Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1779-1793.doi: 10.3864/j.issn.0578-1752.2024.09.012

• HORTICULTURE • Previous Articles     Next Articles

Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing

QI RenJie1,2(), NING Yu3(), LIU Jing3, LIU ZhiYang3, XU Hai3, LUO ZhiDan1,2(), CHEN LongZheng3()   

  1. 1 College of Pharmacy/Jiangsu Key Laboratory of Marine Biological Resources and Environment/Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, Jiangsu
    2 Co-Innovation Center of Jiangsu Marine Bio-industry Technology/Jiangsu Ocean University, Lianyungang 222005, Jiangsu
    3 Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences /Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014
  • Received:2023-09-29 Accepted:2023-12-18 Online:2024-05-01 Published:2024-05-09
  • Contact: LUO ZhiDan, CHEN LongZheng

Abstract:

【Objective】As the main source of bitterness in bitter gourd fruit, saponin possesses various medicinal values including hypoglycemic and anticancer properties. This paper aimed at identifying the metabolic pathways and genes involved in the regulation of bitter gourd saponin biosynthesis, so as to provide the theoretical basis for further analysis of the molecular mechanism of bitter gourd saponin formation.【Method】Using the bitter gourd high-generation inbred line GK24 as the test material, fruit tissues were sampled at the ovary stage (T1), young fruit stage (T2), commodity fruit stage (T3), and maturity fruit stage (T4). The saponin content of bitter gourd at different periods were determined by the vanillin-glacial acetic acid method, and the differentially expressed genes (DEGs) were identified using the method of transcriptome sequencing. 【Result】From T1 to T4, the endogenous saponin content of bitter gourd showed significant decrease with fruit development. A total of 17 504 genes were identified by transcriptome sequencing, and the number of down-regulated genes was higher than that of up-regulated genes in the comparison of the three groups of T1-vs-T2, T2-vs-T3, and T3-vs-T4. GO enrichment analysis showed that phosphorus-containing complex metabolic process, kinesin complex and 2-succinyl-6-hydroxy-cyclohexadiene-1-carboxylic acid synthetase activity were the most significantly enriched terms in biological process, cellular component and molecular function, respectively. KEGG analysis showed that global and overview mapping, carbohydrate metabolism, and amino acid metabolism were the most significantly enriched pathways in all three comparative groups. The genes could be categorized into 20 profiles based on their expression patterns. Genes in profile 0 gradually decreased from T1 to T4, showing similar pattern of saponin content changes with bitter gourd fruit development. 14 genes related to bitter gourd saponin biosynthesis were identified from profile 0, including AAT1, HMG1, MVK, PMK, MVD2, and FPS1 in the terpene skeleton biosynthesis pathway, SS12, SQE1, and CPQ in the sesquiterpene and triterpene biosynthesis pathway, and the postmodifying enzyme genes CYP97A3, CYP71AN24, UGT94E5 and UGT73C6. The results of RNA-seq were validated by qRT-PCR method.【Conclusion】The saponin content of bitter gourd decreased with the fruit development. Bitter gourd saponin was synthesized through the terpenoid bone biosynthesis (ko00900) metabolic pathway to accumulate terpenoid saponin skeleton in the first, and then produce saponins through the sesquiterpene and triterpene biosynthesis (ko00909) metabolic pathway and the modification of oxidoreductase and glycosyltransferase successively. A total of 14 genes related to the saponin biosynthesis of bitter gourd have been identified in the present study.

Key words: bitter gourd, transcriptome, differentially expressed genes, saponin, regulation of synthesis

Table 1

Primer sequences used for qRT-PCR"

基因名 Gene name 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
CPQ GTTGAAAGAGGGGGAAGAGG CACCAGACCCGGAAGTAAAA
FSP1 GCGGATCTCAGGTCAACATT TCCAGGCACATTGTAGTCCA
CYP97A3 GGGAGATATGGCGTGTAAGAAGAC CTAAAGTCAGACGAGAGAACAGGG
CYP71AN24 GAACACAAGGCCAAGATGAGAG CAGTTGTGTCAGTTCCAGCTAC
UGT73C6 TGCCTCCAGAGCTGAAACAT TCCCATGAATCCAGCCACTT
UGT94E5 TCATCACACAACCAAAGGCC ATCGGAATGTTGAGCGATGC
SQE1 AGCAAGGGACGGTTACTTCA TGAGAAGCAGCCATCACAGA
MVK GCAGTCGTTCATGGATCCAC TGGCCACGAAAACTCCAATG
PMK GGGACCATGAGAGGACTGAG AGGGTCAGACTTTTGCCACT
Actin GGCAAACCCTAAAGTTTTCTTCG GATGAGCCCTTGTAATGAAGTGG

Fig. 1

Determination of saponin content in bitter gourd at different maturity stages Different lowercase letters indicate significant difference (P<0.05)"

Table 2

Transcriptome sequencing data statistics"

样品
Sample
原始数据
Raw reads
过滤后数据
Clean reads
Q30含量
Q30 content (%)
GC含量
GC content (%)
单一比对率
Unique mapped (%)
总比对率
Total mapped (%)
T1-1 46878594 46673674 92.28 46.80 93.74 96.88
T1-2 55531244 55302940 92.51 46.59 93.74 96.89
T1-3 65068774 64756962 91.96 46.30 93.49 96.61
T2-1 53923956 53678084 91.97 46.70 93.42 96.63
T2-2 46863574 46589694 92.55 47.09 93.61 96.87
T2-3 51548340 51304488 92.54 47.04 93.43 96.74
T3-1 44171240 43942622 92.37 46.84 93.10 95.88
T3-2 44849744 44668862 92.68 47.20 94.17 97.07
T3-3 55212924 54973380 92.20 47.14 93.68 96.43
T4-1 69720780 69450220 92.42 47.30 93.73 96.46
T4-2 66405070 66157562 92.94 46.67 94.16% 96.82
T4-3 64248114 63979034 92.29 46.69 92.75 96.29

Fig. 2

Principal component analysis based on transcriptome data"

Fig. 3

Differentially expressed genes of bitter gourd fruits at different developmental stages A: Venn map of DEGs; B: Number of up-regulated and down-regulated DEGs at different stages"

Fig. 4

GO functional heat map of bitter gourd fruit at different development stages"

Fig. 5

KEGG enrichment of DEGs in bitter gourd fruits at different developmental stages"

Fig. 6

Expression patterns of genes in different development stages of bitter gourd fruit"

Table 3

Significantly enriched pathways of profile 0"

通路名称
Pathway name
通路ID
Pathway ID
基因数目
Number of genes
所有基因数
Number of all genes
P
P value
核糖体 Ribosome ko03010 83 305 3.36E-13
同源重组 Homologous recombination ko03440 20 58 1.03E-05
DNA复制 DNA replication ko03030 16 46 7.03E-05
氨基酸的生物合成 Biosynthesis of amino acids ko01230 44 202 9.41E-05
错配修复 Mismatch repair ko03430 14 39 0.000135124
缬氨酸、亮氨酸和异亮氨酸生物合成 Valine, leucine and isoleucine biosynthesis ko00290 8 18 0.000748137
真核生物核糖体的生物合成 Ribosome biogenesis in eukaryotes ko03008 19 77 0.002133956
嘧啶代谢 Pyrimidine metabolism ko00240 15 58 0.00377061
2-氧代羧酸代谢 2-Oxocarboxylic acid metabolism ko01210 14 53 0.004117066
糖鞘脂生物合成 Glycosphingolipid biosynthesis ko00604 3 4 0.006896205
精氨酸生物合成 Arginine biosynthesis ko00220 10 35 0.008097428
碱基切除修复 Base excision repair ko03410 13 52 0.009192653
核质运输 Nucleocytoplasmic transport ko03013 20 98 0.01563779
赖氨酸生物合成 Lysine biosynthesis ko00300 5 13 0.01582533
萜类骨架生物合成 Terpenoid backbone biosynthesis ko00900 14 62 0.0173777
糖胺聚糖降解 Glycosaminoglycan degradation ko00531 6 18 0.01771733
氨酰基tRNA生物合成 Aminoacyl-tRNA biosynthesis ko00970 13 57 0.0198342
不同类型的N-聚糖生物合成 Various types of N-glycan biosynthesis ko00513 8 30 0.02599519
组氨酸代谢 Histidine metabolism ko00340 5 16 0.03922549

Table 4

Genes enriched in the ko00900 and ko00909 pathways in profile 0"

基因编号
Gene number
基因注释
Gene function
通路
Pathway
T1
FPKM
T2
FPKM
T3
FPKM
T4
FPKM
evm.TU.chr1.608 法尼基半胱氨酸裂解酶异构体 Farnesylcysteine lyase isoform ko00900 38.15 28.42 17.24 10.65
evm.TU.chr10.805 2-甲基-D-赤藓糖醇2,4-环二磷酸合酶
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
ko00900 115.94 71.18 43.36 26.32
evm.TU.chr2.34 香叶基香叶基二磷酸还原酶样异构体
Geranylgeranyl diphosphate reductase-like isoform
ko00900 30.58 17.55 16.44 7.16
evm.TU.chr3.1930 羟基-3-甲基丁-2-烯-1-基二磷酸合酶
4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase
ko00900 433.17 194.37 106.87 85.58
evm.TU.chr3.2317 法尼基焦磷酸合酶1 Farnesyl pyrophosphate synthase 1 ko00900 358.50 164.00 51.39 7.70
evm.TU.chr4.352 乙酰辅酶A乙酰转移酶 Acetyl-CoA acetyltransferae ko00900 439.08 95.24 57.25 34.89
evm.TU.chr4.613 4-羟基-3-甲基丁-2-烯基二磷酸还原酶
4-hydroxy-3-methylbut-2-enyl diphosphate reductase
ko00900 1091.57 439.96 370.39 217.45
evm.TU.chr6.140 1-脱氧-D-酮糖5-磷酸还原异构酶
1-deoxy-D-xylulose 5-phosphate reductoisomerase
ko00900 239.29 131.64 82.92 76.05
evm.TU.chr6.518 脱氧-D-酮糖-5-磷酸合成酶Deoxy-D-xylulose-5-phosphate synthase ko00900 637.07 42.68 19.10 0.17
evm.TU.chr4.378 HMG-CoA合成酶 3-hydroxy-3-methyl glutaryl coenzyme A synthesis ko00900 1274.61 1010.52 91.31 2.87
evm.TU.chr8.4201 甲羟戊酸激酶 Mevalonate kinase ko00900 105.59 52.77 31.46 14.07
evm.TU.chr9.3672 焦磷酸甲羟戊酸脱羧酶Pyrophosphomethylvalerate decarboxylase ko00900 671.59 131.25 53.80 28.02
evm.TU.chr10.2918 磷酸甲羟戊酸激酶 Phosphomevalonate kinase ko00900 85.10 58.17 9.86 3.75
evm.TU.chr6.363 磷酸甲羟戊酸激酶 Phosphomevalonate kinase ko00900 41.95 20.49 13.08 12.38
evm.TU.chr2.1021 角鲨烯合成酶 Squalene synthase ko00909 437.66 285.81 89.01 48.19
evm.TU.chr3.2797 橙花内酯合成酶 Nerolidol synthase ko00909 15.85 9.29 0.69 0.07
evm.TU.chr7.10 葫芦二烯醇合酶 Cucurbitadienol synthase ko00909 981.27 444.87 79.12 4.09
evm.TU.chr8.588 角鲨烯环氧酶 Squalene epoxidase 1 ko00909 1030.32 506.37 76.82 1.14

Fig. 7

Prediction of the biosynthetic pathway of bitter gourd saponins The heat map represents the FPKM values of genes at different development stages, with the redder the color, the higher the value. The samples from left to right are T1, T2, T3 and T4, repectively"

Fig. 8

qRT-PCR validation of RNA-seq data at different developmental stages of bitter gourd fruit"

[1]
丁雷, 胡玉立, 李梅, 吴丽丽, 秦灵灵, 刘桐华. 苦瓜的药食价值研究概括. 中国医药导报, 2021, 18(13): 117-120.
DING L, HU Y L, LI M, WU L L, QIN L L, LIU T H. Summary of research on the medicinal and edible value of bitter gourd. China Medical Journal, 2021, 18(13): 117-120. (in Chinese)
[2]
崔宏伟, 韩汶延, 于蕾, 苏秀兰. 苦瓜化学成分及药理作用研究进展. 世界科学技术-中医药现代化, 2021, 23(5): 1712-1719.
CUI H W, HAN W Y, YU L, SU X L. Research progress on the chemical composition and pharmacological effects of bitter gourd. World Science and Technology-Modernization of Traditional Chinese Medicine, 2021, 23(5): 1712-1719. (in Chinese)
[3]
LIU C, DAI L H, LIU Y P, DOU D Q, SUN Y X, MA L Q. Pharmacological activities of mogrosides. Future Medicinal Chemistry, 2018, 10(8): 845-850.

doi: 10.4155/fmc-2017-0255 pmid: 29432030
[4]
李莎莎. 苦瓜皂苷降血糖及促进糖尿病创面愈合作用的研究[D]. 广州: 南方医科大学, 2022.
LI S S. Study on glucose lowering and diabetic wound healing effects of Momordica charantia L. saponin[D]. Guangzhou: Southern Medical University, 2022. (in Chinese)
[5]
刘馨泽, 吴新民, 蔺冬梅, 冯琳, 杨洪梅, 王欢, 王冬雪, 刘淑莹, 吴巍, 万茜淋. 苦瓜化学成分的提取分离及药理活性研究进展. 中成药, 2022, 44(1): 177-182.
LIU X Z, WU X M, LIN D M, FENG L, YANG H M, WANG H, WANG D X, LIU S Y, WU W, WAN X L. Research progress on extraction, separation and pharmacological activities of chemical constituents from Momordica charantia L. Chinese Traditional Patent Medicine, 2022, 44(1): 177-182. (in Chinese)
[6]
郑方园. 苦瓜皂苷的分离纯化、结构鉴定及苦瓜颗粒剂工艺研究[D]. 合肥: 安徽农业大学, 2021.
ZHENG F Y. Separation and purification of Momordica charantia saponins, identification of structure and the technology of Momordica charantia granules[D]. Hefei: Anhui Agricultural University, 2021. (in Chinese)
[7]
KUMBHALKAR B B, RAJOPADHYE A A, UPADHYE A S. Standardization of family Cucurbitaceae. Current Science, 2013, 104(12): 1595-1596.
[8]
OKABE H, MIYAHARA Y, YAMAUCHI T. Studies on the constituents of Momordica charantia L. IV. Characterization of the new cucurbitacin glycosides of the immature fruits. (2). Structures of the bitter glycosides, momordicosides K and L. Chemical and Pharmaceutical Bulletin, 1982, 30(12): 4334-4340.

doi: 10.1248/cpb.30.4334
[9]
YASUDA M, IWAMOTO M, OKABE H, YAMAUCHI T. Structures of momordicines I, II and III, the bitter principles in the leaves and vines of Momordica charantia L. Chemical and Pharmaceutical Bulletin, 1984, 32(5): 2044-2047.

doi: 10.1248/cpb.32.2044
[10]
安昌, 秦源, 方韵颖, 屈祺, 王炳锐, 郑平. 药用植物三萜类生物合成途径及关键酶基因研究进展. 中国中药杂志, 2022, 47(24): 6560-6572.
AN C, QIN Y, FANG Y Y, QU Q, WANG B R, ZHENG P. Biosynthetic pathways of triterpenes in medicinal plants and key enzyme genes: A review. China Journal of Chinese Materia Medica, 2022, 47(24): 6560-6572. (in Chinese)
[11]
徐圆圆, 陈仲, 贾黎明, 翁学煌. 植物三萜皂苷生物合成途径及调控机制研究进展. 中国科学: 生命科学, 2021, 51(5): 525-555.
XU Y Y, CHEN Z, JIA L M, WENG X H. Advances in understanding of the biosynthetic pathway and regulatory mechanism of triterpenoid saponins in plants. Scientia Sinica (Vitae), 2021, 51(5): 525-555. (in Chinese)
[12]
魏一丁, 熊超, 张天缘, 高翰, 尹青岗, 姚辉, 孙伟, 胡志刚, 陈士林. 基于转录组数据对七叶树中三萜皂苷合成途径的研究. 中国中药杂志, 2019, 44(6): 1135-1144.
WEI Y D, XIONG C, ZHANG T Y, GAO H, YIN Q G, YAO H, SUN W, HU Z G, CHEN S L. Synthesis of triterpenoid saponins from Aesculus chinensis based on transcriptome data. China Journal of Chinese Materia Medica, 2019, 44(6): 1135-1144. (in Chinese)
[13]
ZHU J H, LI H L, GUO D, WANG Y, DAI H F, MEI W L, PENG S Q. Identification, characterization and expression analysis of genes involved in steroidal saponin biosynthesis in Dracaena cambodiana. Journal of Plant Research, 2018, 131(3): 555-562.

doi: 10.1007/s10265-017-1004-7
[14]
UPADHYAY S, PHUKAN U J, MISHRA S, SHUKLA R K. De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus. BMC Genomics, 2014, 15(1): 746.

doi: 10.1186/1471-2164-15-746
[15]
SINGH P, SINGH G, BHANDAWAT A, SINGH G, PARMAR R, SETH R, SHARMA R K. Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Scientific Reports, 2017, 7: 45295.

doi: 10.1038/srep45295
[16]
单春苗, 王晨凯, 施圆圆, 张声祥, 赵历强, 吴家文. 多花黄精甾体皂苷生物合成途径分析及关键酶基因研究. 中国中药杂志, 2020, 45(12): 2847-2857.
SHAN C M, WANG C K, SHI Y Y, ZHANG S X, ZHAO L Q, WU J W. Identification of key enzyme genes involved in biosynthesis of steroidal saponins and analysis of biosynthesis pathway in Polygonatum cyrtonema. China Journal of Chinese Materia Medica, 2020, 45(12): 2847-2857. (in Chinese)
[17]
石博, 万新建, 关峰, 张景云, 黄长林, 张会国, 黄国东. 苦瓜皂苷最佳提取工艺优化及其对α-葡萄糖苷酶的抑制活性. 食品研究与开发, 2023, 44(11): 145-150.
SHI B, WAN X J, GUAN F, ZHANG J Y, HUANG C L, ZHANG H G, HUANG G D. Optimization of extraction process of saponins from Momordica charantia and their inhibitory activity on α-glucosidase. Food Research and Development, 2023, 44(11): 145-150. (in Chinese)
[18]
徐斌, 董英. 分光光度法测定苦瓜总皂甙含量. 食品科学, 2005, 26(10): 165-169.
XU B, DONG Y. Determination on total saponins of Momordica charantia L. by spectrophotometry. Food Science, 2005, 26(10): 165-169. (in Chinese)
[19]
MATSUMURA H, HSIAO M C, LIN Y P, TOYODA A, TANIAI N, TARORA K, URASAKI N, ANAND S S, DHILLON N P S, SCHAFLEITNER R, LEE C R. Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14543-14551.
[20]
薛禹宸, 雷秀娟, 张浩, 王英平. 不同生长时期西洋参花蕾中皂苷成分及最佳采收期的确定. 吉林农业大学学报, 2021, 43(6): 697-704.
XUE Y C, LEI X J, ZHANG H, WANG Y P. Distribution of saponins in flower buds of American ginseng in different growth periods and determination of the suitable harvesting time. Journal of Jilin Agricultural University, 2021, 43(6): 697-704. (in Chinese)
[21]
苏璐璐, 朱文莹, 陈旭, 王辉, 曹依林, 王富. 基于转录组学和代谢组学解析番茄果实品质形成过程. 山东农业科学, 2023, 55(2): 9-19.
SU L L, ZHU W Y, CHEN X, WANG H, CAO Y L, WANG F. Analysis of tomato fruit quality forming based on transcriptomics and metabolomics. Shandong Agricultural Sciences, 2023, 55(2): 9-19. (in Chinese)
[22]
王红娟, 唐荣莉, 蒋晓英, 官玲, 雷开荣, 黄启中, 林清. 辣椒不同发育时期果实的转录组分析. 西南农业学报, 2022, 35(3): 517-525.
WANG H J, TANG R L, JIANG X Y, GUAN L, LEI K R, HUANG Q Z, LIN Q. Transcriptome analysis of pepper fruit at different developmental stages. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 517-525. (in Chinese)
[23]
AUGUSTIN J M, KUZINA V, ANDERSEN S B, BAK S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 2011, 72(6): 435-457.

doi: 10.1016/j.phytochem.2011.01.015 pmid: 21333312
[24]
SHANG Y, MA Y S, ZHOU Y, ZHANG H M, DUAN L X, CHEN H M, ZENG J G, ZHOU Q, WANG S H, GU W J, LIU M, REN J W, GU X F, ZHANG S P, WANG Y, YASUKAWA K, BOUWMEESTER H J, QI X Q, ZHANG Z H, LUCAS W J, HUANG S W. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346(6213): 1084-1088.

doi: 10.1126/science.1259215
[25]
LI X J, LIN S J, XIANG C G, LIU W Q, ZHANG X J, WANG C C, LU X H, LIU M S, WANG T, LIU Z X, WANG N N, GAO L H, HAN X, ZHANG W N. CUCUME: An RNA methylation database integrating systemic mRNAs signals, GWAS and QTL genetic regulation and epigenetics in different tissues of Cucurbitaceae. Computational and Structural Biotechnology Journal, 2023, 21: 837-846.

doi: 10.1016/j.csbj.2023.01.012 pmid: 36698975
[26]
朱源, 李检秀, 李坚斌, 黄日波. 药用植物中四环三萜皂苷合成生物学研究进展. 广西科学院学报, 2020, 36(3): 309-316.
ZHU Y, LI J X, LI J B, HUANG R B. Research progress in synthetic biology of tetracyclic triterpenoids saponins in medicinal plants. Journal of Guangxi Academy of Sciences, 2020, 36(3): 309-316. (in Chinese)
[27]
ZHANG J S, DAI L H, YANG J G, LIU C, MEN Y, ZENG Y, CAI Y, ZHU Y M, SUN Y X. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraita grosvenorii. Plant and Cell Physiology, 2016, 57(5): 1000-1007.

doi: 10.1093/pcp/pcw038
[28]
ITKI M, DACIEOVICH R R, COHEN S, PORTONY V, DORON- FAIGENBOIM A, OREN E, FREILICH S, TZURI G, BARANES N, SHEN S, PETERIKOV M, SERTCHOOK R, BEN-DOR S, GOTTLIEB H, HERNANDEZ A, NELSON D R, PARIS H S, TADMOR Y, BURGER Y, LEWINSOHN E, KATZIR N, SCHAAFFER A. The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraita grosvenorii. Proceedings of the National Academy of Sciences of the USA, 2016, 113(47): E7619-E7628.
[29]
季宏与, 丁常宏, 于丹, 都晓伟. 转录组学技术在人参皂苷生物合成途径研究中的应用进展. 食品与发酵工程, 2022, 48(16): 318-325.
JI H Y, DING C H, YU D, DU X W. Progress in the application of transcriptomics technology in the study of ginsenoside biosynthesis pathways. Food and Fermentation Industry, 2022, 48(16): 318-325. (in Chinese)
[30]
穆事成. 糖基转移酶的筛选及罗汉果苷糖基化修饰[D]. 天津: 天津科技大学, 2021.
MU S C. The screening of glycosyltransferase and glycosylation modification of mogrosides[D]. Tianjin: Tianjin University of Science and Technology, 2021. (in Chinese)
[31]
OSBOURN A. Secondary metabolic gene clusters: Evolutionary toolkits for chemical innovation. Trends in Genetics, 2010, 26: 449-457.

doi: 10.1016/j.tig.2010.07.001 pmid: 20739089
[32]
HAMBERGER B, BAK S. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368: 20120426.

doi: 10.1098/rstb.2012.0426
[33]
THIMMAPPA R, GEISLER K, LOUVEAU T, O'MAILLE P, OSBOURN A. Triterpene biosynthesis in plants. Annual Review of Plant Biology, 2014, 65: 225-257.

doi: 10.1146/annurev-arplant-050312-120229 pmid: 24498976
[34]
KIM O, BANG K, KIM Y C, DONG Y H, MIN Y K, CHA S W. Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell, Tissue and Organ Culture (PCTOC), 2009, 98(1): 25-33.

doi: 10.1007/s11240-009-9535-9
[1] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[2] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[3] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[4] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[5] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[6] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[7] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[8] YI ZeHui, ZHAO Jing, MAO LiPing. Development and Transferability of EST-SSR Markers Based on Transcriptome Data from Asparagus officinalis [J]. Scientia Agricultura Sinica, 2023, 56(22): 4490-4505.
[9] CHEN MinDong, WANG Bin, LIU JianTing, LI YongPing, BAI ChangHui, YE XinRu, QIU BoYin, WEN QingFang, ZHU HaiSheng. Screening Regulatory Genes Related to Luffa Fruit Length and Diameter Development Based on Transcriptome and WGCNA [J]. Scientia Agricultura Sinica, 2023, 56(22): 4506-4522.
[10] LU YanQing, LIN YanJin, WANG XianDa, LU XinKun. A Transcriptome Analysis Identifies Candidate Genes Related to Fruit Cracking in Pomelo Fruits [J]. Scientia Agricultura Sinica, 2023, 56(20): 4087-4101.
[11] ZHANG Xin, YANG XingYu, ZHANG ChaoRan, ZHANG Chong, ZHENG HaiXia, ZHANG XianHong. Identification and Expression Analysis of Heat Shock Protein Superfamily Genes in Callosobruchus chinensis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3814-3828.
[12] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[13] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[14] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[15] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!