Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4512-4527.doi: 10.3864/j.issn.0578-1752.2025.21.019

• EXPLORATION OF SALT-ALKALI AND DROUGHT RESISTANT GENES FOR ALFALFA BREEDING • Previous Articles     Next Articles

Differential Proteomic Analysis of Alfalfa Seedlings Under Salt- Alkaline Stress

YANG YongNian1,2(), ZENG XiangCui1, LIU QingSong3, LI RuYue1, LONG RuiCai1, CHEN Lin1, WANG Xue1, HE Fei1, KANG JunMei1, LI MingNa1()   

  1. 1 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642
    3 Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, Hebei
  • Received:2025-03-04 Accepted:2025-04-09 Online:2025-11-01 Published:2025-11-06
  • Contact: LI MingNa

Abstract:

【Objective】Soil salinization and alkalization are significant limiting factors for the growth and yield of alfalfa (Medicago sativa L.). To elucidate the molecular mechanisms underlying the response of alfalfa seedlings to salt or alkali stress, this study employed proteomic analysis to identify key differentially expressed proteins and their associated metabolic pathways under saline-alkali stress, so as to provide a theoretical foundation for elucidating the mechanisms of saline-alkali tolerance. 【Method】This study used Zhongmu No. 4 alfalfa as the experimental material. Seeds were subjected to salt stress (30 mmol·L-1 NaCl and 30 mmol·L-1 Na2SO4) and alkali stress (10 mmol·L-1 Na2CO3 and 10 mmol·L-1 NaHCO3). TMT labeling combined with liquid chromatography- mass spectrometry (LC-MS/MS) was employed to analyze the proteomic changes in alfalfa seedlings after stress treatments. 【Result】In total, 6 829 proteins were identified, including 489 differentially expressed proteins (DEPs) (274 up-regulated and 215 down-regulated) under alkali stress and 376 DEPs (218 up-regulated and 158 down-regulated) under salt stress. GO annotation analysis revealed that the DEPs were primarily associated with biological processes, such as cellular metabolism, organic metabolism, and stress response, as well as cellular components including intracellular organelles, cytoplasm, and membranes. KEGG pathway enrichment analysis indicated that under alkali stress, DEPs were significantly enriched in pathways, such as photosynthesis, phenylpropanoid biosynthesis, and isoflavonoid biosynthesis, while under salt stress, they were mainly enriched in photosynthesis, isoflavonoid biosynthesis, and glutathione metabolism. Further analysis of the enriched proteins demonstrated that alfalfa seedlings enhanced their resistance to salt-alkali stress by up-regulating key proteins in the isoflavonoid biosynthesis pathway (HI4OMT and CYP81E). The upregulation of key enzymes such as HI4OMT and CYP81E significantly enhanced the accumulation of isoflavonoids, which facilitated reactive oxygen species scavenging and maintained cellular homeostasis in plants. Furthermore, under alkaline stress, key enzymes (PAL, CAD, and COMT) in the phenylpropanoid biosynthesis pathway were markedly upregulated, promoting the synthesis of lignin and flavonoids. This process strengthened cell wall integrity and antioxidant capacity, enabling plants to adapt to high-pH environments and cope with alkaline stress. Under salt stress, alfalfa seedlings upregulated critical enzymes (PRDX6, GPX, and GST) in the glutathione metabolism pathway, maintaining redox homeostasis and enhancing ROS scavenging, thereby improving salt stress tolerance. 【Conclusion】In summary, this proteomic study elucidated key proteins and metabolic pathways involved in the response of alfalfa seedlings to salt-alkali stress, providing a theoretical foundation for understanding the molecular mechanisms of salt-alkali tolerance in alfalfa. Simultaneously, this study provided potential candidate proteins and metabolic pathways for breeding salt-alkali tolerant alfalfa. Subsequent research could further validate the functions of these key proteins and employ advanced biotechnological breeding approaches to develop new alfalfa varieties with enhanced salt-alkali tolerance, thereby addressing the challenges posed by soil salinization-alkalization to alfalfa production.

Key words: Alfalfa, salt-alkali stress, proteomics, phenylpropanoid biosynthesis, glutathione metabolism pathway

Fig. 1

Protein function annotation and differentially expressed protein identification A: Protein functional annotation chart; B: Differential protein chart; C: Venn diagram of up-regulated differential expressed proteins; D: Venn diagram of down-regulated differentially expressed proteins"

Fig. 2

GO functional classification of differentially expressed proteins A: Functional classification of differentially expressed proteins in the alkaline stress comparison group (AM3 vs SM1); B: Functional classification of differentially expressed proteins in the salt stress comparison group (SM3 vs SM1). The abscissa represents the number of differential proteins in the classification, the ordinate represents the secondary functional classification of GO; the different colors represent the primary classification of GO (Biological process/Cellular component/Molecular function)"

Fig. 3

Heatmap of GO functional cluster analysis of differentially expressed proteins under salt stress A: Enrichment of differentially expressed proteins in biological processes; B: Enrichment of differentially expressed proteins in cellular components; C: Enrichment of differentially expressed proteins in molecular functions. The horizontal representation represents different comparison groups, the longitudinal representation represents the related functions of differentially expressed protein enrichment in different comparison groups; The color gradient indicates the significance of enrichment, dark blue represents high enrichment significance, light blue and white represent low enrichment significance; *:P < 0.05, **:P < 0.01, and ***:P < 0.001"

Fig. 4

KEGG bubble diagram of functional enrichment analysis of differential proteins A: Functional enrichment of differentially expressed proteins in the alkaline stress comparison group (AM3 vs SM1); B: Functional enrichment of differentially expressed proteins in the salt stress comparison group (SM3 vs SM1). The horizontal axis is the enrichment degree of differential proteins in this function, and the greater the value, the higher the enrichment degree of differential proteins; The vertical axis is the KEGG path description information; The color of the point indicates the enrichment significance P value, and the bluer the color, the stronger the enrichment significance; The size of the dot indicates the number of differential proteins in the KEGG pathway, and the larger the dot, the more differential proteins there are"

Fig. 5

Schematic presentation of salinity stress-responsive proteins involved in photosystem and electron transport in Medicago sativa A: Changes in Differentially Expressed Proteins in the alkaline stress comparison group (AM3 vs SM1); B: Changes in Differentially Expressed Proteins in the salt stress comparison group (SM3 vs SM1)"

Table 1

Information and differential changes of important candidate proteins under saline-alkali stress"

蛋白编号
Protein accession
蛋白名称
Protein name
比值/Ratio AM3/SM1 比值/Ratio SM3/SM1 上调/下调
Up/Down
光合作用途径 Photosynthesis
Msa.H.0037330 光合系统 I 亚基 IV Photosystem I subunit IV,PsaE 0.70 0.70 Down
Msa.H.0077410 光合系统 I 亚基 III Photosystem I subunit III,PsaF 0.70 0.70 Down
Msa.H.0064710 铁氧还蛋白 Ferredoxin,PetF 0.76 0.75 Down
Msa.H.0099480 光合系统 II 10 kDa 蛋白 Photosystem II 10kDa protein,PsbR 0.75 0.73 Down
Msa.H.0138280 光合系统 II 析氧增强蛋白 2 Pphotosystem II oxygen-evolving enhancer protein 2,PsbP 0.67 0.70 Down
Msa.H.0119220 质体蓝蛋白 Plastocyanin,PetE 0.70 0.74 Down
Msa.H.0183910 光合系统II CP43叶绿素载脂蛋白 Photosystem II CP43 chlorophyll apoprotein,PsbC 0.77 - Down
Msa.H.0250550 光合系统 I 亚基 II Photosystem I subunit II,PsaD 0.74 0.73 Down
Msa.H.0261110 铁氧还蛋白 - NADP+ 还原酶 Ferredoxin--NADP+ reductase,PetH 0.77 - Down
Msa.H.0259150 光合系统 II 析氧增强子蛋白1 Photosystem II oxygen-evolving enhancer protein 1,PsbO 0.70 0.74 Down
Msa.H.0298590 光合系统 II 析氧增强蛋白 2 Photosystem II oxygen-evolving enhancer protein 2,PsbP 0.62 0.63 Down
Msa.H.0472080 光合系统 II 析氧增强子蛋白 1 Photosystem II oxygen-evolving enhancer protein 1,PsbO 0.68 0.70 Down
Msa.H.0466450 光合系统I P700叶绿素a载脂蛋白A2 Photosystem I P700 chlorophyll a apoprotein A2,PsaB 0.71 0.74 Down
异黄酮生物合成 Isoflavonoid biosynthesis
Msa.H.0226800 2-羟基异黄烷酮合酶 2-hydroxyisoflavanone synthase,CYP93C 1.34 1.39 Up
Msa.H.0232170 异黄酮/4'-甲氧基异黄酮 2'-羟化酶 Isoflavone/4'-methoxyisoflavone 2'-hydroxylase,CYP81E 1.59 - Up
Msa.H.0226810 2,7,4'-三羟基异黄烷酮 4'-O-甲基转移酶/异黄酮 4'-O-甲基转移酶 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase / isoflavone 4'-O-methyltransferase,HI4OMT 1.38 1.20 Up
Msa.H.0199640 2,7,4'-三羟基异黄烷酮 4'-O-甲基转移酶/异黄酮 4'-O-甲基转移酶 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase / isoflavone 4'-O-methyltransferase,HI4OMT 1.56 1.35 Up
Msa.H.0260210 2'-羟基异黄酮还原酶 2'-hydroxyisoflavone reductase,IFR 1.71 1.44 Up
Msa.H.0406540 维斯提酮还原酶 Vestitone reductase,VR 1.68 1.44 Up
苯丙烷生物合成途径 Phenylpropanoid biosynthesis
Msa.H.0001220 肉桂醇脱氢酶Cinnamyl-alcohol dehydrogenase,CAD 1.37 - Up
Msa.H.0077680 过氧化物酶 Peroxidase,POD 0.74 - Down
Msa.H.0107820 过氧化物酶 Peroxidase,POD 0.73 - Down
Msa.H.0077670 过氧化物酶 Peroxidase,POD 1.48 - Up
Msa.H.0077610 过氧化物酶 Peroxidase,POD 1.83 - Up
Msa.H.0065700 过氧化物酶 Peroxidase,POD 1.92 - Up
Msa.H.0077620 过氧化物酶 Peroxidase,POD 1.56 - Up
Msa.H.0155080 过氧化物酶 Peroxidase,POD 0.71 - Down
Msa.H.0167830 过氧化物酶 Peroxidase,POD 2.82 - Up
Msa.H.0300450 苯丙氨酸解氨酶 Phenylalanine ammonia-lyase-PAL 1.72 - Up
Msa.H.0332160 过氧化物酶 Peroxidase,POD 1.90 - Up
Msa.H.0421520 苯丙氨酸解氨酶 Phenylalanine ammonia-lyase-PAL 1.37 - Up
Msa.H.0425430 过氧化物酶 Peroxidase,POD 1.39 - Up
Msa.H.0404990 过氧化物酶 Peroxidase,POD 1.54 - Up
Msa.H.0431280 咖啡酸 3-O-甲基转移酶 / 乙酰血清素 O-甲基转移
Caffeic acid 3-O-methyltransferase / acetylserotonin O-methyltransferase,COMT
1.31 - Up
Msa.H.0489830 过氧化物酶 Peroxidase,POD 0.64 - Down
Msa.H.0445400 咖啡酸 3-O-甲基转移酶 / 乙酰血清素 O-甲基转移
Caffeic acid 3-O-methyltransferase / acetylserotonin O-methyltransferase,COMT
0.66 - Down
Msa.H.0473540 咖啡酰辅酶 A O-甲基转移酶 Caffeoyl-CoA O-methyltransferase,CCoAOMT 0.74 - Down
谷胱甘肽代谢途径 Glutathione metabolism
Msa.H.0047790 谷胱甘肽 S-转移酶 Glutathione S-transferase,GST - 1.33 Up
Msa.H.0039470 谷胱甘肽过氧化物酶 Glutathione peroxidase,GPX, btuE, bsaA - 0.37 Down
Msa.H.0202400 过氧化物还原蛋白 6 Peroxiredoxin 6,PRDX6 - 1.42 Up
Msa.H.0241880 谷胱甘肽过氧化物酶 Glutathione peroxidase,GPX, btuE, bsaA - 1.43 Up
Msa.H.0235120 谷胱甘肽 S-转移酶 Glutathione S-transferase,GST - 1.36 Up
Msa.H.0271410 谷胱甘肽 S-转移酶 Glutathione S-transferase,GST - 1.37 Up
Msa.H.0271450 谷胱甘肽 S-转移酶 Glutathione S-transferase,GST - 1.39 Up
Msa.H.0282830 L-抗坏血酸过氧化物酶 L-ascorbate peroxidase,APX - 0.74 Down

Fig. 6

KEGG enrichment pathway diagram of phenylpropanoid biosynthesis pathway under alkaline salt stress The red fill in the figure represents differentially upregulated proteins, the blue fill represents differentially downregulated proteins, the yellow fill represents nodes that contain both differentially upregulated and downregulated proteins"

Fig. 7

KEGG enrichment pathway diagram of differential glutathione metabolic pathway under neutral salt stress The red fill in the figure represents differentially upregulated proteins, the blue fill represents differentially downregulated proteins, the yellow fill represents nodes that contain both differentially upregulated and downregulated proteins"

Fig. 8

Schematic diagram of the changes of important differential proteins under saline-alkali stress A: Schematic diagram of salt or alkali treatment; B: Schematic diagram of key differential proteins and pathways under salt or alkali stress. Fill the top-left blue box to represent proteins altered under alkali stress, fill the top-right green box for salt-stress responsive proteins, and use silver fill for the two bottom boxes indicating proteins changed under both salt and alkali stresses. Within the boxes, protein names in red indicate up-regulated proteins, while protein names in blue indicate down-regulated proteins"

[1]
FANG S M, HOU X, LIANG X L. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science, 2021, 12: 667458.
[2]
FAO (Food and Agriculture Organization of the United Nations), ITPS (Intergovernmental Technical Panel on Soils). Global map of salt-affected soils. 2021.
[3]
杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27.
YANG J S, YAO R J, WANG X P, XIE W P, ZHANG X, ZHU W, ZHANG L, SUN R J. Research on salt-affected soils in China: History, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. (in Chinese)
[4]
SU K Q, MU L, ZHOU T, KAMRAN M, YANG H M. Intercropped alfalfa and spring wheat reduces soil alkali-salinity in the arid area of northwestern China. Plant and Soil, 2024, 499(1): 275-292.
[5]
MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.

doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[6]
ZHU J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2): 66-71.

doi: 10.1016/s1360-1385(00)01838-0 pmid: 11173290
[7]
王瀚祥, 李广存, 徐建飞, 王万兴, 金黎平. 植物耐盐机理研究进展. 作物杂志, 2022(5): 1-12.
WANG H X, LI G C, XU J F, WANG W X, JIN L P. Advances in research on salt tolerance mechanism of plants. Crops, 2022(5): 1-12. (in Chinese)
[8]
ZHANG H, LIU X L, ZHANG R X, YUAN H Y, WANG M M, YANG H Y, MA H Y, LIU D, JIANG C J, LIANG Z W. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Frontiers in Plant Science, 2017, 8: 1580.
[9]
GUO K W, XU Z S, HUO Y Z, SUN Q, WANG Y, CHE Y H, WANG J C, LI W, ZHANG H H. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signaling & Behavior, 2020, 15(12): 1832373.
[10]
李小冬, 舒健虹, 于二汝, 吴佳海, 蔡一鸣, 王小利. 高羊茅在低氮胁迫下的蛋白组学分析. 草业学报, 2016, 25(3): 67-76.

doi: 10.11686/cyxb2015470
LI X D, SHU J H, YU E R, WU J H, CAI Y M, WANG X L. Proteomic analysis of nitrogen stress-responsive proteins in the leaves of tall fescue. Acta Prataculturae Sinica, 2016, 25(3): 67-76. (in Chinese)
[11]
WANG Y, YANG P, ZHOU Y, HU T, ZHANG P, WU Y. A proteomic approach to understand the impact of nodulation on salinity stress response in alfalfa (Medicago sativa L.). Plant Biology, 2022, 24(2): 323-332.
[12]
裴翠明, 张振亚, 马进. 南方型紫花苜蓿苗期叶片盐胁迫差异蛋白分析. 农业生物技术学报, 2016, 24(11): 1629-1642.
PEI C M, ZHANG Z Y, MA J. Differentially expressed proteins analysis of seedling leaf of southern type alfalfa (Medicago sativa 'Millenium') under salt stress. Journal of Agricultural Biotechnology, 2016, 24(11): 1629-1642. (in Chinese)
[13]
马进, 郑钢, 裴翠明, 张振亚. 基于iTRAQ质谱分析技术筛选南方型紫花苜蓿根部响应盐胁迫差异表达蛋白. 农业生物技术学报, 2016, 24(4): 497-509.
MA J, ZHENG G, PEI C M, ZHANG Z Y. Screening differentially expressed proteins in southern type alfalfa (Medicago sativa 'Millenium') root upon salt stress by iTRAQ protein mass spectrometry. Journal of Agricultural Biotechnology, 2016, 24(4): 497-509. (in Chinese)
[14]
LONG R C, SUN H, CAO C Y, ZHANG T J, KANG J M, WANG Z, LI M N, GAO Y L, LI X, YANG Q C. Identification of alkali- responsive proteins from early seedling stage of two contrasting Medicago species by iTRAQ-based quantitative proteomic analysis. Environmental and Experimental Botany, 2019, 157: 26-34.
[15]
李波, 方志坚, 邬婷婷, 李红, 杨曌, 赵宇佳. 盐碱胁迫下紫花苜蓿叶片蛋白组的初步分析. 草地学报, 2019, 27(3): 574-580.

doi: 10.11733/j.issn.1007-0435.2019.03.008
LI B, FANG Z J, WU T T, LI H, YANG Z, ZHAO Y J. Preliminary analysis of alfalfa leaf proteome under salt-alkali stress. Acta Agrestia Sinica, 2019, 27(3): 574-580. (in Chinese)

doi: 10.11733/j.issn.1007-0435.2019.03.008
[16]
LING L, AN Y M, WANG D, TANG L, DU B H, SHU Y J, BAI Y, GUO C H. Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa. Plant Physiology and Biochemistry, 2022, 170: 146-159.
[17]
CARDONA T, SHAO S X, NIXON P J. Enhancing photosynthesis in plants: the light reactions. Essays in Biochemistry, 2018, 62(1): 85-94.

doi: 10.1042/EBC20170015 pmid: 29563222
[18]
CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 2009, 103(4): 551-560.

doi: 10.1093/aob/mcn125 pmid: 18662937
[19]
KHAING E P, ZHONG V, EATON-RYE J J. An updated system for the targeted mutagenesis of the psbDI: psbC operon in Synechocystis sp. PCC 6803: Mutations targeting Asp460 in CP43 of Photosystem II reduce oxygen-evolving activity and perturb electron transfer in the quinone-Fe-acceptor complex. New Zealand Journal of Botany, 2020, 58(4): 389-405.
[20]
LUO W, DENG X X, HUO J, RUAN T, GONG Z W, YAN J B, YANG Z H, QUAN C, CUI Z F. Strengthening NADPH regeneration for improving photo-biocatalytic ketones asymmetric reduction reaction by Synechocystis through overexpression of FNR. Catalysis Letters, 2018, 148(6): 1714-1722.
[21]
ZHAO L L, ZHAO X, HUANG L, LIU X Y, WANG P C. Transcriptome analysis of Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum leaves in response to high-phosphorus stress. BMC Plant Biology, 2024, 24(1): 635.
[22]
OKOOBOH G O, HAFERKAMP I, RÜHLE T, LEISTER D, NEUHAUS H E. Expression of the plastocyanin gene PETE2 in Camelina sativa improves seed yield and salt tolerance. Journal of Plant Physiology, 2023, 290: 154103.
[23]
VALENTINE R C. Bacterial ferredoxin. Bacteriological Reviews, 1964, 28(4): 497-517.
[24]
WANG Y, WANG J C, GUO D D, ZHANG H B, CHE Y H, LI Y Y, TIAN B, WANG Z H, SUN G Y, ZHANG H H. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiology and Biochemistry, 2021, 167: 140-152.

doi: 10.1016/j.plaphy.2021.07.040 pmid: 34352517
[25]
DASTMALCHI M, DHAUBHADEL S. Proteomic insights into synthesis of isoflavonoids in soybean seeds. PROTEOMICS, 2015, 15(10): 1646-1657.
[26]
GARCÍA-CALDERÓN M, PÉREZ-DELGADO C M, PALOVE- BALANG P, BETTI M, MÁRQUEZ A J. Flavonoids and isoflavonoids biosynthesis in the model legume Lotus japonicus; connections to nitrogen metabolism and photorespiration. Plants, 2020, 9(6): 774.
[27]
LIU J Y, AHMAD N, HONG Y Q, ZHU M H, ZAMAN S, WANG N, YAO N, LIU X M. Molecular characterization of an isoflavone 2’-hydroxylase gene revealed positive insights into flavonoid accumulation and abiotic stress tolerance in safflower. Molecules, 2022, 27(22): 8001.
[28]
GAO Y L, LONG R C, KANG J M, WANG Z, ZHANG T J, SUN H, LI X, YANG Q C. Comparative proteomic analysis reveals that antioxidant system and soluble sugar metabolism contribute to salt tolerance in alfalfa (Medicago sativa L.) leaves. Journal of Proteome Research, 2019, 18(1): 191-203.
[29]
ZANG Y, JIANG T, CONG Y, ZHENG Z J, OUYANG J. Molecular characterization of a recombinant Zea mays Phenylalanine Ammonia- Lyase (ZmPAL2) and its application in trans-Cinnamic acid production from l-Phenylalanine. Applied Biochemistry and Biotechnology, 2015, 176(3): 924-937.
[30]
DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism. The Plant Cell, 1995, 7(7): 1085-1097.

doi: 10.1105/tpc.7.7.1085 pmid: 12242399
[31]
REN W, WANG Y Z, XU A K, ZHAO Y G. Genome-wide identification and characterization of the Phenylalanine Ammonia- lyase (PAL) gene family in Medicago truncatula. Legume Research - an International Journal, 2019, 42(4): 461-466.
[32]
曾祥翠, 杨永念, 李如月, 蒋学乾, 蒋旭, 徐嫣然, 刘忠宽, 龙瑞才, 康俊梅, 杨青川, 李明娜. 紫花苜蓿MsCEP基因家族的鉴定及其调控根系生长发育功能的分析. 中国农业科学, 2024, 57(24): 4839-4853. doi: 10.3864/j.issn.0578-1752.2024.24.002.
ZENG X C, YANG Y N, LI R Y, JIANG X Q, JIANG X, XU Y R, LIU Z K, LONG R C, KANG J M, YANG Q C, LI M N. Identification of alfalfa(Medicago sativa) MsCEP genes and functional analysis of its regulation in root growth and development. Scientia Agricultura Sinica, 2024, 57(24): 4839-4853. doi: 10.3864/j.issn.0578-1752.2024.24.002. (in Chinese)
[33]
FAN L J, SHI G F, YANG J, LIU G L, NIU Z Q, YE W B, WU S Q, WANG L, GUAN Q J. A protective role of phenylalanine ammonia-lyase from Astragalus membranaceus against saline-alkali stress. International Journal of Molecular Sciences, 2022, 23(24): 15686.
[34]
ZHAI L, XUE Y F, SONG Y H, XIAN M J, YIN L, ZHONG N Q, XIA G X, MA Y H. Overexpression of AaPal, a peptidoglycan- associated lipoprotein from Alkalomonas amylolytica, improves salt and alkaline tolerance of Escherichia coli and Arabidopsis thaliana. Biotechnology Letters, 2014, 36(3): 601-607.
[35]
CHENG H, LI L L, XU F, CHENG S Y, CAO F L, WANG Y, YUAN H H, JIANG D Z, WU C H. Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Molecular Biology Reports, 2013, 40(1): 707-721.
[36]
VANHOLME R, DE MEESTER B, RALPH J, BOERJAN W. Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology, 2019, 56: 230-239.

doi: S0958-1669(18)30143-5 pmid: 30913460
[37]
MAHMOOD Z, YAMEEN M, JAHANGEER M, RIAZ M, GHAFFAR A, JAVID I. Lignin as natural antioxidant capacity. Lignin-Trends and Applications. InTechOpen, 2018.
[38]
蒋旭, 崔会婷, 王珍, 张铁军, 龙瑞才, 杨青川, 康俊梅. 紫花苜蓿MsNST的克隆及对木质素与纤维素合成的功能分析. 中国农业科学, 2020, 53(18): 3818-3832. doi: 10.3864/j.issn.0578-1752.2020.18.016.
JIANG X, CUI H T, WANG Z, ZHANG T J, LONG R C, YANG Q C, KANG J M. Cloning and function analysis of MsNST in lignin and cellulose biosynthesis pathway from alfalfa. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832. doi: 10.3864/j.issn.0578-1752.2020.18.016. (in Chinese)
[39]
王静, 周祁, 李丽华, 郝风声, 魏远方, 杨立均, 刘卫群. 烟草的TMV侵染耐受性与谷胱甘肽代谢途径的关系. 河南农业科学, 2017, 46(2): 49-54.
WANG J, ZHOU Q, LI L H, HAO F S, WEI Y F, YANG L J, LIU W Q. Relationship of tolerance to TMV and glutathione metabolic pathway in tobacco. Journal of Henan Agricultural Sciences, 2017, 46(2): 49-54. (in Chinese)
[40]
PAIVA A L S, PASSAIA G, LOBO A K M, JARDIM-MESSEDER D, SILVEIRA J A G, MARGIS-PINHEIRO M. Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environmental and Experimental Botany, 2019, 158: 12-21.
[41]
FISHER A B. Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Archives of Biochemistry and Biophysics, 2017, 617: 68-83.

doi: S0003-9861(16)30541-0 pmid: 27932289
[42]
LI H T, BENIPAL B, ZHOU S P, DODIA C, CHATTERJEE S, TAO J Q, SOROKINA E M, RAABE T, FEINSTEIN S I, FISHER A B. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free Radical Biology and Medicine, 2015, 87: 356-365.

doi: 10.1016/j.freeradbiomed.2015.06.009 pmid: 26117327
[43]
DIETZ K J. Peroxiredoxins in plants and cyanobacteria. Antioxidants & Redox Signaling, 2011, 15(4): 1129-1159.
[44]
FROVA C. Glutathione transferases in the genomics era: New insights and perspectives. Biomolecular Engineering, 2006, 23(4): 149-169.

pmid: 16839810
[45]
张慧慧, 康晗晔, 刘惠, 张金锐, 霍帆, 郭玮琦, 叶小芳, 季荣, 扈鸿霞. 基于TMT蛋白质组学技术分析蝗虫微孢子虫感染飞蝗后的差异蛋白. 中国农业科学, 2024, 57(24): 4884-4893.

doi: 10.3864/j.issn.0578-1752.2024.24.005
ZHANG H H, KANG H Y, LIU H, ZHANG J R, HUO F, GUO W Q, YE X F, JI R, HU H X. Differentially expressed proteins analysis of Locusta migratoria infected by Paranosema locustae based on TMT proteomics technique. Scientia Agricultura Sinica, 2024, 57(24): 4884-4893. (in Chinese)
[1] ZHANG YiRu, HAN Xue, YAO XinJie, FENG Jun, WEI AiLi, LI WenChao, ZHANG Bin, HAN YuanHuai, LI HongYing. Integrated Multi-Omics Elucidates the Pigmentation Dynamics During Post-Harvest Maturation in Foxtail Millet (Setaria italica) [J]. Scientia Agricultura Sinica, 2025, 58(9): 1702-1718.
[2] WANG WenJuan, SHI ShangLi, KANG WenJuan, DU YuanYuan, YIN Chen. The Physiological Response of Longzhong Alfalfa to Exogenous Spermine Under Drought Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 676-691.
[3] LÜ HuanHuan, LI RuYue, LIU QingSong, XU Lei, XU YanRan, YU HaoJie, GUO ChangHong, LONG RuiCai. Cloning and Salt Tolerance Function Analysis of MsKTI3 Gene in Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4497-4511.
[4] GAO Rong, LI HengYu, CHEN LiJuan, MA HuiLing. Physiological Effects of 5-AzaC on Alleviating Salt‑Alkali Stress in Alfalfa and Its Impact on the Expression of DNA Methylation Enzyme Genes [J]. Scientia Agricultura Sinica, 2025, 58(21): 4482-4496.
[5] HUANG HongMei, WANG SiQi, YANG QingChuan, GUO ChangHong, WANG Xue. Phosphate Transporter MsPT5 Regulates Phosphate Uptake and Utilization in Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4544-4556.
[6] XU XiuYuan, ZHANG HongZhi, XU LiJun, XUE Wei, NIE YingYing, GUO MingYing, LI JinXia, ZHAO YaRu, SHI MingJiang. Effects of Nitrogen Fertilization on Photosynthetic Carbon Allocation in Pasture Based on 13C Pulse-Labeling Experiments [J]. Scientia Agricultura Sinica, 2025, 58(21): 4346-4356.
[7] ZHANG Fan, YANG QingChuan. The Breeding History, Current Status and Prospects of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4471-4481.
[8] BAO MingFang, QIN Yan, CHEN CaiJin, ZHANG ShangPei, ZHANG GuoHui, SHA XiaoDi. Evaluation of 111 Alfalfa Germplasm Resources for Seedling Phenotypic Drought Tolerance Characterization [J]. Scientia Agricultura Sinica, 2025, 58(19): 3825-3836.
[9] LI RuoHong, MA Wen, ZHAO ShiQiang, MAO PeiSheng. Antioxidant Physiology and Hormonal Response Pattern of Embryonic Root Mitochondria During Imbibition of Aging Seeds of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(19): 4014-4025.
[10] ZENG XiangCui, YANG YongNian, LI RuYue, JIANG XueQian, JIANG Xu, XU YanRan, LIU ZhongKuan, LONG RuiCai, KANG JunMei, YANG QingChuan, LI MingNa. Identification of Alfalfa (Medicago sativa) MsCEP Genes and Functional Analysis of Its Regulation in Root Growth and Development [J]. Scientia Agricultura Sinica, 2024, 57(24): 4839-4853.
[11] ZHANG HuiHui, KANG HanYe, LIU Hui, ZHANG JinRui, HUO Fan, GUO WeiQi, YE XiaoFang, JI Rong, HU HongXia. Differentially Expressed Proteins Analysis of Locusta migratoria Infected by Paranosema locustae Based on TMT Proteomics Technique [J]. Scientia Agricultura Sinica, 2024, 57(24): 4884-4893.
[12] CHEN FeiEr, ZHANG ZhiPeng, JIANG QingXue, MA Lin, WANG XueMin. Cloning and Biological Function Verification of Alfalfa MsSPL17 [J]. Scientia Agricultura Sinica, 2024, 57(17): 3335-3349.
[13] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[14] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[15] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!