Scientia Agricultura Sinica

Previous Articles     Next Articles

Review and Prospect of Chinese Transgenic Insecticidal Cotton

ZHANG Rui, WANG Yuan, MENG Zhi-gang, SUN Guo-qing, GUO San-dui   

  1. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, NFCRI, Beijing 100081
  • Online:2007-12-31 Published:2007-12-31

Abstract: Cotton is one of the most important cash crops in China. Successful research on transgenic insecticidal cotton and its large scale commercialization have ensured the steady development of cotton growing and rapid increase of textile industry in China. Production of transgenic insecticidal cotton is also good for environmental protection, increased farmers’ income and made important contribution in promoting sustainable development of agriculture. This paper reviews the key steps of research on Chinese transgenic insecticidal cotton, from one gene, double genes to fusion gene, introduces the excellent achievement of their industrialization, and makes prospects for further study and breeding technology of insecticidal cotton in the future.

Key words: China , Insecticidal cotton , Research , Commercialization

[1]Vaeck M, Reynaerts A, Hofte H, Jansens S, Beuckeleer DM, Dean C, Zabeau M, Montagu M, Leemans J. Transgenic plants protected from insect attack. Nature, 1987, 328: 33-37.
[2]Fischhoff D A, Bowdish K S, Perlak F J, Marrone P G, McCormick S M, Niedermeyer J G, Dean D A, Kusano-Kretzmer K, Mayer E J, Rochester D E. Insect tolerant transgenic tomato plants. Bio/ Technology, 1987, 5: 807-813.
[3]Perlak F J, Deaton R W, Armstrong T A, Fuchs R L, Sims S R, Frischhoff D A. Insect resistant cotton plants. Biology Technology, 1990, 8: 939-943.
[4]Lereclus D, Guo S D, Sanchis V, Lecadet M M. Characterization of two Bacillus thuringiensis plasmids whose replication is thermosensitive in B. subtilis. FEMS Microbiology Letters, 1988, 49: 417-422.
[5]郭三堆, 陈学军, 杨  虹, 范云六. 苏云金杆菌δ-内毒素基因及3’末端缺失基因在大肠杆菌和农杆菌中的亚克隆和表达. 生物工程学报, 1991, 7(1): 54-61.
[6]郭三堆, 洪朝阳, 王京红, 王明波, 俞梅敏, 范云六. 苏云金芽孢杆菌鲇泽变种7-29杀虫蛋白质结构基因的改造和表达. 微生物学报, 1992, 32(3): 167-175.
[7]Guo S D, Hong Z Y, Wang J H, Fan Y L. Expression and insecticidal activity of fusion toxin gene of Bacillus thuringiensis in Escherichia coli JM103. Agricultural Biotechnology, Proceedings of Asia-Pacific Conference on Agricultural biotechnology, August 20-24, Beijing, China. 1992: 233-234.
[8]郭三堆. Cry1A杀虫基因的人工合成. 中国农业科学, 1993, 26(2): 85.
[9]郭三堆. 植物Bt抗虫基因工程研究进展. 中国农业科学, 1995, 28(5): 8-13.
[10]郭三堆, 倪万潮, 徐琼芳. 编码杀虫蛋白质融合基因和表达载体及其应用. 专利号: ZL95119563.8.
[11]崔洪志, 郭三堆. 我国抗虫转基因棉花研究取得重大进展. 中国农业科学, 1996, 29(1): 93.
[12]毛利群, 郭三堆. Ω序列和3?poly(dA)长度与基因表达效率的关系. 植物学报, 1998, 40: 1166-1168.
[13]黄其满, 毛利群, 黄卫红, 郭三堆. 转人工合成GFM Cry1A基因烟草表现明显杀虫活性. 植物学报, 1998, 40: 228-233.
[14]倪万潮, 张震林, 郭三堆. 转基因抗虫棉的培育. 中国农业科学, 1998, 31(2): 8-15.
[15]郭三堆, 崔洪志, 徐琼芳, 倪万潮. 两种编码杀虫蛋白质基因和双价融合表达载体及其应用. 专利号: ZL 98 1 02885.
[16]郭三堆, 崔洪志. 中国转基因抗虫棉研究又取得新进展. 中国农业科学, 1998, 31(6): 91-94.
[17]崔洪志, 郭三堆. 双价杀虫基因植物表达载体的构建及其在烟草中的表达. 农业生物技术学报, 1998, 6(1): 7-13.
[18]郭三堆, 崔洪志, 夏兰芹, 武东亮, 武东亮, 倪万潮, 张震林, 张保龙, 徐英俊. 双价抗虫转基因棉花研究. 中国农业科学, 1999, 32(3): 1-7.
[19]郭三堆, 张  锐, 武东亮. 融合杀虫基因cryci及其应用. 专利申请号: 200510076823.3.
[20]夏兰芹, 郭三堆. Bt杀虫基因在转基因双价抗虫棉中的整合与遗传稳定性. 科学通报, 2001, 46: 565-568.
[21]Xia L Q, Guo S D. Integration and inheritance stability of foreign Bt toxin gene in the bivalent insect-resistant transgenic cotton plants. Chinese Science Bulletin, 2001, 46: 1372-1375.
[22]夏兰芹, 郭三堆. 高温对转基因抗虫棉中Bt杀虫基因表达的影响. 中国农业科学, 2004, 37: 1733-1737.
[23]康保珊, 张  锐, 潘登奎, 王  远, 郭三堆. 转基因双价抗虫棉中CrylAc基因与CpTI基因的共表达. 棉花学报, 2005, 17: 131-136.
[24]武东亮, 崔洪志, 郭三堆. 融合杀虫基因植物表达载体的构建及转基因烟草的获得. 中国农业科学, 2001, 34: 491-495.
[25]张  锐, 王  远, 马维军, 郭三堆. 抗虫三系杂交棉分子育种技术获重大突破. 中国农业科学, 2005, 38(5): 简讯.
[26]郭三堆, 张  锐, 王  远. 转抗虫基因的三系杂交棉分子育种的方法. 专利申请号: 200510109117.4.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[5] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[6] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[7] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] Qun ZHOU,XiaoFei CHEN,RuiCi KAN,Yu LI,Hui CAO,YanLing PENG,Bin ZHANG. Molecular Epidemiological Investigation of Porcine Group A Rotavirus in Sichuan from 2017 to 2019 [J]. Scientia Agricultura Sinica, 2021, 54(5): 1063-1072.
[10] YUE HuiLi,ZHANG Zhao,ZHANG HuiJie,LIU ShengPing,ZHANG Jie. The Spatial and Temporal Evolution, Regional Correlations and Economic Coordinated Development Effect for Chinese Agricultural Science and Technology Level: Taking Provincial Public Agriculture Research Institutions as an Example [J]. Scientia Agricultura Sinica, 2021, 54(24): 5251-5265.
[11] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[12] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[13] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[14] ZHANG WeiLi,ZHANG RenLian,JI HongJie,KOLBE H,CHEN YinJun. A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution [J]. Scientia Agricultura Sinica, 2020, 53(5): 965-976.
[15] YANG JunHao,LUO YongLi,CHEN Jin,JIN Min,WANG ZhenLin,LI Yong. Effects of Main Food Yield Under Straw Return in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4415-4429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!