Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (10): 2007-2020.doi: 10.3864/j.issn.0578-1752.2023.10.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Role of FATP1 in Promoting Lipid Deposition in Goat Intramuscular Adipocytes

LI Qi1(), YANG ChangHeng1, WANG Yong1, LIN YaQiu1,2, XIANG Hua2(), ZHU JiangJiang1,2()   

  1. 1 Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province/Southwest Minzu University, Chengdu 610041
    2 Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education/Southwest Minzu University, Chengdu 610041
  • Received:2021-12-02 Accepted:2022-10-31 Online:2023-05-16 Published:2023-05-17

Abstract:

【Background】Fatty acid transporter 1 (FATP1) can promote the uptake of fatty acids in mammals. This process is very important to maintain the balance of lipid metabolism, and also has an important impact on the meat quality of livestock.【Objective】The aim of this study was to obtain the CDS sequence of goat FATP1 gene, to detect the expression of FATP1 gene in different tissues of goats, and to explore its effect on lipid metabolism of goat intramuscular adipocytes, so as to provide a reference for further revealing the mechanism of FATP1 gene in goat lipid metabolism, which can provide a theoretical basis for genetic and breeding improvement of goats.【Method】The CDS of goat FATP1 gene was cloned by real-time fluorescence quantitative PCR (RT-PCR), its biological characteristics, such as hydrophobicity, transmembrane region and signal peptide, were analyzed by online tools, and its amino acid sequence phylogenetic tree was constructed. The expression level of FATP1 gene in different goat tissues was detected by RT-qPCR and its tissue expression pattern was constructed. The constructed eukaryotic expression vector and screened siRNA were used to overexpress and interfere with FATP1 in goat intramuscular adipocytes, the effects of FATP1 gene overexpression and interference on lipid deposition in goat intramuscular adipocytes were detected by oil red O staining and triglyceride determination, and the effects of FATP1 gene overexpression and interference on the expression of genes related to lipid metabolism were further explored by RT-qPCR.【Result】The CDS of FATP1 gene was 1 941 bp, encoding 646 amino acids residues. It was predicted that its molecular formula was C3196H5026N884O898S25, and the protein was a basic hydrophobic stable protein. Phylogenetic tree analysis of amino acid sequence showed that goat FATP1 was closely related to sheep. RT-qPCR showed that the expression of FATP1 gene was the highest in goat small intestine. Oil red O staining and triglyceride determination showed that the number of lipid droplets and triglyceride content in goat intramuscular adipocytes increased after overexpression of FATP1, but the opposite results were obtained after interference with FATP1. After overexpression of FATP1 in goat adipocytes, the expression levels of fatty acid synthesis, transport and other related genes AGPAT6(P<0.01), PLIN1(P<0.01), DGAT2(P<0.01), FADS2(P<0.01), FADS1(P<0.01), ACSL1(P<0.01) and ELOVL3 (P<0.05) increased significantly, while the expression level of lipolysis related genes ACOX1 (P<0.01) decreased significantly. After interfering FATP1, the expression of fatty acid transport, elongation and other related genes SCD5 (P<0.01), FABP3 (P<0.01) and ELOVL3 (P<0.05) decreased significantly, and the expression of lipolysis related genes ACOX1 (P<0.01) and CPT1B (P<0.05) increased significantly.【Conclusion】FATP1 might significantly promote the lipid deposition of goat intramuscular precursor adipocytes by promoting the expression of genes related to cell lipid production and reducing the expression of genes related to lipolysis, which provided an experimental reference for further revealing the role and molecular mechanism of FATP1 gene in regulating lipid metabolism.

Key words: goat, FATP1, intramuscular adipocytes, lipid deposition

Table 1

Cloning primers of CDS of FATP1"

基因
Gene
序列
Sequence (5′-3′)
退火温度
Tm (℃)
产物长度
Products length (bp)
用途
Purpose
FATP1 S: CAAAGCCTGAGGATCTGTGAG 64-55 2078 克隆
Clone
A: GGAGTCTTGGGCCAACACA
FATP1 S: CCCAAGCTTGCCACCATGGATTACAAGGAT′
GACGACGATAAGCGGGCTCCAGGTGCAGGT
66-56 1980 亚克隆
Subclone
A: CGCGGATCCTCAGAGGGCGAAGGCGCCTGA
S:正义链引物;A:反义链引物。斜体为保护碱基, 为酶切位点, 为kozak序列, 为Flag标签序列
S: Sense primer; A: Antisense primer. Italics are protective bases, enzyme digestion sites, Kozak sequences, Flag tag sequences

Table 2

Primers for quantitative real-time PCR (RT-qPCR)"

基因
Gene
全称
Full name
序列
Sequence (5′-3′)
退火温度
Tm (℃)
产物长度
Products length (bp)
基因登录号
Genbank ID
FATP1 Fatty acid transport protein 1 S: ACCACTCGGCAGGGAACATC 60 108 本试验所得序列
The sequence obtained in this experiment
A: TGACGCAATCATCCCAGAAGC
ACSL1 Acyl-CoA synthetase long-chain family member 1 S: TGACTGTTGCTGGAGACTGG 60 199 XM_005698718
A: CAGCCGTCTTTATCCAGAGC
ACSS2 Acyl-CoA synthetase short-chain family member 2 S: GGCGAATGCCTCTACTGCTT 60 100 XM_018057751
A: GGCCAATCTTTTCTCTAATCTGCTT
FABP3 Fatty acid binding protein 3 S: GATGAGACCACGGCAGATG 60 120 NM_001285701
A: GTCAACTATTTCCCGCACAAG
SCD1 Stearoyl-CoA desaturase 1 S: CCATCGCCTGTGGAGTCAC 60 256 NM_001285619
A: GTCGGATAAATCTAGCGTAGCA
SCD5 Stearoyl-CoA desaturase 5 S: CTGCTCTGGGCCTATTTCTG 60 165 XM_018049650
A: CCTCGACCACTCGAAGATGT
FADS1 Fatty acid desaturase 1 S: GGTGGACTTGGCCTGGATG 60 101 XM_018043055
A: TGACCATGAAGACAAGCCCC
FADS2 Fatty acid desaturase 2 S: GCCTGTAGGCTCAGATGTTTGTTC 60 101 XM_018043056
A: TGCCTGGCAGTAACAGAGCAC
ELOVL3 ELOVL fatty acid elongase 3 S: CTGTCGGTATCCTGGCTTAT 55 151 XM_005698356
A: GCTTTGATCTTGGGAATTATGT
ELOVL6 ELOVL fatty acid elongase 6 S: GGAAGCCTTTAGTGCTCTGGTC 60 205 NM_001314257
A: ATTGTATCTCCTAGTTCGGGTGC
GPAM Glycerol-3-phosphate acyltransferase, mitochondrial S: GCAGGTTTATCCAGTATGGCATT 60 64 XM_013975269
A: GGACTGATATCTTCCTGATCATCTTG
AGPAT6 1-acylglycerol-3-phosphate O-acyltransferase 6 A: AAGCAAGTTGCCCATCCTCA 60 101 JI861797.1
S: AAACTGTGGCTCCAATTTCGA
LPIN1 Perilipin 1 S: CCCATTGCCAGCACTTCAGA 60 95 XM_018066570
A: GCAGCGTACTCGGCAGTATCTC
DGAT1 Diacylglycerol O-acyltransferase 1 S: CCACTGGGACCTGAGGTGTC 60 101 XM_018058728
A: GCATCACCACACACCAATTCA
DGAT2 Diacylglycerol O-acyltransferase 2 S: CATGTACACATTCTGCACCGATT 60 100 NM_001314305
A: TGACCTCCTGCCACCTTTCT
ATGL Adipose triglyceride lipase S: GGAGCTTATCCAGGCCAATG 60 180 NM_001285739
A: TGCGGGCAGATGTCACTCT
HSL Hormone-sensitive lipase S: TGCCCAAGACAGAGCCAATG 60 181 EU273879.1
A: GCGGAGGAGCCGAGTATCT
ACOX1 Acyl-CoA oxidase 1 S: CGAGTTCATTCTCAACAGTCCT 60 245 XM_018063771
A: GCATCTTCAAGTAGCCATTATCC
CPT1A Carnitine palmitoyl transferase 1A S: TGACGGCTCTGGCACAAGAT 60 164 XM_018043311
A: CGCGAAGTAGTTGCTATTCAC
CPT1B Carnitine palmitoyl transferase 1B S: ACGAGGAGTCTCACCACTACG 60 111 XM_018048994
A: GTGTGAAGGACTTGTCGAACCA
UXT Ubiquitously expressed transcript S: GCAAGTGGATTTGGGCTGTAAC 60 180 XM_005700842
A: ATGGAGTCCTTGGTGAGGTTGT

Table 3

siRNA sequences"

基因 Gene 序列 Sequence (5′-3′)
siRNA-NC UUCUCCGAACGUGUCACGUTT
ACGUGACACGUUCGGAGAATT
siRNA-FATP1-1 GGGUCAGUGUCUCAUCUAUTT
AUAGAUGAGACACUGACCCTT
siRNA-FATP1-2 GUGCCACGAACAAGAAGAUTT
AUCUUCUUGUUCGUGGCACTT
siRNA-FATP1-3 CAGGCACCUUCAAGAUUCATT
UGAAUCUUGAAGGUGCCUGTT

Fig. 1

PCR amplification of goat FATP1"

Fig. 2

Hydrophobic, transmembrane structure and signal peptide of FATP1 protein A: The prediction of hydrophobicity of FATP1 protein. B: The prediction of transmembrane structure of FATP1 protein. C: The prediction of protein signal peptide of FATP1 protein"

Fig. 3

The secondary structure, interacting proteins and phylogenetic tree of FATP1 protein A: The prediction of secondary structure of FATPT1 protein (The blue line is α- helix, red line β- sheet, the purple line is random curl, and the green line is β- turn); B: The prediction of proteins interacting with goat FATP1 protein; C: The phylogenetic trees of goat FATP1 amino acid sequence"

Fig. 4

Predicted tertiary structure of the FATP1 protein A: The predicted tertiary structure of the goat FATP1 protein; B: The predicted tertiary structure of the sheep FATP1 protein; C: The predicted tertiary structure of the cattle FATP1 protein"

Fig. 5

Detection of tissue expression, overexpression and interference efficiency of FATP1 A: Identification of recombinant plasmid pcDNA3.1-FATP1 by enzyme digestion (Lane 1 is Marker DL5000, Lane 2 is pcDNA3.1, Lane 3 is recombinant pcDNA3.1-FATP1, and Lane 4 is Marker III). B: Expression levels of goat FATP1 in different tissues (Significant differences (P<0.05) were expressed in different lowercase letters; the difference is very significant (P<0.01) expressed in different capital letters; the difference is not significant (P<0.05) expressed in the same letter). C: Overexpression efficiency of FATP1 in cells. D: Interference efficiency of FATP1 in cells (* means significant at 0.05 level, * * means significant at 0.01 level, * * * means significant at 0.001 level)"

Fig. 6

Effects of FATP1 overexpression on lipid deposition and gene expression related to lipid metabolism in goat intramuscular preadipocytes A and B: Oil red O staining of cells in control group (pcDNA3.1) and overexpression group (FATP1 OVER); C: Oil red O staining OD value detection (490nm); D: Determination of cellular triglyceride content; E: Detection of genes related to triglyceride synthesis; F: Detection of genes related to fatty acid desaturation and prolongation; G: Detection of fatty acid degradation related genes; H: Detection of fatty acid transport related genes"

Fig. 7

Effects of FATP1 interference on lipid deposition and gene expression related to lipid metabolism in goat intramuscular preadipocytes A and B: Oil red O staining of cells in control group (si-NC) and overexpression group (FATP1-1); C: Oil red O staining OD value detection (490nm); D: Determination of cellular triglyceride content; E: Detection of genes related to fatty acid desaturation and prolongation; F: Detection of fatty acid transport related genes; G: Detection of genes related to triglyceride synthesis; H: Detection of fatty acid degradation related genes"

[1]
STEFAN N, SCHICK F, HÄRING H U. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metabolism, 2017, 26(2): 292-300.

doi: S1550-4131(17)30429-1 pmid: 28768170
[2]
张龙, 朱方俊, 王彦, 兰茜, 吕荣平, 刘益平, 朱庆. 鸡FATP1基因多态性与屠体性状的相关分析. 中国农业科学, 2009, 42(9): 3272-3278.

doi: 10.3864/j.issn.0578-1752.2009.09.033
ZHANG L, ZHU F J, WANG Y, LAN X, R P, LIU Y P, ZHU Q. Correlation analysis between FATP1 gene polymorphism and carcass traits in chicken. Scientia Agricultura Sinica, 2009, 42(9): 3272-3278. (in Chinese)
[3]
华绪川, 张立凡, 蔡兆伟, 蒋晓玲, 徐宁迎, 张金枝. 猪FATP1基因5’调控区多态性及其与脂肪性状的相关分析. 江苏农业学报, 2011, 27(1): 89-93.
HUA X C, ZHANG L F, CAI Z W, JIANG X L, XU N Y, ZHANG J Z. Polymorphism in 5’regulatory region of Porcine FATP1 gene and its association with fat traits. Jiangsu Journal of Agricultural Sciences, 2011, 27(1): 89-93. (in Chinese)
[4]
黄业传, 贺稚非, 李洪军, 秦刚, 王庭, 马明辉. 皮下脂肪和肌内脂肪对猪肉风味的作用. 中国农业科学, 2011, 44(10): 2118-2130. doi:10.3864/j.issn.0578-1752.2011.10.017.

doi: 10.3864/j.issn.0578-1752.2011.10.017
HUANG Y C, HE Z F, LI H J, QIN G, WANG T, MA M H. The flavor contribution of subcutaneous and intramuscular fat to pork. Scientia Agricultura Sinica, 2011, 44(10): 2118-2130. doi:10.3864/j.issn.0578-1752.2011.10.017. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2011.10.017
[5]
STAHL A, EVANS J G, PATTEL S, HIRSCH D, LODISH H F. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Developmental Cell, 2002, 2(4): 477-488.

pmid: 11970897
[6]
GIMENO R E. Fatty acid transport proteins. Current Opinion in Lipidology, 2007, 18(3): 271-276.

pmid: 17495600
[7]
KAZANTZIS M, STAHL A. Fatty acid transport proteins, implications in physiology and disease. Biochimica et Biophysica Acta, 2012, 1821(5): 852-857.

doi: 10.1016/j.bbalip.2011.09.010 pmid: 21979150
[8]
POHL J, RING A, HERMANN T, STREMMEL W. Role of FATP in parenchymal cell fatty acid uptake. Biochimica et Biophysica Acta, 2004, 1686(1/2): 1-6.
[9]
WU Q W, ORTEGON A M, TSANG B, DOEGE H, FEINGOLD K R, STAHL A. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Molecular and Cellular Biology, 2006, 26(9): 3455-3467.

doi: 10.1128/MCB.26.9.3455-3467.2006 pmid: 16611988
[10]
SCHAFFER J E, LODISH H F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 1994, 79(3): 427-436.

doi: 10.1016/0092-8674(94)90252-6 pmid: 7954810
[11]
GUITART M, OSORIO-CONLES O, PENTINAT T, CEBRIÀ J, GARCÍA-VILLORIA J, SALA D, SEBASTIÁN D, ZORZANO A, RIBES A, JIMÉNEZ-CHILLARÓN J C, GARCÍA-MARTÍNEZ C, GÓMEZ-FOIX A M. Fatty acid transport protein 1 (FATP1) localizes in mitochondria in mouse skeletal muscle and regulates lipid and ketone body disposal. PLoS ONE, 2014, 9(5): e98109.

doi: 10.1371/journal.pone.0098109
[12]
ORDOVÁS L, ROY R, ZARAGOZA P, RODELLAR C. Structural and functional characterization of the bovine solute carrier family 27 member 1 (SLC27A1) gene. Cytogenetic and Genome Research, 2006, 115(2): 115-122.

pmid: 17065791
[13]
LEWIS S E, LISTENBERGER L L, ORY D S, SCHAFFER J E. Membrane topology of the murine fatty acid transport protein 1. Journal of Biological Chemistry, 2001, 276(40): 37042-37050.

doi: 10.1074/jbc.M105556200 pmid: 11470793
[14]
CHEN X L, LUO Y L, WANG R S, ZHOU B, HUANG Z Q, JIA G, ZHAO H, LIU G M. Effects of fatty acid transport protein 1 on proliferation and differentiation of porcine intramuscular preadipocytes. Animal Science Journal, 2017, 88(5): 731-738.

doi: 10.1111/asj.12701 pmid: 27616431
[15]
WANG H, WANG J, YANG D D, LIU Z L, ZENG Y Q, CHEN W. Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in Laiwu pigs. Asian-Australasian Journal of Animal Sciences, 2020, 33(3): 390-397.

doi: 10.5713/ajas.18.0225 pmid: 31480195
[16]
COE N R, SMITH A J, FROHNERT B I, WATKINS P A, BERNLOHR D A. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. Journal of Biological Chemistry, 1999, 274(51): 36300-36304.

doi: 10.1074/jbc.274.51.36300 pmid: 10593920
[17]
HALL A M, SMITH A J, BERNLOHR D A. Characterization of the acyl-CoA synthetase activity of purified murine fatty acid transport protein 1. Journal of Biological Chemistry, 2003, 278(44): 43008-43013.

doi: 10.1074/jbc.M306575200 pmid: 12937175
[18]
HALL A M, WICZER B M, HERRMANN T, STREMMEL W, BERNLOHR D A. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. Journal of Biological Chemistry, 2005, 280(12): 11948-11954.

doi: 10.1074/jbc.M412629200 pmid: 15653672
[19]
HEATHER L C, COLE M A, LYGATE C A, EVANS R D, STUCKEY D J, MURRAY A J, NEUBAUER S, CLARKE K. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovascular Research, 2006, 72(3): 430-437.

doi: 10.1016/j.cardiores.2006.08.020 pmid: 17034771
[20]
ZHANG M M, DI MARTINO J S, BOWMAN R L, CAMPBELL N R, BAKSH S C, SIMON-VERMOT T, KIM I S, HALDEMAN P, MONDAL C, YONG-GONZALES V, ABU-AKEEL M, MERGHOUB T, JONES D R, ZHU X G, ARORA A, ARIYAN C E, BIRSOY K, WOLCHOK J D, PANAGEAS K S, HOLLMANN T, BRAVO-CORDERO J J, WHITE R M. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discovery, 2018, 8(8): 1006-1025.

doi: 10.1158/2159-8290.CD-17-1371 pmid: 29903879
[21]
ZHAN T Z, POPPELREUTHER M, EHEHALT R, FÜLLEKRUG J. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS ONE, 2012, 7(9): e45087.

doi: 10.1371/journal.pone.0045087
[22]
STAHL A. A current review of fatty acid transport proteins (SLC27). Pflügers Archiv, 2004, 447(5): 722-727.

doi: 10.1007/s00424-003-1106-z
[23]
DOEGE H, STAHL A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda, Md), 2006, 21: 259-268.
[24]
STEFANYK L E, BONEN A, DYCK D J. Insulin and contraction- induced movement of fatty acid transport proteins to skeletal muscle transverse-tubules is distinctly different than to the sarcolemma. Metabolism, 2012, 61(11): 1518-1522.

doi: 10.1016/j.metabol.2012.04.002
[25]
WICZER B M, LOBO S, MACHEN G L, GRAVES L M, BERNLOHR D A. FATP1 mediates fatty acid-induced activation of AMPK in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2009, 387(2): 234-238.

doi: 10.1016/j.bbrc.2009.06.114 pmid: 19560442
[26]
GARCÍA-MARTÍNEZ C, MAROTTA M, MOORE-CARRASCO R, GUITART M, CAMPS M, BUSQUETS S, MONTELL E, GÓMEZ-FOIX A M. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. American Journal of Physiology Cell Physiology, 2005, 288(6): C1264-C1272.

doi: 10.1152/ajpcell.00271.2004
[27]
KIM J K, GIMENO R E, HIGASHIMORI T, KIM H J, CHOI H, PUNREDDY S, MOZELL R L, TAN G, STRICKER-KRONGRAD A, HIRSCH D J, FILLMORE J J, LIU Z X, DONG J Y, CLINE G, STAHL A, LODISH H F, SHULMAN G I. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. The Journal of Clinical Investigation, 2004, 113(5): 756-763.

doi: 10.1172/JCI200418917
[28]
池永东, 王永, 胡萌, 何小芳, 朱江江, 赵越, 林亚秋. 山羊不同组织器官的内参基因筛选. 基因组学与应用生物学, 2020, 39(2): 561-567.
CHI Y D, WANG Y, HU M, HE X F, ZHU J J, ZHAO Y, LIN Y Q. Screening of internal reference genes in different tissues and organs of goats. Genomics and Applied Biology, 2020, 39(2): 561-567. (in Chinese)
[29]
许晴, 林森, 朱江江, 王永, 林亚秋. 山羊肌内前体脂肪细胞诱导分化过程中内参基因的表达稳定性分析. 畜牧兽医学报, 2018, 49(5): 907-918.
XU Q, LIN S, ZHU J J, WANG Y, LIN Y Q. The expression stability analysis of reference genes in the process of goat intramuscular preadipocytes differentiation in goat. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(5): 907-918. (in Chinese)
[30]
蔡勇, 阿依木古丽, 臧荣鑫, 刘翊中, 杨具田, 乔自林, 曹忻, 徐红伟, 吴建平. 不同冻存保护剂对绵羊前体脂肪细胞冻存效果的影响. 中国农业科学, 2012, 45(7): 1439-1446.

doi: 10.3864/j.issn.0578-1752.2012.07.024
CAI Y, AYIMUGULI, ZANG R X, LIU Y Z, YANG J T, QIAO Z L, CAO X, XU H W, WU J P. Effects of different cryoprotectants on ovine preadipocytes cryopreservation. Scientia Agricultura Sinica, 2012, 45(7): 1439-1446. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.07.024
[31]
HATCH G M, SMITH A J, XU F Y, HALL A M, BERNLOHR D A. FATP1 channels exogenous FA into 1, 2, 3-triacyl-sn-glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. Journal of Lipid Research, 2002, 43(9): 1380-1389.

doi: 10.1194/jlr.M200130-JLR200
[32]
WU Q W, KAZANTZIS M, DOEGE H, ORTEGON A M, TSANG B, FALCON A, STAHL A. Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes, 2006, 55(12): 3229-3237.

pmid: 17130465
[33]
QI R L, LONG D B, WANG J, WANG Q, HUANG X F, CAO C T, GAO G L, HUANG J X. MicroRNA-199a targets the fatty acid transport protein 1 gene and inhibits the adipogenic trans- differentiation of C2C12 myoblasts. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2016, 39(3): 1087-1097.

doi: 10.1159/000447817
[34]
DIRUSSO C C, LI H, DARWIS D, WATKINS P A, BERGER J, BLACK P N. Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast. Journal of Biological Chemistry, 2005, 280(17): 16829-16837.

doi: 10.1074/jbc.M409598200 pmid: 15699031
[35]
LOBO S, WICZER B M, SMITH A J, HALL A M, BERNLOHR D A. Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4. Journal of Lipid Research, 2007, 48(3): 609-620.

doi: 10.1194/jlr.M600441-JLR200 pmid: 17164224
[36]
QIU F F, XIE L, MA J G, LUO W, ZHANG L, CHAO Z, CHEN S H, NIE Q H, LIN Z M, ZHANG X Q. Lower expression of SLC27A1 enhances intramuscular fat deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. Frontiers in Physiology, 2017, 8: 449.

doi: 10.3389/fphys.2017.00449
[37]
NICKERSON J G, ALKHATEEB H, BENTON C R, LALLY J, NICKERSON J, HAN X X, WILSON M H, JAIN S S, SNOOK L A, GLATZ J F C, CHABOWSKI A, LUIKEN J J F P, BONEN A. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. Journal of Biological Chemistry, 2009, 284(24): 16522-16530.

doi: 10.1074/jbc.M109.004788 pmid: 19380575
[38]
SEBASTIÁN D, GUITART M, GARCÍA-MARTÍNEZ C, MAUVEZIN C, ORELLANA-GAVALDÀ J M, SERRA D, GÓMEZ-FOIX A M, HEGARDT F G, ASINS G. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. Journal of Lipid Research, 2009, 50(9): 1789-1799.

doi: 10.1194/jlr.M800535-JLR200 pmid: 19429947
[39]
CHIU H C, KOVACS A, BLANTON R M, HAN X L, COURTOIS M, WEINHEIMER C J, YAMADA K A, BRUNET S, XU H D, NERBONNE J M, WELCH M J, FETTIG N M, SHARP T L, SAMBANDAM N, OLSON K M, ORY D S, SCHAFFER J E. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circulation Research, 2005, 96(2): 225-233.

doi: 10.1161/01.RES.0000154079.20681.B9
[40]
HUANG J P, ZHU R R, SHI D S. The role of FATP1 in lipid accumulation: a review. Molecular and Cellular Biochemistry, 2021, 476(4): 1897-1903.

doi: 10.1007/s11010-021-04057-w pmid: 33486652
[41]
HOLLOWAY G P, CHOU C J, LALLY J, STELLINGWERFF T, MAHER A C, GAVRILOVA O, HALUZIK M, ALKHATEEB H, REITMAN M L, BONEN A. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Diabetologia, 2011, 54(6): 1457-1467.

doi: 10.1007/s00125-011-2114-8 pmid: 21442160
[42]
FROHNERT B I, HUI T Y, BERNLOHR D A. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. Journal of Biological Chemistry, 1999, 274(7): 3970-3977.

doi: 10.1074/jbc.274.7.3970 pmid: 9933587
[43]
YE G Z, GAO H, WANG Z C, LIN Y, LIAO X, ZHANG H, CHI Y L, ZHU H M, DONG S J. PPARα and PPARγ activation attenuates total free fatty acid and triglyceride accumulation in macrophages via the inhibition of Fatp1 expression. Cell Death & Disease, 2019, 10: 39.
[44]
CHOI H, KIM S J, PARK S S, CHANG C, KIM E. TR4 activates FATP1 gene expression to promote lipid accumulation in 3T3-L1 adipocytes. FEBS Letters, 2011, 585(17): 2763-2767.

doi: 10.1016/j.febslet.2011.08.002
[45]
PROSDOCIMO D A, ANAND P, LIAO X D, ZHU H, SHELKAY S, ARTERO-CALDERON P, ZHANG L L, KIRSH J, MOORE D, ROSCA M G, VAZQUEZ E, KERNER J, AKAT K M, WILLIAMS Z, ZHAO J H, FUJIOKA H, TUSCHL T, BAI X D, SCHULZE P C, HOPPEL C L, JAIN M K, HALDAR S M. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. Journal of Biological Chemistry, 2014, 289(9): 5914-5924.

doi: 10.1074/jbc.M113.531384 pmid: 24407292
[46]
ZHAO Z D, TIAN H S, SHI B G, JIANG Y Y, LIU X, HU J. Transcriptional regulation of the bovine fatty acid transport protein 1 gene by Krüppel-like factors 15. Animals: an Open Access Journal from MDPI, 2019, 9(9): 654.
[47]
朱江江, 林亚秋, 王永, 林森. 山羊Kruppel样转录因子家族在前体脂肪细胞分化中的表达模式及相关性分析. 中国农业科学, 2019, 52(13): 2341-2351. doi:10.3864/j.issn.0578-1752.2019.13.012.

doi: 10.3864/j.issn.0578-1752.2019.13.012
ZHU J J, LIN Y Q, WANG Y, LIN S. Expression profile and correlations of kruppel like factors during caprine(Capra hircus) preadipocyte differentiation. Scientia Agricultura Sinica, 2019, 52(13): 2341-2351. doi:10.3864/j.issn.0578-1752.2019.13.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.13.012
[48]
MAK H Y. Lipid droplets as fat storage organelles in Caenorhabditis elegans: thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. Journal of Lipid Research, 2012, 53(1): 28-33.

doi: 10.1194/jlr.R021006
[49]
XU N Y, ZHANG S O, COLE R A, MCKINNEY S A, GUO F L, HAAS J T, BOBBA S, FARESE R V Jr, MAK H Y. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. The Journal of Cell Biology, 2012, 198(5): 895-911.

doi: 10.1083/jcb.201201139
[1] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[2] DU Yu,WANG Yong,MENG QingYong,ZHU JiangJiang,LIN YaQiu. Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(1): 184-196.
[3] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[4] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[5] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[6] GU MingHui,LIU YongFeng,SHEN Qian,QIAO ChunYan. Improving Quality and Delaying Oxidation in Goat Meat Refrigeration by Polyphenols from Thinned Young Kiwifruit [J]. Scientia Agricultura Sinica, 2020, 53(8): 1643-1654.
[7] ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605.
[8] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[9] QU XingMei,XUE FuLai,HUANG XiaoYu,ZHANG Yu,XING XiaoNan,ZHANG EnPing. Effects of Weaning Age and Dietary Nutritional Levels on Intestinal Morphology and Activity of Digestive Enzymes in 6-Month-Old Shaanbei White Cashmere Goats [J]. Scientia Agricultura Sinica, 2019, 52(19): 3460-3470.
[10] LIU Yuan,LI WenYang,WU XianFeng,HUANG QinLou,GAO ChengFang,CHEN XinZhu,ZHANG XiaoPei. Transcriptome Analysis of Differentially Gene Expression Associated with longissimus doris Tissue in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(14): 2525-2537.
[11] ZHU JiangJiang,LIN YaQiu,WANG Yong,LIN Sen. Expression Profile and Correlations of Kruppel Like Factors During Caprine (Capra Hircus) Preadipocyte Differentiation [J]. Scientia Agricultura Sinica, 2019, 52(13): 2341-2351.
[12] LI WenYang,LIU Yuan,WU XianFeng,GAO ChengFang,HUANG QinLou. Transcriptome Analysis of Differentially Gene Expression Associated with Ovary Tissue During the Follicular Stage in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(12): 2171-2182.
[13] ZHANG JiWei,GAO Kun,ZHANG YingJie,LIU YueQin,DUAN ChunHui. Effects of Diets with Energy-to-Nitrogen Rations on Growth Performance and Nutrients Apparent Digestibility in Growing Yanshan Cashmere Goat [J]. Scientia Agricultura Sinica, 2019, 52(1): 154-165.
[14] SUI MengHua, ZHENG Qi, WU Hao, DING JianPing, LIU Yong, LI WenYong, CHU MingXing, ZHANG ZiJun, LING YingHui. Isolation, Culture and Myogenic Differentiation of Muscle Stem Cells in Goat Fetal [J]. Scientia Agricultura Sinica, 2018, 51(8): 1590-1597.
[15] LI JinPeng,WANG GuoJun,ZHAO Tian,ZHOU GuangChen,YANG YuXin. Effects of Temperature and Relative Humidity on the Growth Performance and Blood Index of Goats [J]. Scientia Agricultura Sinica, 2018, 51(23): 4556-4574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!