Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 1063-1072.doi: 10.3864/j.issn.0578-1752.2021.05.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Molecular Epidemiological Investigation of Porcine Group A Rotavirus in Sichuan from 2017 to 2019

Qun ZHOU1(),XiaoFei CHEN2(),RuiCi KAN1,Yu LI1,Hui CAO1,YanLing PENG3,Bin ZHANG1,4()   

  1. 1College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041
    2College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642
    3Animal Husbandry Bureau of Xichang City, Xichang 615000, Sichuan
    4Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education/Sichuan Province, Chengdu 610041
  • Received:2020-04-13 Accepted:2020-07-29 Online:2021-03-01 Published:2021-03-09
  • Contact: Bin ZHANG E-mail:2297248747@qq.com;chenxf-1@163.com;binovy@sina.com

Abstract:

【Objective】The aim of this study was to investigate the prevalence and molecular characterization of porcine group A rotavirus (RVA) in large-scale pig farms in Sichuan, to provid a theoretical basis for the development for porcine RVA vaccine. 【Method】 From 2017 to 2019, the 303 samples were collected from 40 pig farms in 14 regions of Sichuan province. Prevalence of RVA was detected by real-time RT-PCR method, and RVA positive samples were typed by RT-PCR. At the same time, the whole genomes of RVA VP4 and VP7 gene were amplified from some positive samples. The genotypes of the corresponding strains were determined by RotaC2.0 classification tool. Sequence homology was analyzed by MegAlign. Phylogenetic tree was constructed by Neighbor-Joining method through MEGA 7.0. SimPlot and RDP4 softwares were applied for recombination analysis. 【Result】 Of the 303 samples examined, 32.34% (98/303, 95%CI=27.1%-37.9%) were positive for RVA. Among the 39 G types, G9 (41%) was the dominant genotype, while G4, G5, G26, and G3 were detected in 23%, 28.2%, 5.1% and 2.7%, respectively. The P[13] genotype (40.7%) was dominant among the 59 P types, followed by P[6], P[23] and P[1] in 30.5%, 23.7% and 5.1%, respectively. Furthermore, the 30 strains successfully identified the G/P combination genotype, and the dominant combination genotype was G9P[23] (23.3%), the other combinations were G4P[6] (16.7%), G9P[13] (13.3%), G5P[23] (10%), G5P[13] (10%), G9P[6] (6.7%), G26P[13] (6.7%), G4P[13] (6.7%), G4P[23] (3.3%) and G3P[13] (3.3%). Notably, the G5P[23], G4P[13], G9P[6], G26P[13] and G4P[23] were first identified in China. In addition, the recombination analysis showed that four strains had recombination on VP7 or VP4 genes. 【Conclusion】 The results demonstrated that the prevalence of RVA in diarrhea piglet feces was high and the genotypes were complex in Sichuan. The dominant genotype of RVAs was G9P[23]. The results of this study enriched the epidemiological data of RVA and provided an important reference for the prevention and control of porcine RVA in Sichuan province.

Key words: porcine group A rotavirus, molecular epidemiology, genomic research, recombination

Table 1

RVA infection rate and genotype distribution in some farms in Sichuan Province"

地区
Region
猪场个数
Farm
样本数
Number of samples
RVA阳性数
Positive number
G型
G genotype
P 型
P genotype
G/P组合型
G/P combination genotype
眉山Meishan 6 62 14 G3,G4,G9 P[1],P[13],P[23] G3P[13],G4P[23],G9P[23],G9P[13]
绵阳Mianyang 5 34 24 G5,G9 P[23] G9P[23],G5P[23]
泸州Luzhou 5 13 3 G9 P[1],P[13] G9P[13]
西昌Xichang 5 25 8 P[1],P[13]
成都Chengdu 4 49 9 G9 P[13],P[23] G9P[13],G9P[23]
雅安Yaan 4 13 3 G9 P[13] G9P[13]
内江Neijiang 3 18 2 G9 P[6] G9P[6]
宜宾Yibin 2 7 5 G5 P[13],P[23] G5P[23],G5P[13]
乐山Leshan 1 4 2 G4 P[13] G4P[13]
遂宁Suining 1 18 4 G9,G26 P[13],P[23] G9P[23],G26P[13]
南充Nanchong 1 3 3 G9 P[13] G9P[13]
资阳Ziyang 1 18 2 G4 P[6] G4P[6]
广元Guangyuan 1 36 19 G4,G5 P[6],P[13] G4P[6],G5P[13]
攀枝花Panzhihua 1 3 0
共计Total 40 303 98

Fig. 1

Phylogenetic tree based on RVA VP7 sequences (790 bp) constructed using the neighbor-joining (NJ) method ●:本研究中的毒株 Strains in this study。下同 The same as below ▲:右侧G9、G4和G5进化树的缩略图 Thumbnails of the right G9, G4 and G5 phylogenetic trees"

Table 2

RVA VP7 gene homology analysis"

毒株
Strain
同源性最高的毒株
Strain with highest homology
国家及宿主
Country and host
年份
Year
同源性
Homology
SCMS-71 SCQL-5-2(MG066590) 中国/猪源China/pig 2018 99.9%
SCLS-18,SCLS-20 MOZ/21205(KP222851) 莫桑比克/人源Mozambique/human 2011 96.9%,97.4%
SCZY-165,SCZY-166 ZT-11D-T101(KM247280) 中国/人源China/human 2011 98.9%,98.3%
SCMS-69 GUB71(AB573647) 日本/猪源Japan/pig 2006 95.6%
SCGY-193,SCGY-198,SCGY-199,SCGY-201 R1954(KF726066) 中国/人源China/human 2013 95.1%
6株G5型(SCJY),SCGY-192
6 strains of G5 (SCJY)
HLJqqhe-1(JX498960) 中国/猪源China/pig 2011 97.6%-98.1%
SCYB-Y1,SCYB-Y2 LL3354(EF159575) 中国/人源China/human 2000 93.9%,94.2%
SCYB-C2,SCYB-C3 103-P-001-1-0126(MK227837) 中国/猪源China/pig 2014 93.7%
4株G9型(SCJY)
4 strains of G9 (SCJY)
LLP48(KJ126835) 中国/猪源China/pig 2008 97.4%-97.6%
SCRS-142,SCSN-96 HBHP(KX831114) 中国/猪源China/pig 2016 98.3%
SCDY-219 GXqz-2(JX498942) 中国/猪源China/pig 2011 97.5%
SCLZ-FB,SCYA-C7 ISO31(DQ117937) 印度/人源India/human 2008 96.2%,96.5%
SCMY-28,SCMS-153,SCDY-211,
SCDY-210,SCDY-209
CQ(KX831100) 中国/猪源China/pig 2016 95.9%-97.1%
SCSN-93,SCSN-94 07N1760(LC208008) 尼泊尔/猪源Nepal/pig 2007 96.1%
SCLJ-C18,SCLJ-C20 TA-1-2(KT820779) 中国/猪源China/pig 2014 85.1%

Fig. 2

Phylogenetic tree based on RVA VP4 sequences (800 bp) constructed using the neighbor-joining (NJ) method ▲:Thumbnails of the right P[6], P[13] and P[23] phylogenetic trees"

Table 3

RVA VP4 gene homology analysis"

毒株
Strain
同源性最高的毒株
Strain with highest homology
国家及宿主
Country and host
年份
Year
同源性
Homology
SCMS-152,SCLZ-35,SCXC-83 A5-10(LC133517) 泰国/牛源Thailand/cow 1988 93.4%
15株P[6]型(SCGY)15 strains of P[6] (SCGY) GUB88(AB573872) 日本/猪源Japan/pig 2006 92.6%-98.6%
SCLJ-C18,SCLJ-C20,SCZY-165 R1207(LC389888) 斯里兰卡/人源Sri Lanka/human 2009 95.7%-98.6%
SCXC-89,SCXC-85,SCXC-84,SCRS-142,SCGY-192 CMP178(DQ536362) 泰国/猪源Thailand/pig 2008 94.5%-96.8%
SCYB-Y1,SCQL-54,SCQL-55,SCMS-71,SCDY-91 SCMY(MH320795) 中国/猪源China/pig 2018 79.1%-98.8%
SCLZ-FB FGP36(AB573878) 日本/猪源Japan/pig 2009 95.1%
SCSN-93,SCSN-94 LNCY(MF462324) 中国/猪源China/pig 2016 98.3%
SCYA-C7,SCRS-131,SCLS-18,SCLS-20,
SCYA-H2,SCYA-H3,SCXC-90,SCYB-Y2
SWU-1C(MK410284) 中国/猪源China/pig 2018 92.5%-97.7%
SCDY-210,SCSN-140,SCMS-151 SCLS-R3(MK597985) 中国/人源China/human 2018 92.6%-97.0%
SCYB-C2,SCYB-C3 14175-24(KX363359) 越南/猪源Viet Nam/pig 2012 95.3%
SCSN-96 SC11(MH624176) 中国/猪源China/pig 2017 97.4%
SCMS-153,SCMS-68,SCMS-69,SCDY-211,
7株P[23]型(SCJY)7 strains of P[23] (SCJY)
HLJ/15/1(KU886316) 中国/猪源China/pig 2015 92.1-96.4%

Fig. 3

Similarity analysis of recombinant sequence of RVA/Pig/CHN/SCLJ/C20/2019 strain and RVA/Pig/CHN/SCYB/Y1/2019 strain The vertical axis indicates the similarity (%) of nucleotide sequences between the query strain and other reference strains, the horizontal axis indicates the nucleotide positions. The recombinant region A, B and C of VP7 gene of RVA/Pig/CHN/SCLJ/C20/2019 strain was analyzed by Simplot software, the phylogenetic tree based on recombination region A, B and C. The recombinant region D and E of VP4 gene of RVA/Pig/CHN/SCYB/Y1/2019 strain was analyzed by Simplot software, the phylogenetic tree based on recombination region D and E"

[1] THEINGI W M, HLAING M T, YE M K, KHIN M A, MO M W, HTIN L, THIN T S, WIN M, KHIN K O, KYAW Z T. Sentinel surveillance for rotavirus in children <5 years of age admitted for Diarrheal illness to Yangon Children's Hospital, Myanmar, 2009-2014. Vaccine, 2018,36(51):7832-7835. doi: 10.1016/j.vaccine.2017.11.002.
doi: 10.1016/j.vaccine.2017.11.002 pmid: 29274701
[2] HOSHINO Y, SERENO M M, MIDTHUN K, FLORES J, KAPIKIAN A Z, CHANOCK R M. Independent segregation of two antigenic specificities (VP3 and VP7) involved in neutralization of rotavirus infectivity. Proceedings of the National Academy of Sciences of the United States of America, 1985,82(24):8701-8704. doi: 10.1073/pnas.82.24.8701.
[3] MIHALOV K E, GELLÉRT Á, MARTON S, FARKAS S L, FEHÉR E, OLDAL M, JAKAB F, MARTELLA V, BÁNYAI K. Candidate new rotavirus species in sheltered dogs, Hungary. Emerging Infectious Diseases, 2015,21(4):660-663. doi: 10.3201/eid2104.141370.
doi: 10.3201/eid2104.141370 pmid: 25811414
[4] MATTHIJNSSENS J, OTTO P H, CIARLET M, DESSELBERGER U, VAN R M, JOHNE R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Archives of Virology, 2012,157(6):1177-1182. doi: 10.1007/s00705-012-1273-3.
doi: 10.1007/s00705-012-1273-3
[5] TONIETTI P O, HORA A S, SILVA F D F, RUIZ V L A, GREGORI F. Phylogenetic analyses of the VP4 and VP7 genes of porcine group A rotaviruses in Sao Paulo State, Brazil: first identification of G5P[23] in piglets. Journal of Clinical Microbiology, 2013,51(8):2750-2753. doi: 10.1128/JCM.01175-13.
pmid: 23761160
[6] VLASOVA A N, AMIMO J O, SAIF L J. Porcine Rotaviruses: Epidemiology, immune responses and control strategies. Viruses, 2017,9(3):48. doi: 10.3390/v9030048.
doi: 10.3390/v9030048
[7] KOZYRA I, KOZYRA J, DORS A, RZEŻUTKA A. Molecular characterisation of porcine group A rotaviruses: Studies on the age-related occurrence and spatial distribution of circulating virus genotypes in Poland. Veterinary Microbiology, 2019,232:105-113. doi: 10.1016/j.vetmic.2019.03.026.
pmid: 31030833
[8] WAKUDA M, IDE T, SASAKI J, KOMOTO S, ISHII J, SANEKATA T, TANIGUCHI K. Porcine rotavirus closely related to novel group of human rotaviruses. Emerging Infectious Diseases, 2011,17(8):1491-1493. doi: 10.3201/eid1708.101466.
pmid: 21801631
[9] MALASAO R, KHAMRIN P, KUMTHIP K, USHIJIMA H, MANEEKARN N. Complete genome sequence analysis of rare G4P[6] rotavirus strains from human and pig reveals the evidence for interspecies transmission. Infection, Genetics and Evolution, 2018,65:357-368. doi: 10.1016/j.meegid.2018.08.019.
pmid: 30144568
[10] GHOSH S, VARGHESE V, SAMAJDAR S, BHATTACHARYA S K, KOBAYASHI N, NAIK T N. Evidence for independent segregation of the VP6- and NSP4- encoding genes in porcine group A rotavirus G6P[13] strains. Archives of Virology, 2007,152(2):423-429. doi: 10.1007/s00705-006-0848-2.
doi: 10.1007/s00705-006-0848-2
[11] AGBEMABIESE C A, NAKAGOMI T, GAUCHAN P, SHERCHAND J B, PANDEY B D, CUNLIFFE N A, NAKAGOMI O. Whole genome characterisation of a porcine-like human reassortant G26P[19] Rotavirus A strain detected in a child hospitalised for diarrhoea in Nepal, 2007. Infection, Genetics and Evolution, 2017,54:164-169. doi: 10.1016/j.meegid.2017.06.026.
doi: 10.1016/j.meegid.2017.06.026
[12] GREENBERG H, MCAULIFFE V, VALDESUSO J, WYATT R, FLORES J, KALICA A, HOSHINO Y, SINGH N. Serological analysis of the subgroup protein of rotavirus, using monoclonal antibodies. Infection and Immunity, 1983,39(1):91-99. doi: 10.1128/ IAI.39.1.91-99.
doi: 10.1128/IAI.39.1.91-99.1983 pmid: 6185436
[13] PAPP H, LÁSZLÓ B, JAKAB F, GANESH B, DE G S, MATTHIJNSSENS J, CIARLET M, MARTELLA V, BÁNYAI K. Review of group A rotavirus strains reported in swine and cattle. Veterinary Microbiology, 2013,165:190-199. doi: 10.1016/j.vetmic. 2013.03.020.
doi: 10.1016/j.vetmic.2013.03.020 pmid: 23642647
[14] MATTHIJNSSENS J, CIARLET M, MCDONALD S M, ATTOUI H, BÁNYAI K, BRISTER J R, BUESA J, ESONA M D, ESTES M K, GENTSCH J R, et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Archives of Virology, 2011,156(8):1397-1413.doi: 10.1007/s00705- 011-1006-z.
doi: 10.1007/s00705-011-1006-z
[15] JING Z, ZHANG X, SHI H, CHEN J, SHI D, DONG H, FENG L. A G3P[13] porcine group A rotavirus emerging in China is a reassortant and a natural recombinant in the VP4 gene. Transboundary and Emerging Diseases, 2018,65(2):e317-e328. doi: 10.1111/tbed.12756.
doi: 10.1111/tbed.12756 pmid: 29148270
[16] 曹恭貌, 张斌, 岳华, 费磊, 任玉鹏. 四川部分猪场PEDV、TGEV、GARV和PKV感染状况调查. 动物医学进展, 2016,37(1):118-122.
CAO G M, ZHANG B, YUE H, FEI L, REN Y P. Investigation of PEDV, TGEV, GARV and PKV infection in some pig farms in Sichuan Province. Progress in Veterinary Medicine, 2016,37(1):118-122. (in Chinese)
[17] 杨文宇, 周远成, 韩燕, 陈蕾, 廖春燕, 付梦瑾, 季洪伟, 蔡雨涵, 朱玲, 徐志文, 郭万柱. 猪A群轮状病毒和C群轮状病毒以及猪星状病毒多重RT-PCR同时检测方法的建立及应用. 中国兽医科学, 2014,44(4):394-400.
YANG W Y, ZHOU Y C, HAN Y, CHEN L, LIAO C Y, FU M J, JI H W, CAI Y H, ZHU L, XU Z W, GUO W Z. Establishment and clinical application of a multiplex reverse transcription-PCR for simultaneous detection of porcine group A rotrvirus, porcine group C rotavirus and porcine astrovirus. Chinese Veterinary Science, 2014,44(4):394-400. (in Chinese)
[18] XUE R, TIAN Y, ZHANG Y, ZHANG M, LI Z, CHEN S, LIU Q. Diversity of group A rotavirus of porcine rotavirus in Shandong province China. Acta Virologica, 2018,62(3):229-234. doi: 10.4149/ av_2018_216.
doi: 10.4149/av_2018_216 pmid: 30160138
[19] 周玲, 陈桂华, 伍子娴, 麦凯杰, 李迪, 王胜阳, 马静云, 张祥斌. 广东地区2016-2017年规模化猪场腹泻病原调查分析. 中国兽医杂志, 2017, 53(10): 3-5+9+49.
ZHOU L, CHEN G H, WU Z X, MAI K J, LI D, WANG S Y, MA J Y, ZHANG X B. Investigation on porcine diarrhea pathogens in Guangdong province form 2016 to 2017. Chinese Journal of Veterinary Medicine, 2017, 53(10): 3-5+9+49.(in Chinese)
[20] 库旭钢, 张坤, 刘羽茜, 何启盖. 猪A群轮状病毒的分离与鉴定. 畜牧兽医学报, 2012,43(2):275-281.
KU X G, ZHANG K, LIU X X, HE Q G. Isolation and identification of group A porcine rotavirus. Acta Veterinaria et Zootechnica Sinica, 2012,43(2):275-281. (in Chinese)
[21] 李玉, 穷达, 张敏, 阚蕊慈, 汤承, 岳华, 张斌. 猪A群轮状病毒RVA/Pig-tc/CHN/SWU-1C/2018/G9P[13]株的分离与鉴定. 中国预防兽医学报, 2019,41(11):1170-1173.
LI Y, QIONG D, ZHANG M, KAN R C, TANG C, YUE H, ZHANG B. Isolation and identification of the porcine group A rotavirus strain of RVA/Pig-tc/CHN/SWU-1C/2018/G9P[13]. Chinese Journal of Preventive Veterinary Medicine, 2019,41(11):1170-1173. (in Chinese)
[22] ZHANG H, ZHANG Z, WANG Y F, WANG X, XIA M Q, WU H. Isolation, molecular characterization and evaluation of the pathogenicity of a porcine rotavirus isolated from Jiangsu Province, China. Archives of Virology, 2015,160(5):1333-1338. doi: 10.1007/s00705-015- 2347-9.
[23] AMIMO J O, VLASOVA A N, SAIF L J. Detection and genetic diversity of porcine group A rotaviruses in historic (2004) and recent (2011 and 2012) swine fecal samples in Ohio: Predominance of the G9P[13] genotype in nursing piglets. Journal of Clinical Microbiology, 2013,51(4), 1142-1151. doi: 10.1128/JCM.03193-12.
[24] DISTEFANO D J, KRAIOUCHKINE N, MALLETTE L, MALIGA M, KULNIS G, KELLER P M, CLARK H F, SHAW A R. Novel rotavirus VP7 typing assay using a one-step reverse transcriptase PCR protocol and product sequencing and utility of the assay for epidemiological studies and strain characterization, including serotype subgroup analysis. Journal of Clinical Microbiology, 2005,43(12):5876-5880. doi: 10.1128/JCM.43.12.5876-5880.
pmid: 16333070
[25] YAN N, TANG C, KAN R C, FENG F, YUE H. Genome analysis of a G9P[23] group A rotavirus isolated from a dog with diarrhea in China. Infection, Genetics and Evolution, 2019,70:67-71. doi: 10.1016/j. meegid.2019.02.020.
pmid: 30796978
[26] WANG Y H, PANG B B, ZHOU X, GHOSH S, TANG W F, PENG J S, HU Q, ZHOU D J, KOBAYASHI N. Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation. Infection, Genetics and Evolution, 2013, 1:103-112. doi: 10.1016/j. meegid.2013.01.016.
[27] TIMURKAN M Ö, ALKAN F. Identification of rotavirus A strains in small ruminants: first detection of G8P[1] genotypes in sheep in Turkey. Archives of Virology, 2020,165(2):425-431. doi: 10.1007/ s00705-019-04476-7.
pmid: 31828508
[28] MISHRA N, RESLAN L, EL-HUSSEINI M, RAOOF H, FINIANOS M, GUO C, THAKKAR R, INATI A, DBAIBO G, LIPKIN W I, ZARAKET H. Full genome characterization of human G3P[6] and G3P[9] rotavirus strains in Lebanon. Infection, Genetics and Evolution, 2020,78:104-133. doi: 10.1016/j.meegid.2019.104133.
[29] LI D D, DUAN Z J, ZHANG Q, LIU N, XIE Z P, JIANG B M, STEELE D, JIANG X, WANG Z S, FANG Z Y. Molecular characterization of unusual human G5P[6] rotaviruses identified in China. Journal of Clinical Virology, 2008,42(2):141-148. doi: 10. 1016/j.jcv.2007.12.013.
doi: 10.1016/j.jcv.2007.12.013 pmid: 18304868
[30] RAMANI S, ITURRIZA G M, JANA A K, KURUVILLA K A, GRAY J J, BROWN D W, KANG G. Whole genome characterization of reassortant G10P[11] strain (N155) from a neonate with symptomatic rotavirus infection: Identification of genes of human and animal rotavirus origin. Journal of Clinical Virology, 2009,45(3):237-244. doi: 10.1016/j.jcv.2009.05.003.
[31] CHEN D Y, ZHOU L, TIAN Y M, WU X, FENG L, ZHANG X P, LIU Z H, PANG S R, KANG R M, YU J F, YE Y G, WANG H N, YANG X. Genetic characterization of a novel G9P[23] rotavirus A strain identified in southwestern China with evidence of a reassortment event between human and porcine strains. Archives of Virology, 2019,164(4):1229-1232. doi: 10.1007/s00705-019-04188-y.
pmid: 30810805
[1] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[2] ZHAO JiuRan, LI ChunHui, SONG Wei, LIU XinXiang, WANG YuanDong, ZHANG RuYang, WANG JiDong, SUN Xuan, WANG XiaQing. Heterosis and Genetic Recombination Dissection of Maize Key Inbred Line Jing2416 [J]. Scientia Agricultura Sinica, 2020, 53(22): 4527-4536.
[3] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[4] CUI TianTian, YAN JianHong, BIN Yu, LI ZhongAn, ZHOU ChangYong, SONG Zhen. Construction of Citrus leaf blotch virus Infectious cDNA Clone by Yeast Homologous Recombination System [J]. Scientia Agricultura Sinica, 2018, 51(9): 1695-1705.
[5] LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun. Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives [J]. Scientia Agricultura Sinica, 2018, 51(2): 363-373.
[6] GAO Fang-luan, CHANG Fei, SHEN Jian-guo, XIE Lian-hui, ZHAN Jia-sui. Complete Genome Analysis of a PVYNTN-NW Recombinant Isolate from Yulin of China [J]. Scientia Agricultura Sinica, 2015, 48(2): 270-279.
[7] LI Ke, SHI Hong-wei, JING Chen-chen, SUN Xian-chao, ZHOU Chang-yong, QING Ling. Analysis of Genome Recombination and CP Sequence Diversity of ACLSV Apple Isolate from Shandong [J]. Scientia Agricultura Sinica, 2015, 48(14): 2857-2867.
[8] XU Miao, WU Yang, YANG Yan, XIA Li-qiu. Impact on Strain Growth and Spinosad Biosynthesis by Overexpression of Cyclic AMP Receptor Protein Gene in Saccharopolyspora spinosa [J]. Scientia Agricultura Sinica, 2014, 47(18): 3577-3587.
[9] SONG Na, DAI Qing-Qing, SONG Na, HUANG Li-Li, HAN Qing-Mei. Construction of Knockout Vector of GTP Cyclohydrolase II Gene and Mutant’s Biological Characteristics of Valsa mali [J]. Scientia Agricultura Sinica, 2014, 47(15): 2980-2989.
[10] TIAN Li-1, LIU Na-1, XU Rong-Qi-2, QU Zhi-Cai-1, LIU Qian-1. Construction of Enhanced Gene Knockout Frequency Recipient Strain by Deletion of Vdku80 in Verticillium dahliae [J]. Scientia Agricultura Sinica, 2014, 47(11): 2142-2150.
[11] SHI Biao-2, DONG Shi-Juan-1, ZHU Yu-Min-1, YU Rui-Song-1, LI Zhen-1. Advances in Study of Molecular Epidemiology of Porcine Epidemic Diarrhea Virus in China [J]. Scientia Agricultura Sinica, 2013, 46(20): 4362-4369.
[12] ZHAO Li, LIU Yong-Hong, JIAO Hai-Hong, ZHANG Zhi-Feng, LIU Jun-Feng, CHEN Yan-Zhou, WEN Ya-Qin, LIU Bo, LI Jiang-Tao, CUI Hao-Ran, CHENG Bo, ZHANG Chun-Guang. Molecular Epidemiology Study on Porcine Reproductive and Respiratory Syndrome Virus in South Xinjiang [J]. Scientia Agricultura Sinica, 2012, 45(20): 4288-4299.
[13] ZHAN Gang-ming, WANG Jian-feng, WANG Xiao-jie, HUANG Li-li, KANG Zhen-sheng. Evolution and Genetic Recombination of Physiological Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2011, 44(9): 1815-1822.
[14] LI Chen,YAN Xiao-hong,YANG Jie,YANG Qing,WEI Wen-hui
. Plant Artificial Chromosome: The Vector for the Next Generation of Genetic Engineering [J]. Scientia Agricultura Sinica, 2011, 44(4): 657-663 .
[15] ZHAO Qing, GUO Yang-Dong, XIE Hua, MA Rong-Cai, YAO Lei. Excision of Selectable Markers Based on Inducible AlcR/alcA and Cre/loxP Systems [J]. Scientia Agricultura Sinica, 2011, 44(17): 3491-3500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!