Scientia Agricultura Sinica

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles    

Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed (Brassica napus L.) at Seedling Stage

CHAO ChengSheng, WANG YuQian, SHEN XinJie, DAI Jing, GU ChiMing, LI YinShui, XIE LiHua, HU XiaoJia, QIN Lu, LIAO Xing   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences /Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs
  • Received:2021-02-03 Accepted:2021-04-13 Published:2021-05-12

Abstract: 【Objective】Nitrogen (N) uptake efficiency is one of the important factor affecting crop N efficiency, investigating characteristics of efficient N uptake and transport is purpose to provide theoretical basis for improving N efficiency and yield of rapeseed varieties.【Method】To explore the mechanisms underlying high N uptake and transport in rapeseed, two rapeseed germplasms with contrasting N efficiency (N efficient germplasm ‘498’ and N inefficient germplasm ‘428’) were used in this study under normal N (9.5 mmol·L-1) and N starvation (0.475 mmol·L-1) at three different growth stages (Phenological growth stages 12, 14 and 16) in hydroponic culture. At the same time, the 15N isotope tracer technique was applied to study the uptake and transport capacity of NO3? and NH4+. Additionally, the expression level of genes (BnNPFs, BnNRT2s and BnAMTs)related to N uptake and transport in rapeseed germplasms with contrasting N efficiency were further analyzed by real-time quantitative PCR (qRT-PCR).【Result】Rapeseed germplasm ‘498’ showed superior advantages in plant growth and root development under different N concentrations, and the root morphological indexes (main root length, total root length, root surface area, root volume and lateral root number), biomass, N accumulation and N uptake efficiency were all significantly greater than those of germplasm ‘428’. 15N isotope tracer test also showed that ‘498’ showed greater advantage in the uptake and accumulation of NO3- and NH4+, especially for NH4+, as indicated by the significant differences in the accumulation of 15NH4+ between two germplasms. qRT-PCR analysis further found that under normal N conditions, the relative expressions of BnNPF6.3a, BnNRT2.1e, BnNPF7.2a, BnNPF7.2c, BnNPF6.2c, BnAMT1;2a, BnAMT1;3c, BnAMT1;4a, BnAMT2;1a and BnAMT2;1b (involved in the uptake and transport of NO3- and NH4+) was Significantly higher in ‘498’ than that in ‘428’. While under N starvation stress, the relative expressions of BnNRT2.4a、BnNRT2.5a and BnNRT2.5b (involved in NO3- uptake and transport) was significantly lower in the root of ‘498’ than that of ‘428’, but the expression level of BnNPF7.3a and BnNPF6.2c (referred to NO3- transport and redistribution) was significantly higher in ‘498’ than that in ‘428’, as well as the expression level of BnAMT1;1a、BnAMT1;2a、BnAMT1;3c、BnAMT1;4a、BnAMT2;1a and BnAMT2;1b (involved in NH4+ uptake and transport).【Conclusion】Compared with N-inefficient germplasm ‘428’, N-efficient germplasm ‘498’ were superior in root length, root surface (volume) and lateral root number, additionally with greater ability in N (especially NH4+) uptake and accumulation. Under normal N conditions, the expression of genes involved in NO3- and NH4+ absorption and transport were relatively higher in ‘498’, while the relative expression of genes involved in the NO3- transport and redistribution as well as NH4+ absorption and transport were significantly higher in ‘498’ than that in ‘428’ under N deficiency stress, illustrating the relative higher N uptake efficiency of ‘498’ possibly link to the higher expressions of several BnNPFs sand BnAMTs.

Key words: rapeseed, high nitrogen efficiency, root morphology, uptake and transport, nitrogen transporter genes

[1] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[2] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[3] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[4] YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou. Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes [J]. Scientia Agricultura Sinica, 2023, 56(18): 3500-3510.
[5] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[6] SANG ShiFei, CAO MengYu, WANG YaNan, WANG JunYi, SUN XiaoHan, ZHANG WenLing, JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[8] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[9] FANG MengYing, LU Lin, WANG QingYan, DONG XueRui, YAN Peng, DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[10] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[11] HU JiJie,ZHONG Chu,HU ZhiHua,ZHANG JunHua,CAO XiaoChuang,LIU ShouKan,JIN QianYu,ZHU LianFeng. Effects of Dissolved Oxygen Concentration on Root Growth at Tillering Stage and Nitrogen Utilization Characteristics of Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536.
[12] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[13] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[14] Bo LI,Jun SUN,XinGuang WEI,SiYu ZHENG,Dong GE,ShiNing FU. Effects of Lower Limit of Drip Irrigation on Growth, Yield and Root Distribution of Greenhouse Grapes [J]. Scientia Agricultura Sinica, 2020, 53(7): 1432-1443.
[15] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!