Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (17): 3683-3693.doi: 10.3864/j.issn.0578-1752.2011.17.022

• RESEARCH NOTES • Previous Articles     Next Articles

23S-5S rDNA Sequence Cloning and Analysis of Candidatus Liberibacter africanus and americanus of Citrus Huanglongbing

LIAO  Hui-Hong, LI  Yang-Rui, YANG  Li-Tao, XU  Ning   

  1. 1.广西农业科学院园艺研究所
    2.广西作物遗传改良生物技术重点开放实验室
    3.广西大学亚热带农业生物资源保护与利用国家重点实验室
  • Received:2010-10-25 Revised:2011-01-19 Online:2011-09-01 Published:2011-02-28
  • Contact: Hui-Hong LIAO E-mail:liyr@gxaas.net

Abstract: 【Objective】 The objective of this study is to clone 23S-5S rDNA sequences of Candidatus Liberibacter africanus and americanus and compare to the corresponding region sequences of Candidatus Liberibacter asiaticus to clarify the ribosomal RNA operons relationships of HLB three species.【Method】The HLB DNA samples from africanus and americanus were amplified by the primers designed according to the 23S-5S rRNA gene conserved sequences of asiaticus. The PCR products were cloned and sequenced. The newly obtained sequences were further identified and analyzed.【Result】Sequences of 3 057 bp in length were obtained from africanus including 23S rRNA gene, cell wall hydrolase pseudogene and 5S rRNA gene. Sequences of 3 033 bp in length were obtained from americanus including 23S rRNA gene, glpK gene and 5S rRNA gene. The gene order is 16S rRNA, tRNAIle, tRNAAla, 23S rRNA, cell wall hydrolase pseudogene, 5S rRNA and tRNAMet for asiaticus. 16S rRNA, tRNAIle, tRNAAla, 23S rRNA, cell wall hydrolase pseudogene, 5S rRNA for africanus. 16S rRNA, tRNAIle, tRNAAla, 23S rRNA, glpK gene, 5s rRNA for americanus. 【Conclusion】The operon arrangement was special for three HLB species. The cell wall hydrolase gene coding in the reverse strand was found between 23S rRNA and 5S rRNA gene in three HLB species. It is a pseudogene for asiaticus and africanus while it is glpK gene for americanus.

Key words: Citrus, HLB, Candidatus Liberibacter africauns, Candidatus Liberibacter americanus, 23S-5S rDNA

[1]Lin H, Doddapaneni H, Bai X, Yao J, Zhao X, Civerolo E L. Acquisition of uncharacterized sequences from Candidatus liberibacter, an unculturable bacterium, using an improved genomic walking method. Molecular and Cellular Probes, 2008, 22(1): 30-37.

[2]Duan Y, Zhou L, Hall D G, Li W, Doddapaneni H, Lin H, Liu L, Vahling C M, Gabriel D W, Williams K P, Dickerman A, Sun Y, Gottwald T. Complete genome sequence of citrus Huanglongbing bacteria, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Molecular Plant-Microbe Interactions, 2009, 22(8): 1011-1020.

[3]Planet P, Jagoueix S, Bové J M, Garnier M. Detection and characterization of the African citrus greening Liberibacter by amplification, cloning and sequencing of the rplKAJL-rpoB operon. Current Microbiology, 1995, 30: 137-141.

[4]Teixeira D C, Eveillard S, Sirand-Pugnet P, Wulff A, Saillard C, Ayres A J, Bové J M. The tufB-secE-nusG-rplKAJL-rpoB gene cluster of the liberibacters: sequence comparisons, phylogeny and speciation. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 1414-1421.

[5]Jagoueix S, Bové J M, Garnier M. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. International Journal of Systematic Bacteriology, 1994, 44(3): 379-386.

[6]Jagoueix S, Bové J M, Garnier M. Comparison of 16S/23S ribosomal intergenic regions of “Candidatus Liberobacter asiaticum” and “Candidatus Liberibacter africanum,” the two species associated with citrus huanglongbing (greening) disease. International Journal of Systematic Bacteriology, 1997, 47(1): 224-227.

[7]Teixeira D C, Ayres A J, Kitajima E W, Tanaka F A O, Danet L, Jagoueix S, Saillard C, Bové J M. First report of a huanglongbing-like disease of citrus in Sao Paulo State, Brazil, and association of a new liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Disease, 2005, 89: 107.

[8]Teixeira D C, Saillard C, Eveillard S, Danet J L, Costa P I, Ayres A J, Bové J. “Candidatus Liberibacter americanus”, associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 1857-1862.

[9]Bastianel C, Garnier-Semancik M, Renaudin J, Bové J M, Eveillard S. Diversity of “Candidatus Liberibacter asiaticus”, based on the omp gene sequence. Applied and Environmental Microbiology, 2005, 71(11): 6473-6478.

[10]Wulff N A, Eveillard S, Foissac X, Ayres A J, Bove J M. rRNA operons and genome size of “Candidatus Liberibacter americanus”, a bacterium associated with citrus huanglongbing in Brazil. International Journal of Systematic Evolutionary Microbiology, 2009, 59: 1984-1991.

[11]Dryden S C, Kaplan S. Localivation and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Research, 1990, 18(24): 7267-7277.

[12]Otten L, De Ruffray P. Major differences between the rrnA operons of two strains of Agrobacterium vitis. Archives of Microbiology, 1996, 166(1): 68-70.

[13]Bricker B J. Characterization of the three ribosomal RNA operons rrnA, rrnB, and rrnC, from Brucella melitensis. Gene, 2000, 255(1): 117-126.

[14]Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman B, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 2001, 294(5550): 2323-2328.

[15]Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dréano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Pühler A, Purnelle B, Ramsperger U, Renard C, Thébault P, Vandenbol M, Weidner S, Galibert F. Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(17): 9877-9882.

[16]Alsmark C M, Frank A C, Karlberg E O, Legault B A, Ardell D H, Canbäck B, Eriksson A S, Näslund A K, Handley S A, Huvet M, La Scola B, Holmberg M, Andersson S G. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9716-9721.

[17]Young J P, Crossman L C, Johnston A W Thomson N R, Ghazoui Z F, Hull K H, Wexler M, Curson A R, Todd J D, Poole P S, Mauchline T H, East A K, Quail M A, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biology, 2006, 7(4): R34.1- R34.20.

[18]Dingman D W. Characterization of Paenibacillus popilliae rRNA operons. Canadian Journal of Microbiology, 2004, 50(10): 779-791.

[19]Kim N W, Gutell R R, Chan V L. Complete sequences and organization of the rrnA operon from Campylobacter jejuni TGH9011 (ATCC43431). Gene, 1995, 164(1): 101-106.

[20]Stadthagen-Gomez G, Helguera-Repetto A C, Cerna-Cortes J F, Goldstein R A, Cox R A, Gonzalez-y-Merchand J A. The organization of two rRNA (rrn) operons of the slow-growing pathogen Mycobacterium celatum provides key insights into mycobacterial evolution. FEMS Microbiology Letters, 2008, 280(1): 102-112.

[21]Williams M L, Waldbieser G C, Dyer D W, Gillaspy A F, Lawrence M L. Characterization of the rrn operons in the channel catfish pathogen Edwardsiella ictaluri. Journal of Applied Microbiology, 2008, 104(6): 1790-1796.

[22]Maslunka C, Carr E, Gürtler V, Kämpfer P, Seviour R. Estimation of ribosomal RNA operon (rrn) copy number in Acinetobacter isolates and potential of patterns of rrn operon-containing fragments for typing strains of members of this genus. Systematic and Applied Microbiology, 2006, 29(3): 216-228.

[23]Sadeghifard N, Gürtler V, Beer M, Seviour R J. The mosaic nature of intergenic 16S-23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains. Applied and Environmental Microbiology, 2006, 72(11): 7311-7323.

[24]Duan Y P, Zhou L J, Hall D, Li W B, Liu L, Gottwald T. Genome sequencing of Candidatus Liberibacter asiaticus, the causal agent of citrus Huanglongbing (greening) in Florida//The International Society of Citriculture. The 11th International Citrus Congress. Wuhan, China, 2008, 52.

[25]Kim J S, Wang N. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Research Notes, 2009, 2: 37.
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[6] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[7] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[8] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[9] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[10] ZOU YunQian,LIN ZiZhen,XU RangWei,CHENG YunJiang. Development and Evaluation of a Coating Substitute for Individual Polyethylene Film Packaging of Citrus Fruit [J]. Scientia Agricultura Sinica, 2022, 55(12): 2398-2412.
[11] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[12] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[13] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[14] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[15] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!