Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3664-3675.doi: 10.3864/j.issn.0578-1752.2025.18.007

• PLANT PROTECTION • Previous Articles     Next Articles

Silencing of Cytochrome P450 Genes CYP6CY53 and CYP302A1 in Aphis craccivora Enhances the Sensitivity to Flonicamid

XIAO ZhuoDan(), QIAO JiaZheng, GAO YuLan, SHANG ZhangYin, LIU Huai, WANG Jia()   

  1. College of Plant Protection, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
  • Received:2025-06-15 Accepted:2025-07-19 Online:2025-09-18 Published:2025-09-18
  • Contact: WANG Jia

Abstract:

【Objective】The objective of this study is to clarify the effect of key cytochrome P450 (CYP450) genes in Aphis craccivora on the toxicity of flonicamid and validate their functions, thus providing a theoretical basis for managing insect resistance and formulating green control strategies that combine gene-targeted interference with pesticide treatment. 【Method】P450 enzyme activity was measured after flonicamid treatment to evaluate the overall metabolic response. P450 genes of A. craccivora were identified through database mining combined with phylogenetic analysis, and the qRT-PCR was used to screen the P450 genes responsive to insecticide treatment. The protein structures of up-regulated P450 enzymes were predicted using AlphaFold 3, and molecular docking of P450 enzymes with flonicamid was conducted via AutoDock to characterize binding modes and affinities. RNA interference (RNAi) was applied to silence the target P450 genes, and then the alteration of flonicamid toxicity to A. craccivora was evaluated. 【Result】After treatment with flonicamid, the activity of P450 enzymes increased significantly, peaking at 24 h, and then gradually decreased. A total of 59 P450 genes of A. craccivora were screened out, among which the expressions of CYP6CY53 in the CYP3 cluster and CYP302A1 in the Mito cluster were significantly up-regulated after flonicamid treatment, suggesting that they play a crucial role in insecticide metabolism. AlphaFold 3 predicted the structures of CYP6CY53 and CYP302A1 with confidence scores of 0.75 and 0.86, respectively. Molecular docking between the two enzymes and flonicamid was performed using AutoDock, and the results indicated that flonicamid binds to the two enzymes primarily through hydrogen bonds, with binding energy values of -15.32 and -18.17 kJ·mol-1, respectively. After silencing CYP6CY53 and CYP302A1 in A. craccivora, the median lethal concentration (LC50) of flonicamid decreased to 2.06 and 6.08 mg·L-1, respectively, and the sensitivity ratios increased to 9.26 and 3.13 times that of the control group. 【Conclusion】The expression of CYP6CY53 and CYP302A1 was up-regulated in A. craccivora in response to flonicamid stress. These two genes play crucial roles in mitigating the toxicity of flonicamid, and the silencing of them can significantly enhance the sensitivity of A. craccivora to flonicamid.

Key words: Aphis craccivora, flonicamid, P450 gene, RNA interference (RNAi), toxicity assay

Table 1

Primer sequences used in this study"

登录号/名称Accession number/name 上游引物序列Forward primer sequence 下游引物序列Reverse primer sequence
用于qRT-PCR For qRT-PCR
KAF0713336.1 CGTTCTTGATCGTGTCCAGC ACGTCCGGAAAGCTAAAGGA
KAF0729120.1 TGGCTGGACACAAGTATGGA GCGTTTCTGACAGTGGTTCA
KAF0730706.1 CTATGCAACCTCTCGGACCA TCCGATGATCTCACTCTGCC
KAF0741275.1 GGCAGCTTATCATCACCATGT GTTTGTGCCACATCGTTCCT
KAF0745846.1 ACCAAAAGCACACGTTCCAA TCCTGGATTCACGTCGGTTA
KAF0749705.1 TAATTGGGTATGACGGCGGT ACTTCTAAACATTCAGCGGGC
KAF0750338.1 TAATTGGGTATGACGGCGGT AACATTCAGCGGGTGGGATA
KAF0751009.1 CGTTGTATCGTTTACTGGCCA ACAAGAAGAAGCAGTCCAGC
KAF0752653.1 CCTCTCGAACCACCACTGAA ACGCTGCCAAAAGGAACAAT
KAF0752909.1 TTGTCCTGGTGTCGTCTGAT GCAAAATGGCCGCATAAACC
KAF0754418.1 TGGACAGATGGCGAAAACAC ATCCCAGAGGTCAAACGGTT
KAF0756480.1 CAACAACATCGGTGGCGTAT ATGCGACAAAATCTCAGCCC
KAF0758588.1 CGCACATCAGACGGTACATG GTTCGAATAGCACGTGGTCC
KAF0759798.1 AAAACTGCAGGATCCCTCGG ACCGACCAAGAAACTGAAGAA
KAF0760910.1 AGAAAAGCGTTGAGTCCAGC ATTTGCCCAACATGTCTCGC
KAF0761535.1 GTCGGTGAGCCCAATTGATC ATCGGGCTCTTTTCGCTAGA
KAF0763819.1 AGTAGGTGCAATGTAGTCCCA GGCGTAAACATCGTCGTCTT
KAF0766099.1 GAAAGTCCATCGCGTAACCC ATTCCGAGTGTGAGGTGCAA
KAF0767093.1 GAGTCCTCTTTGTTGGCCAT TCAATTTTGGCTGCTGGTGG
KAF0767926.1 GTAAGCACGATCGAAGTCAAAA TCGTATTTGTTCGTGGTTCATTT
KAF0770710.1 AAAGGTCGAAACGCAGAAGT TTACAGTGCCGAGTCGTGT
KAF0771958.1 GTTTCAGCCGTCGTTCAGAT ACTGCATGAGATCGTCCCTC
KAF0769200.1 GACACCTGCGTTCACATCTG GCACAGGTTCCGATGACATC
QQL12303.1 CCGGGCCAAGAAATTGCATA GCTCGGCAAGTAATCAGCTC
QQL12304.1 ACGCTGCCAAAAGGAACAAT TAAGCAACCTCTCGGACCAG
QQL12306.1 CAACCTTGTCTACGTCGTGC GCTATGGTGCACGAGAACAG
QQL12307.1 CATCGGGTCATCTGCTTTCG AAAATTTAGCCGCGTCCTCC
QQL12308.1 ACGTCCGGAAAGCTAAAGGA CGTTCTTGATCGTGTCCAGC
QQL12309.1 ACCCGCTAACATTTCAACCG GTTATGCCAAACTCCCCGTC
QQL12310.1 CACCAGCATTTACTTCAGGCA TCTACTCCAAACGCACAAGT
QQL12311.1 TGGCGCTCAGATCATACCTT TTCTCCGACCAACTCCGAAA
QQL12312.1 ATTCCAGCCACACCGTTTTC TGTGCCGGGATTAGAACTGT
QQL12313.1 GGGAAATCTTGTTGGTCGACC CTCCGACAACACCTGGTAGT
QQL12314.1 CGTTCACAGACACTATGCGG AAACCAGCGGCAAACAGAAT
QQL12315.1 ACGACTCTTTACGCCTGACA AAATATGGGTCTCGCTGGGT
QQL12317.1 TTGAAGATACGGCAACAGCG GTTCATCTTCAAGGCACCCG
QQL12318.1 GTGCGTATCGTGTTGGTTGT ACGGCACATTGAGATTTTCCC
QQL12319.1 AGGCCATGACACAACTTCCA AGCGATTCTTTGATTACGGCT
QQL12320.1 CTATTTTGCCGGGGACATCG TCGGTCCTGCACTAAATGGT
QQL12321.1 TGCTATGACCAATGCGTGTG ACACAGGTAAAGGAGGGAACA
QQL12323.1 GAATGGGATGTGCAGTGCTT ATAAAGTCATTCCGGCGCAC
QQL12324.1 CAGGTACCCGGAAAGACGTA ATACCCCTTGACGCACTGAA
QQL12326.1 CATAGGGACGTGTGCTTTCG CGGCGGGGTTGAACTTATTT
QQL12327.1 ATGCATCATGGAGACGTTGC ACTTCGGGATTGGGGAAAGT
QQL12328.1 TCCCAGCGCTAACTACACAA TCCCACAAACGGTATCCACT
QQL12329.1 GGTCAGAATTCTTGAGGCACC CGACCGACCTTCCGAAATTC
QQL12330.1 TGGGCAGGAGATTCGGATTT CGTCTTCGCTCGCTACAAAT
QQL12331.1 TCAACGATCCGGACTCAGAG AACGCGTCATGGAAGAATCG
QQL12332.1 CTCGTATTTCACCGACCATGG CAACTGATCGCTGCACTCTC
QQL12333.1 CGACCGGGTGATGAATAGGA GACGTGAGCAGCAACAGTTT
QQL12334.1 TGGTGAACTTGCGAGGAGAT CGCTGCTTCACTCACATCAA
QQL12335.1 GACCCAAGGAACATTACCGC ATATGCACCAATGGCCCATG
QQL12336.1 CGTCTTGGATGAAAACCCGG GCTCGATCTTGAACATCCTGG
QQL12337.1 CACCTGGTCTCACATCGGTA GGCGTCCAATTTGAGTCCAA
QQL12338.1 ATCCGCGATCCAGAACTGAT AGTTTTCCCGGTGTGAATGC
QQL12339.1 AAGGATTTACTGTGCGGTCG ACCATCTGCAACGTATGTGC
QQL12340.1 AAAACTGACCCACGACCAGA TTCAAACCGAAAGCACACGT
用于dsRNA合成For dsRNA synthesis
dsCYP302A1 T7AACGAAATCCCAGGACCAAT T7AGTCCTCCAGTGTTGTATACGT
dsCYP6CY53 T7CTCGTTCCTCTTCTCCCCAA T7TTAAAGTACGGCCAGCACTC

Fig. 1

Effect of flonicamid treatment on the activity of P450 in A. craccivora Different lowercase letters on the column indicate significant difference (P<0.05)"

Fig. 2

Phylogenetic tree of P450 genes of A. craccivora and other aphids"

Fig. 3

Effect of flonicamid treatment on expression of P450 genes in A. craccivora"

Fig. 4

Molecular docking of flonicamid with CYP6CY53 and CYP302A1 of A. craccivora"

Fig. 5

RNAi efficiency of CYP6CY53 (A) and CYP302A1 (B) in A. craccivora"

Table 2

Effect of CYP6CY53 and CYP302A1 silencing in A. craccivora on toxicity of flonicamid"

处理
Treatment
回归方程
Regression equation (y=)
致死中浓度
LC50 (mg·L-1)
95%置信限
95% Confidence limit (mg·L-1)
卡方值
χ2 (df=3)
敏感性倍数
Sensitivity ratio
dsGFP 0.9506+3.7833x 19.05 18.683-19.416 0.2023
dsCYP6CY53 1.2093+4.6213x 2.06 0.995-4.254 1.3222 9.26
dsCYP302A1 1.4155+4.6723x 6.08 1.414-1.994 1.2750 3.13
[1]
PAVITHRAN S, MURUGAN M, MANNU J, YOGENDRA K, BALASUBRAMANI V, SANIVARAPU H, HARISH S, NATESAN S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. Insect Biochemistry and Molecular Biology, 2024, 165: 104060.
[2]
BOUKAR O, FATOKUN C A, HUYNH B L, ROBERTS P A, CLOSE T J. Genomic tools in cowpea breeding programs: Status and perspectives. Frontiers in Plant Science, 2016, 7: 757.

doi: 10.3389/fpls.2016.00757 pmid: 27375632
[3]
KODANDARAM M H, KUMAR Y B, BANERJEE K, HINGMIRE S, RAI A B, SINGH B. Field bioefficacy, phytotoxicity and residue dynamics of the insecticide flonicamid (50 WG) in okra [Abelmoschus esculenta (L.) Moench]. Crop Protection, 2017, 94: 13-19.
[4]
MORITA M, YONEDA T, AKIYOSHI N. Research and development of a novel insecticide, flonicamid. Journal of Pesticide Science, 2014, 39(3/4): 179-180.
[5]
苏建亚. 氟啶虫酰胺作用靶标——内向整流钾离子通道研究进展. 农药学学报, 2019, 21(2): 131-139.
SU J Y. Molecular target of flonicamid: Inward-rectifying potassium channels. Chinese Journal of Pesticide Science, 2019, 21(2): 131-139. (in Chinese)
[6]
吴声敢, 徐吉洋, 饶惠仙, 柳新菊, 安雪花, 吕露, 关文碧, 赵学平. 草莓蚜虫防治用药对蜜蜂的急性毒性与风险评价. 生态毒理学报, 2017, 12(2): 222-227.
WU S G, XU J Y, RAO H X, LIU X J, AN X H, L, GUAN W B, ZHAO X P. Acute toxicity and risk assessment of pesticides used in strawberry for controlling aphid to honeybees. Asian Journal of Ecotoxicology, 2017, 12(2): 222-227. (in Chinese)
[7]
UMINA P A, REIDY-CROFTS J, EDWARDS O, CHIRGWIN E, WARD S, MAINO J, BABINEAU M. Susceptibility of the cowpea aphid (Hemiptera: Aphididae) to widely used insecticides in Australia. Journal of Economic Entomology, 2022, 115(1): 143-150.

doi: 10.1093/jee/toab210 pmid: 35139214
[8]
FOUAD E A, ABOU-YOUSEF H M, ABDALLAH I S, KANDIL M A. Resistance monitoring and enzyme activity in three field populations of cowpea aphid (Aphis craccivora) from Egypt. Crop Protection, 2016, 81: 163-167.
[9]
YANG Y X, LIN R H, LI Z, WANG A Y, XUE C, DUAN A L, ZHAO M, ZHANG J H. Function analysis of P450 and GST genes to imidacloprid in Aphis craccivora (Koch). Frontiers in Physiology, 2021, 11: 624287.
[10]
LI X C, SCHULER M A, BERENBAUM M R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 2007, 52: 231-253.

pmid: 16925478
[11]
FEYEREISEN R. Evolution of insect P450. Biochemical Society Transactions, 2006, 34: 1252-1255.

doi: 10.1042/BST0341252 pmid: 17073796
[12]
LU K, SONG Y Y, ZENG R S. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Current Opinion in Insect Science, 2021, 43: 103-107.

doi: 10.1016/j.cois.2020.11.004 pmid: 33387688
[13]
乔宪凤, 王康, 彭雄, 张晓赫, 陈茂华. CPR和P450基因在昆虫抗药性中的作用研究进展. 环境昆虫学报, 2023, 45(4): 862-870.
QIAO X F, WANG K, PENG X, ZHANG X H, CHEN M H. The roles of CPR and P450 genes in the resistance of insects to insecticides. Journal of Environmental Entomology, 2023, 45(4): 862-870. (in Chinese)
[14]
ZHANG G J, LI C Y, ZENG Q H, LI J B, DU Z Y, GENG T, HE S, LI J H, GUO L, WAN H. JNK-ERK synergistic regulation of P450 gene expression confers nitenpyram resistance in Nilaparvata lugens (Stål). Journal of Agricultural and Food Chemistry, 2025, 73(13): 7695-7703.
[15]
ABBAS N, ABUBAKAR M, HASSAN M W, SHAD S A, HAFEZ A M. Risk assessment of flonicamid resistance in Musca domestica (Diptera: Muscidae): Resistance monitoring, inheritance, and cross-resistance potential. Journal of Medical Entomology, 2021, 58(4): 1779-1787.
[16]
ZHANG T Y, GONG C W, PU J, PENG A C, LI X Y, WANG Y M, WANG X G. Enhancement of tolerance against flonicamid in Solenopsis invicta (Hymenoptera: Formicidae) through overexpression of CYP6A14. Pesticide Biochemistry and Physiology, 2023, 197: 105651.
[17]
WU H X, LI Z S, ZHONG Z C, GUO Y J, HE L Y, XU X X, MAO Y J, TANG D Y, ZHANG W Q, JIN F L, PANG R. Insect cytochrome P450 database: An integrated resource of genetic diversity, evolution and function. Molecular Ecology Resources, 2025, 25(4): e14070.
[18]
YANG C X, PAN H P, LIU Y, ZHOU X G. Temperature and development impacts on housekeeping gene expression in cowpea aphid, Aphis craccivora (Hemiptera: Aphidiae). PLoS ONE, 2015, 10(6): e0130593.
[19]
ABRAMSON J, ADLER J, DUNGER J, EVANS R, GREEN T, PRITZEL A, RONNEBERGER O, WILLMORE L, BALLARD A J, BAMBRICK J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630(8016): 493-500.
[20]
YANG L, TIAN Y, FANG Y, CHEN M L, SMAGGHE G, NIU J Z, WANG J J. A saliva α-glucosidase MpAgC2-2 enhance the feeding of green peach aphid Myzus persicae via extra-intestinal digestion. Insect Biochemistry and Molecular Biology, 2022, 150: 103846.
[21]
KOO H N, AN J J, PARK S E, KIM J I, KIM G H. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Protection, 2014, 55: 91-97.
[22]
ROY D, BHATTACHARJEE T, BISWAS A, GHOSH A, SARKAR S, MONDAL D, SARKAR P K. Resistance monitoring for conventional and new chemistry insecticides on Bemisia tabaci genetic group Asia-I in major vegetable crops from India. Phytoparasitica, 2019, 47(1): 55-66.
[23]
SHI D D, WANG T T, LV H X, LI X C, WAN H, HE S, YOU H, LI J H, MA K S. Insecticide resistance monitoring and diagnostics of resistance mechanisms in cotton-melon aphid, Aphis gossypii Glover in Central China. Journal of Applied Entomology, 2023, 147(6): 392-405.
[24]
韩宝珠, 车林茸, 陈晓洁, 闫振天, 乔梁, 陈斌. 细胞色素P450基因AsCYP6Z2在中华按蚊溴氰菊酯抗性维持中的作用. 昆虫学报, 2020, 63(8): 961-972.
HAN B Z, CHE L R, CHEN X J, YAN Z T, QIAO L, CHEN B. Role of the cytochrome P450 gene AsCYP6Z2 in the maintenance of deltamethrin resistance in Anopheles sinensis (Diptera: Culicidae). Acta Entomologica Sinica, 2020, 63(8): 961-972. (in Chinese)
[25]
张怡萍, 徐圣, 吴敏. 灰飞虱LWO/AC/cAMP/PKA信号通路调控细胞色素P450基因表达介导对溴氰菊酯抗性. 昆虫学报, 2025, 68(5): 541-554.
ZHANG Y P, XU S, WU M. LWO/AC/cAMP/PKA signal pathway regulates cytochrome P450 gene expression and mediates deltamethrin resistance in Laodelphax striatellus (Hemiptera: Delphacidae). Acta Entomologica Sinica, 2025, 68(5): 541-554. (in Chinese)
[26]
ZHANG T Y, GONG C W, PU J, PENG A C, YANG J Z, WANG X G. Enhancement of tolerance against flonicamid in Solenopsis invicta Queens through overexpression of CYP6AQ83. Journal of Agricultural and Food Chemistry, 2025, 73(1): 237-248.
[27]
TANG J, ZHANG Q H, QU C, SU Q, LUO C, WANG R. Knockdown of one cytochrome P450 gene CYP6DW4 increases the susceptibility of Bemisia tabaci to dimpropyridaz, a novel pyridazine pyrazolecarboxamide insecticide. Pesticide Biochemistry and Physiology, 2024, 201: 105888.
[28]
HAN H, YANG Y Y, HU J, WANG Y X, ZHAO Z G, MA R Y, GAO L L, GUO Y Q. Identification and characterization of CYP6 family genes from the oriental fruit moth (Grapholita molesta) and their responses to insecticides. Insects, 2022, 13(3): 300.
[29]
JIN R H, MAO K K, LIAO X, XU P F, LI Z, ALI E, WAN H, LI J H. Overexpression of CYP6ER1 associated with clothianidin resistance in Nilaparvata lugens (Stål). Pesticide Biochemistry and Physiology, 2019, 154: 39-45.
[30]
HIRATA K, JOURAKU A, KUWAZAKI S, SHIMOMURA H, IWASA T. Studies on Aphis gossypii cytochrome P450s CYP6CY22 and CYP6CY13 using an in vitro system. Journal of Pesticide Science, 2017, 42(3/4): 97-104.
[31]
ZHANG B Z, JIANG Y T, CUI L L, HU G L, LI X A, ZHANG P, JI X, MA P C, KONG F B, LIU R Q. MicroRNA-3037 targeting CYP6CY2 confers imidacloprid resistance to Sitobion miscanthi (Takahashi). Pesticide Biochemistry and Physiology, 2024, 202: 105958.
[32]
ZHANG C, WAN B, JIN M R, WANG J, XIN T R, ZOU Z W, XIA B. The loss of Halloween gene function seriously affects the development and reproduction of Diaphorina citri (Hemiptera: Liviidae) and increases its susceptibility to pesticides. Pesticide Biochemistry and Physiology, 2023, 191: 105361.
[33]
MENG X K, ZHANG N, YANG X M, MIAO L J, JIANG H, JI C H, XU B B, QIAN K, WANG J J. Sublethal effects of chlorantraniliprole on molting hormone levels and mRNA expressions of three Halloween genes in the rice stem borer, Chilo suppressalis. Chemosphere, 2020, 238: 124676.
[34]
MENG L W, YUAN G R, CHEN M L, ZHENG L S, DOU W, PENG Y, BAI W J, LI Z Y, VONTAS J, WANG J J. Cuticular competing endogenous RNAs regulate insecticide penetration and resistance in a major agricultural pest. BMC Biology, 2023, 21(1): 187.
[35]
YAN S, LI M J, JIANG Q H, LI M S, HU M F, SHI X Y, LIANG P, YIN M Z, GAO X W, SHEN J, ZHANG L. Self-assembled co- delivery nanoplatform for increasing the broad-spectrum susceptibility of fall armyworm toward insecticides. Journal of Advanced Research, 2025, 67: 93-104.
[36]
YAN S, QIAN J, CAI C, MA Z Z, LI J H, YIN M Z, REN B Y, SHEN J. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. Journal of Pest Science, 2020, 93(1): 449-459.
[1] CHEN ErHu, TANG JingJie, HU ShunJie, TANG PeiAn. The Roles of Heat Shock Protein Genes CfHsp70-1 and CfHsp70-2 in Enhancing the High-Temperature Tolerance after Heat Acclimation in Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2025, 58(5): 918-928.
[2] CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733.
[3] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[4] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[5] YUAN GuoQing, CHEN ErHu, TANG PeiAn. The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(22): 4483-4494.
[6] LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482.
[7] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[8] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[9] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[10] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[11] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[12] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[13] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[14] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[15] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!