子标记鉴定. 植物遗传资源学报, 2010, 11(2): 200-205. Zhang R Q, Hu L, Wang X E, Zhang S Z, Ma Y X, Chen P D. Analysis of starch synthesis genes in major wheat cultivars grown in huanghuai wheat production area at different periods using molecular markers. Journal of Plant Genetic Resources, 2010, 11(2): 200-205. (in Chinese) [20]刘 丽, 阎 俊, 张 艳, 何中虎, Peña R J, 张立平. 冬播麦区Glu-1和Glu-3位点变异及1B/1R易位与小麦加工品质性状的关系. 中国农业科学, 2005, 38(10): 1944-1950. Liu L, Yan J, Zhang Y, He Z H, Peña R J, Zhang L P. Allelic variation at the Glu-1 and Glu-3 loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from Autumn-Sown wheat regions in China. Scientia Agricultura Sinica, 2005, 38(10): 1944-1950. (in Chinese) [21]Li W L, Li H, Gill B S. Recurrent deletions of puroindoline genes at the grain Hardness locus in four independent lineages of polyploid wheat. Plant Physiology, 2008, 146: 200-212. [22]张文虎. 关于稻麦糊粉层发育的研究[D]. 扬州: 扬州大学, 2008. Zhang W H. Aleurone cell development of rice and wheat[D]. Yangzhou: Yangzhou University, 2008. (in Chinese) [23]Dubreil L, Gabroit T, Bouchet B. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-specific lipid transfer protein (nsLTPle1) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Science, 1998, 138: 121-135. [24]Capparelli R, Amoroso M G, Palumbo D, Iannaccone M, Faleri C, Cresti M. Two plant puroindolines colocalise in wheat seed and in vitro synergistically fight against pathogens. Plant Molecular Biology, 2005, 58: 857-867. [25]Miller B S, Pomeranz Y, Afework S. Hardness (texture) of hard red winter wheats grown in a soft wheat area and of soft red winter wheat grown in hard wheat area. Cereal Chemistry, 1984, 61(2): 201-203. [26]Pomeranz Y, Peterson C J, Mattern P J. Hardness of winter wheats grown under widely different climatic conditions. Cereal Chemistry, 1985, 62: 463-467. [27]周艳华, 何中虎, 阎 俊, 张 艳, 王德森, 周桂英. 中国小麦硬度分布及遗传分析. 中国农业科学, 2002, 35(10): 1177-1185. Zhou Y H, He Z H, Yan J, Zhang Y, Wang D S, Zhou G Y. Distribution of grain hardness in Chinese wheat and genetic analysis. Scientia Agricultura Sinica, 2002, 35(10): 1177-1185. (in Chinese) [28]Parish J A, Halse N J. Effect of light, temperature and the rate of desiccation on translucency in wheat grain. Australian Journal of Agricultural Research, 1968, 19(3) 365-372. |
[1] | CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216. |
[2] | YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299. |
[3] | XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313. |
[4] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[5] | ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734. |
[6] | WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810. |
[7] | TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502. |
[8] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[9] | LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300. |
[10] | WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318. |
[11] | GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331. |
[12] | ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081. |
[13] | QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109. |
[14] | CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126. |
[15] | ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046. |
|