Scientia Agricultura Sinica

Previous Articles    

Isolation and Genotyping of Mycobacterium avium subsp. paratuberculosis from Sheep in Inner Mongolia #br#

ZHAO WeiHong12, HAN WenXiong3, YANG Bo4,MENG WeiKang12, CHAI HaiLiang12, MA YiMin12, ZHANG ZhanSheng12 WANG LiFeng12, WANG Yan12, WANG MingYuan12, ZHANG Shan12, DING YuLin12, WANG JinLing12, JIRINTAI Sulijid12, WANG FengLong12, ZHAO Li12*, LIU YongHong12* #br#   

  1. 1 College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010000, Inner Mongolia; 2 Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010000, Inner Mongolia; 3 Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd., Hohhot, 011517, Inner Mongolia; 4 Animal Disease Control Center of Ordos, Ordos 017000, Inner Mongolia 
  • Published:2022-10-09

Abstract: 【Objective Paratuberculosis is listed in the must-report at the list of OIE diseases, infections and Invasion by the World Organization for Animal Health (OIE). It is classified as the second kind of animal disease in China. It causes chronic and proliferative enteritis in many ruminants. Infected animals become a continuous source of infection in farms through intestinal intermittent excretion, which has brought great economic losses to aquaculture. The pathogen of Mycobacterium avium subsp. paratuberculosis (MAP) belongs to intracellular parasitic Gram-positive bacteria, and is a third group of zoological pathogenic microorganisms, including type C (also designated as type II) and type S. Type C also includes type B. Type S can be further subdivided into sub-group types I and III. And sub-lineages of camelid isolates Studies have shown that each subtype of MAP has no host specificity, but is regional. Inner Mongolia is the first region of the disease in China. It is of great significance to obtain and accurately identify the subtype and genetic characteristics of MAP strains in Inner Mongolia for the prevention and control of paratuberculosis. Method 28 MAP-positive sheep disease samples collected in Inner Mongolia were isolated and cultured by MAP, and the colonies were stained with Ziehl-Neelsen. The positive bacteria were propagated and the genomic DNA was extracted. IS900 gene, IS1311 gene and DMC gene were amplified, sequenced and analyzed. The PCR products of IS1311 gene were identified by Hinf I and Mse I double digestion. Result 28 samples were cultured for 7 - 12 weeks, a total of 9 mediums grew colonies, the colonies were translucent milky white, smooth surface. Single colonies were selected for acid-fast staining, and irregular (single or branched), red-stained Brevibacterium was observed under the microscope, which was consistent with the morphological characteristics and acid-fast staining characteristics of Mycobacterium. The PCR products of IS900, IS1311 and DMC genes of 9 isolates were consistent with the expected size of the target gene fragment. 9 isolates were identified as MAP strains, named MAP-NM1 to MAP-NM9. DMC gene amplification product size of 310bp, consistent with type II MAP characteristics. IS1311 gene amplification products were digested by Hinf I and Mse I restriction endonucleases, and 4 target bands were obtained in 9 strains of MAP, which were consistent with type II MAP. The sequencing results of IS1311 gene and the analysis of MAP representative strains of type I, type II, type III, Indian Buffalo and American Buffalo showed that the nucleotide sites at positions 64, 65, 68, 223, 236, 422, 527 and 628 of the nine MAP IS1311 gene fragments conformed to the characteristics of type C and type B MAP. Sequence analysis of IS900 gene sequencing results showed that the 169th and 216th nucleotides of the nine MAP IS900 gene fragments were C (cytosine) and A (adenine), and accord with Type II and type III MAP. The phylogenetic tree of 17 MAP IS900 gene reference sequences from GenBank database with 9 isolates in this study showed that the 9 isolates in this study were all in the type II MAP branch. Blast online analysis was performed on the sequencing results of the three genes. The reference sequences with the highest homology with the isolates obtained in this study were all type II MAP, and the homology was higher than 98%. In conclusion, all the 9 MAP isolates were type II MAP. Conclusion To the best of our knowledge, this is the first isolate of the MAP type Ⅱ strains in sheep in Inner Mongolia. 


Key words: Mycobacterium avium , subsp. , paratuberculosis,  , isolated, typing,  , sheep,  , Inner Mongolia

[1] ZHANG YingXin, YANG Min, BAI XueBing, CHEN Chang, WU RuiZhi, YANG Ping, CHEN QiuSheng. Morphological Characteristics of Telocytes at Sheep Acupoints and Its Relationship with Surrounding Structures [J]. Scientia Agricultura Sinica, 2023, 56(7): 1417-1428.
[2] ZHAO WeiHong, HAN WenXiong, YANG Bo, MENG WeiKang, CHAI HaiLiang, MA YiMin, ZHANG ZhanSheng, WANG LiFeng, WANG Yan, WANG MingYuan, ZHANG Shan, DING YuLin, WANG JinLing, JIRINTAI Sulijid, WANG FengLong, ZHAO Li, LIU YongHong. Isolation and Genotyping of Mycobacterium avium subsp. paratuberculosis from Sheep in Inner Mongolia [J]. Scientia Agricultura Sinica, 2023, 56(6): 1204-1214.
[3] REN GuoDong, HAO XiaoYan, ZHANG XuanZi, LIU Sen, ZHANG HongXiang, TIAN GuangYuan, ZHANG JianXin. Effects of Guanidinoacetic Acid and Betaine Supplementation on Growth Performance, Rumen Fermentation and Blood Metabolites in Lambs [J]. Scientia Agricultura Sinica, 2023, 56(4): 766-778.
[4] GUO ZeYuan, DU ZhangSheng, ZHANG YaQi, CHEN ChunLu, MA XiaoYan, CHENG Ying, WANG Kai, LÜ LiHua. Effects of Smad7-Mediated TGF-β Signaling Pathway on Proliferation of Sheep Granulosa Cells [J]. Scientia Agricultura Sinica, 2023, 56(13): 2597-2608.
[5] AYIMUGULI Abudureyimu, ZHANG Chen, CAI Yong, QIN Sheng, LUO WenXue, ZHAXIYINGPAI. The Micro-Structure of Tibetan Sheep Lung and Its HIF-1α and AQP1 Expression Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2202-2211.
[6] LI Qi, YANG ChangHeng, WANG Yong, LIN YaQiu, XIANG Hua, ZHU JiangJiang. Role of FATP1 in Promoting Lipid Deposition in Goat Intramuscular Adipocytes [J]. Scientia Agricultura Sinica, 2023, 56(10): 2007-2020.
[7] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[8] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[9] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[10] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[11] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[12] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[13] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[14] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[15] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!