Scientia Agricultura Sinica ›› 2007, Vol. 40 ›› Issue (4): 749-756 .

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION • Previous Articles     Next Articles

Potassium Fixation and Their Affecting Factors of Three Typical Soils Under Long-Term Potassium Fertilization in China

Hui-Min ZHANG Ming-Gang XU Jia-Long LU Xiao-Gang TONG   

  1. 西北农林科技大学资源环境学院
  • Received:2006-11-13 Revised:1900-01-01 Online:2007-04-10 Published:2007-04-10
  • Contact: Ming-Gang XU

Abstract: 【Objective】Effect of long-term potassium (K) fertilization on K fixation by soils under different cropping systems and climates was studied. 【Method】Samples taken from the NP and NPK treatments in three typical soils (viz., gray desert soil, fluvo-aquic soil and purple soil) were analysed for changes in K fixation and their affecting factors by the methods of simulating in laboratory and X-ray diffraction under long-term K fertilization. 【Result】When added K ranging from 0.4 to 4.0 g/L, the K fixation capacity and K fixation rate of purple soil in which hydromica content was low decreased significantly in NPK treatment, the decline value ranging from 91 to 559 mg/kg and 14% to 23%, while decreased slightly in fluvo-aquic soil in which hydromica content was abundant, the decline value ranging from 35 to 274 mg/kg and 6% to 8%, and remained unchanged in gray desert soil in which hydromica content was very abundant in the same treatment, compared with the NP treatment, respectively. The contents of SOC, CEC and <0.002 mm clay in tree soils remained unchanged under long-term K fertilization, while the slow available K content and K+ saturation increased ranging from 11.3 to 349.9 mg/kg and 11% to 65%, respectively.【Conclusion】Long-term K fertilization arrested the transformation of hydromica into mixed-layered mica-smectite component and then K fixation capacity decreased. Besides, the increase of the slow available K content and K+ saturation induced the decrease of the K fixation capacity.

Key words: Long-term K fertilization, K fixation, Gray desert soil, Fluvo-aquic soil, Purple soil

[1] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[2] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[3] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[4] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[5] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[6] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[7] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[8] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[9] WEN YanChen,LI HaiYan,YUAN Liang,XU JiuKai,MA RongHui,LIN ZhiAn,ZHAO BingQiang. Effect of Long-Term Fertilization on Nutrient Distribution of Fluvo-Aquic Soil Profile [J]. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469.
[10] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[11] ZHOU JiXiang,ZHANG He,YANG Jing,LI GuiHua,ZHANG JianFeng. Effects of Continuous Application of Soil Amendments on Fluvo- Aquic Soil Fertility and Active Organic Carbon Components [J]. Scientia Agricultura Sinica, 2020, 53(16): 3307-3318.
[12] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[13] WANG BoHan,HUANG ShaoMin,GUO DouDou,ZHANG ShuiQing,SONG Xiao,YUE Ke,ZHANG KeKe. Phosphorus Profit and Loss and Its Effect on Inorganic Phosphorus in Fluvo-Aquic Soil Under Long-Term Located Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3842-3851.
[14] ZHANG XueLin, ZHOU YaNan, LI XiaoLi, HOU XiaoPan, AN TingTing, WANG Qun. Effects of Nitrogen Fertilizer on Crop Residue Decomposition and Nutrient Release Under Lab Incubation and Field Conditions [J]. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760.
[15] CHENG YongYi, LI ZhongYi, BAI YingYan, LIU Li . Acidification Characteristics of Purple Soil, Yellow Soil and Latosol with Electrodialysis Method [J]. Scientia Agricultura Sinica, 2018, 51(7): 1325-1333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!