Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (1): 47-57 .

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect and Preliminary Analysis of Chromosomal Control on the Chlorophyll Fluorescence Parameters of Wheat Substitution Lines Between Synthetic Hexaploid Wheat and Chinese Spring Under Drought Stress

BAI Zhi-ying, LI Cun-dong, ZHAO Jin-feng, WU Tong-yan, ZHENG Jin-feng, BI Chang-rui
  

  1. (河北农业大学生命科学学院)
  • Received:2010-05-28 Revised:2010-09-21 Online:2011-01-01 Published:2011-01-01
  • Contact: LI Cun-dong

Abstract:

【Objective】 Chromosome substitution lines between Chinese Spring and synthetic hexaploid wheat (CS-Synthetic 6x) were used to study the regulation effect of foreign added chromosome on chlorophyll fluorescence parameters under drought stress. 【Method】 The chlorophyll fluorescence parameters,including Fo, Fm, Fv/Fm and Fv/Fo in flag leaves at different developing stages in different water treatments were measured during 2005-2007. 【Result】 The results showed that Fm and Fo of 5B substitution line were significantly different from Chinese Spring in the control treatment. Drought stress resulted in inhibition of PSⅡ photochemical activity and reduction of Fm, Fv/Fm, Fv/Fo as well as accumulation of Fo; Fo of 3A substitution line and Fm of 4D substitution line were significantly different from Chinese Spring; Fv/Fm and Fv/Fo of 3A, 7A substitution lines were significantly different from Chinese Spring from booting stage to filling stage under drought stress. 【Conclusion】 The genes regulating Fo and Fm may be located on 5B chromosome of Synthetic 6x in the control treatment. In drought treatment the genes regulating Fo and Fm may be located on 3A and 4D chromosome, respectively, and the genes regulating Fv/Fm and Fv/Fo may be located on 3A and 7A chromosomes, the problem is up for further study.

Key words: wheat substitution lines, drought stress, chlorophyll fluorescence parameters, chromosomal control

[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[8] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[9] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[10] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[11] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[12] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[13] HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato [J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
[14] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[15] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!