Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3400-3417.doi: 10.3864/j.issn.0578-1752.2025.17.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Exogenous Melatonin Enhances Drought Resistance of Wheat Seedlings by Regulating Abscisic Acid and Hydrogen Peroxide Content

MIAO TongTong(), WANG LongJin, YANG RuiTing, DAI ChengCheng, LIU ShiChao, LI Nan, LI DongXiao-*()   

  1. College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation Co-Constructed by Province and Ministry/Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei
  • Received:2025-02-05 Accepted:2025-07-04 Online:2025-09-02 Published:2025-09-02
  • Contact: LI DongXiao-

Abstract:

【Objective】This research has been conducted to clarify how exogenous melatonin interacts with stress responsive factors of abscisic acid (ABA) and hydrogen peroxide (H2O2) to enhance wheat drought resistance of wheat and explore the underlying mechanism.【Method】Wheat varieties Jimai 22 and Hengguan 35 were used as experimental materials, and six treatments were designed: normal water treatment (CK), exogenous melatonin treatment (MT), drought treatment (DS), melatonin treatment under drought stress (DS+MT), melatonin and ABA inhibitor fluoridone treatment under drought stress (DS+MT+Flu), and the treatment of melatonin and H2O2 scavenger diphenyl chloride iodide salt (DS+MT+DPI) under drought stress. The key physiological indicators of wheat roots and above-ground plants (chlorophyll, net photosynthetic rate (Pn), ABA, endogenous melatonin, malondialdehyde (MDA), superoxide anion (), H2O2 and their antioxidant enzyme activities) were studied, focusing on the changes and response relationships in wheat roots and aboveground plants.【Result】Under normal conditions, the application of exogenous MT could significantly increase the endogenous melatonin content in plant leaves and roots, improve the chlorophyll a/b, Pn, and root fresh weight of the two wheat varieties, enhance the activity of superoxide dismutase (SOD) and peroxidase (CAT) in plants, and reduce the content of MDA, , and leaf ABA. Under drought conditions, applying MT treatment (DS+MT) could significantly increase the total chlorophyll content, Pn, transpiration rate (Tr), instantaneous water use efficiency (WUET) of Jimai 22 and Hengguan 35, with the increases compared with the DS treatment being 14.62%, 26.22%, 18.06%, 6.92% and 6.20%, 49.32%, 16.41%, 28.89%, respectively; Additionally, the SOD activity, CAT activity and MT content in the leaves and roots of Jimai 22 increased by 2.66%, 34.40%, 136.72% and 4.80%, 25.96%, 0.48%, respectively, compared with DS treatment. The SOD activity, CAT activity and MT content in the leaves and roots of Hengguan 35 increased by 32.08%, 24.08%, 24.65% and 83.51%, 4.49%, 61.80%, respectively, compared with DS treatment. At the same time, compared with DS treatment, DS+MT treatment showed better effects on Jimai 22 and Hengguan 35, the leaf ABA content significantly decreased by 36.94% and 6.78%, while the MDA, H2O2, and , contents in the leaves and roots also significantly decreased. The DS+MT+Flu and DS+MT+DPI treatments further enhanced the improvement effect of MT on the aboveground dry weight and SOD activity of Jimai 22, while significantly reducing the contents of ABA, endogenous MT, and peroxidation product; but it showed a negative regulatory effect on Hengguan 35, such as reducing chlorophyll content, leaf area, and aboveground fresh weight, whereas increasing POD activity and leaf MDA and ABA content. All these demonstrated the differences between the varieties.【Conclusion】Under drought stress, the application of exogenous melatonin could effectively enhance the drought resistance of wheat seedlings, and melatonin had two pathways for drought resistance: ABA-dependent and ABA-independent response factors; ABA and H2O2 act as downstream signals of MT. There were both antagonistic and synergistic relationships between ABA and MT, and an antagonistic effect between H2O2 and MT. The interaction between ABA and H2O2 varied by variety and plant parts.

Key words: melatonin, wheat seedlings, abscisic acid, hydrogen peroxide, combat drought

Table 1

The effect of melatonin on the growth of wheat seedlings under drought stress"

品种
Cultivar
处理
Treatment
株高
Plant height (cm)
叶面积
Leaf area
(cm2)
地上部鲜重
Fresh weight of aboveground parts (g)
根鲜重
Fresh weight of root (g)
地上部干重
Above ground dry weight (g)
根干重
Root dry weight (g)
相对含水量Relative water content (%) 根冠比
Root/
Soot
济麦22
Jimai 22
CK 30.86a 34.57a 2.69a 0.48b 0.30a 0.05ab 88.73a 0.16bc
MT 31.50a 35.47a 2.74a 0.57a 0.32a 0.05a 88.34a 0.17bc
DS 26.70b 23.15b 1.34c 0.45b 0.18b 0.04ab 86.81ab 0.25a
DS+MT 27.80b 24.19b 1.48bc 0.47b 0.20b 0.05ab 86.75ab 0.24a
DS+MT+Flu 27.20b 23.91b 1.87b 0.43b 0.27a 0.04b 85.60b 0.15c
DS+MT+DPI 27.38b 25.14b 1.65bc 0.46b 0.21b 0.04ab 87.08ab 0.21ab
衡观35
Hengguan 35
CK 34.90ab 55.66a 3.51a 0.76b 0.43a 0.07b 87.67a 0.17a
MT 35.20a 60.30a 3.65a 0.87a 0.47a 0.09a 87.00a 0.20a
DS 33.10c 38.23bc 2.30b 0.58c 0.31bc 0.05c 86.36a 0.16a
DS+MT 33.32c 40.27b 2.39b 0.59c 0.34b 0.05c 85.97a 0.16a
DS+MT+Flu 33.52bc 34.48cd 2.34b 0.58c 0.33bc 0.05c 85.88a 0.15a
DS+MT+DPI 32.66c 30.55d 2.11c 0.36d 0.26c 0.04d 87.81a 0.16a

Fig. 1

The growth of wheat seedlings under different treatments"

Table 2

The effect of melatonin on photosynthetic pigment content in wheat seedlings under drought stress"

品种
Cultivar
处理
Treatment
叶绿素a含量
Chlorophyll a content (mg·g-1)
叶绿素b含量
Chlorophyll b content (mg·g-1)
叶绿素总含量
Total chlorophyll content (mg·g-1)
叶绿素a/b
Chlorophyll a/b
济麦22
Jimai 22
CK 1.56a 0.47a 2.03a 3.35b
MT 1.66a 0.48a 2.14a 3.46a
DS 1.02c 0.32d 1.34c 3.20c
DS+MT 1.16b 0.37b 1.53b 3.24c
DS+MT+Flu 1.19b 0.37bc 1.56b 3.23c
DS+MT+DPI 1.11bc 0.34cd 1.45bc 3.26c
衡观35
Hengguan 35
CK 1.52b 0.44b 1.96b 3.41a
MT 1.68a 0.49a 2.17a 3.42a
DS 1.28d 0.39c 1.67d 3.32ab
DS+MT 1.36c 0.41c 1.77c 3.34ab
DS+MT+Flu 1.30d 0.39c 1.68d 3.35ab
DS+MT+DPI 1.24d 0.39c 1.63d 3.27b

Fig. 2

The effect of melatonin on photosynthesis of wheat seedlings under drought stress"

Fig. 3

The effect of melatonin on antioxidant enzymes in wheat seedlings under drought stress"

Fig. 4

The effect of melatonin on active oxidative metabolism of wheat seedlings under drought stress"

Fig. 5

DAB staining (H2O2) and NBT staining () in roots treated by different treatments"

Fig. 6

The effect of melatonin on ABA content in wheat seedlings under drought stress"

Fig. 7

The effect of melatonin on endogenous melatonin content in wheat seedlings under drought stress"

Fig. 8

Correlation analysis of H2O2, ABA content and melatonin content under drought stress"

Fig. 9

Analysis of the structural equation model of melatonin and various indicators under drought stress"

Fig. 10

Relationship between melatonin and ABA-H2O2 factor response"

[1]
任健, 王同朝, 梁浩, 关小康, 胡克林. 改进WHCNS模型模拟耕作方式对作物生长和水分利用效率的影响. 农业工程学报, 2022, 38(14): 117-126.
REN J, WANG T C, LIANG H, GUAN X K, HU K L. Simulation of the effects of different tillage practices on crop growth and water use efficiency using improved WHCNS model. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 117-126. (in Chinese)
[2]
VILJOEN F P, DU PREEZ J L, WESSELS J C, AUCAMP M E, MEYER L R, POHLIN F. An HPLC-DAD validated method for the detection and quantification of Cortisol, corticosterone and melatonin in plasma samples of two different animal species. Die Pharmazie, 2019, 74(4): 206-211.
[3]
CHEN X, LABORDA P, LIU F Q. Exogenous melatonin enhances rice plant resistance against Xanthomonas oryzae pv. oryzae. Plant Disease, 2020, 104(6): 1701-1708.
[4]
CHEN X, SUN C, LABORDA P, ZHAO Y C, PALMER I, FU Z Q, QIU J P, LIU F Q. Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae. Frontiers in Microbiology, 2018, 9: 2280.
[5]
张荣, 刘淋茹, 付凯霞, 武紫君, 宋一凡, 王璐媛, 侯阁阁, 贺利, 冯伟, 段剑钊, 等. 干旱胁迫下外源褪黑素对冬小麦小花发育及碳营养代谢的调控. 中国农业科学, 2024, 57(23): 4644-4657. doi:10.3864/j.issn.0578-1752.2024.23.006.
ZHANG R, LIU L R, FU K X, WU Z J, SONG Y F, WANG L Y, HOU G G, HE L FENG W, DUAN J Z, et al. Regulation of exogenous melatonin on small flower development and carbon nutrient metabolism in winter wheat under drought stress. Agricultural Science in China, 2024, 57(23): 4644-4657. doi:10.3864/j.issn.0578-1752.2024.23.006. (in Chinese)
[6]
REN J H, YE J, YIN L N, LI G X, DENG X P, WANG S W. Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy, 2020, 10(5): 663.
[7]
BAWA G, FENG L Y, SHI J Y, CHEN G P, CHENG Y J, LUO J, WU W S, NGOKE B, CHENG P, TANG Z Q, et al. Evidence that melatonin promotes soybean seedlings growth from low-temperature stress by mediating plant mineral elements and genes involved in the antioxidant pathway. Functional Plant Biology, 2020, 47(9): 815-824.

doi: 10.1071/FP19358 pmid: 32553087
[8]
LI Z, SU X Y, CHEN Y L, FAN X C, HE L Z, GUO J M, WANG Y C, YANG Q H. Melatonin improves drought resistance in maize seedlings by enhancing the antioxidant system and regulating abscisic acid metabolism to maintain stomatal opening under PEG-induced drought. Journal of Plant Biology, 2021, 64(4): 299-312.
[9]
龚璞, 李宗震, 岳慧芳, 任永哲, 辛泽毓, 林同保, 王志强. 不同小麦抗旱品种种子萌发的根系特征及其与主要激素含量的关系. 河南农业大学学报, 2018, 52(1): 16-21.
GONG P, LI Z Z, YUE H F, REN Y Z, XIN Z Y, LIN T B, WANG Z Q. Study on the relationship between root system characters and the content of main hormones in germination of drought-resistant winter wheat. Journal of Henan Agricultural University, 2018, 52(1): 16-21. (in Chinese)
[10]
苗青霞. 干旱胁迫对陕西省旱地冬小麦根系特征、生理特性及产量的影响研究. 杨凌: 西北农林科技大学, 2020.
MIAO Q X. Effects of drought stress on root characteristics, physiological characteristics and yield of winter wheat in dryland of Shaanxi province. Yangling: Northwest A&F University, 2020. (in Chinese)
[11]
叶君, 邓西平, 王仕稳, 殷俐娜, 陈道钳, 熊炳霖, 王鑫月. 干旱胁迫下褪黑素对小麦幼苗生长、光合和抗氧化特性的影响. 麦类作物学报, 2015, 35(9): 1275-1283.
YE J, DENG X P, WANG S W, YIN L N, CHEN D Q, XIONG B L, WANG X Y. Effects of melatonin on growth, photosynthetic characteristics and antioxidant system in seedling of wheat under drought stress. Journal of Triticeae Crops, 2015, 35(9): 1275-1283. (in Chinese)
[12]
CUI G B, ZHAO X X, LIU S D, SUN F L, ZHANG C, XI Y J. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry, 2017, 118: 138-149.

doi: S0981-9428(17)30205-X pmid: 28633086
[13]
YE N H, ZHU G H, LIU Y G, LI Y X, ZHANG J H. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and Cell Physiology, 2011, 52(4): 689-698.
[14]
POSTIGLIONE A E, MUDAY G K. Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. Plant Physiology, 2023, 192(1): 469-487.
[15]
刘新, 车永梅, 卢江. H2O2位于ABA的上游参与葡萄对低温的应答. 北方园艺, 2010, (23): 8-11.
LIU X, CHE Y M, LU J. H2O2 Production was upstream of the rise of ABA in response of grape to low temperature. Northern Horticulture, 2010, (23):8-11. (in Chinese)
[16]
LI C, TAN D X, LIANG D, CHANG C, JIA D F, MA F W. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 2015, 66(3): 669-680.
[17]
LI X N, TAN D X, JIANG D, LIU F L. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. Journal of Pineal Research, 2016, 61(3): 328-339.

doi: 10.1111/jpi.12350 pmid: 27299847
[18]
LI D X, ZHANG D, WANG H G, LI Y M, LI R Q. Physiological response of plants to polyethylene glycol (PEG-6000) by exogenous melatonin application in wheat. Zemdirbyste-Agriculture, 2017, 104(3): 219-228.
[19]
FU J J, WU Y, MIAO Y J, XU Y M, ZHAO E H, WANG J, SUN H E, LIU Q, XUE Y W, XU Y F, HU T M. Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Scientific Reports, 2017, 7: 39865.
[20]
XU L L, YUE Q Y, XIANG G Q, BIAN F E, YAO Y X. Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Horticulture Research, 2018, 5: 41.
[21]
李红叶, 翟秀珍, 张少聪, 申佳明, 杨娜, 李浩然, 付晓艺, 李瑞琦, 李东晓. 外源褪黑素对干旱胁迫小麦发芽及幼苗生理特性的影响. 西北农林科技大学学报(自然科学版), 2021, 49(6): 75-84.
LI H Y, ZHAI X Z, ZHANG S C, SHEN J M, YANG N, LI H R, FU X Y, LI R Q, LI D X. Effect of exogenous melatonin on seed germination and leaf physiological characteristic of wheat seedling under drought stress. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(6): 75-84. (in Chinese)
[22]
李杰然. 外源氟啶酮处理对玉米种子H3K9me2水平的调控研究. 泰安: 山东农业大学, 2019.
LI J R. Study on histone H3K9 methylation in maize seeds by exogenous fluridone treatment. Taian: Shandong Agricultural University, 2019. (in Chinese)
[23]
WANG G H, XIAO Y, DENG X J, ZHANG H T, LI T G, CHEN H P. Exogenous hydrogen peroxide contributes to heme oxygenase-1 delaying programmed cell death in isolated aleurone layers of rice subjected to drought stress in a cGMP-dependent manner. Frontiers in Plant Science, 2018, 9: 84.

doi: 10.3389/fpls.2018.00084 pmid: 29449858
[24]
JIANG D G, ZHOU L Y, CHEN W T, YE N H, XIA J X, ZHUANG C X. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways. Rice, 2019, 12(1): 76.

doi: 10.1186/s12284-019-0334-6 pmid: 31637532
[25]
李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38(4): 455-459.
LI H R, LI H L, WANG H G, LI D X, LI R Q, LI Y M. Further study on the method of leaf area calculation in winter wheat. Journal of Triticeae Crops, 2018, 38(4): 455-459. (in Chinese)
[26]
刘微, 陈峰清扬, 陈晖, 刘琰, 廖奕, 赵慧婷, 刘宇华. 外源褪黑素对干旱胁迫下辣椒幼苗生长及生理机制的影响. 湖南生态科学学报, 2024, 11(4): 1-12.
LIU W, CHEN F Q Y, CHEN H, LIU Y, LIAO Y, ZHAO H T, LIU Y H. Effects of exogenous melatonin on growth and physiological characteristics of pepper seedlings under drought stress. Journal of Hunan Ecological Science, 2024, 11(4): 1-12. (in Chinese)
[27]
赵花荣, 张玲, 齐月, 杨超, 胡丽丽. 旱、渍胁迫对夏玉米根冠比及籽粒灌浆源库关系的影响. 气候变化研究进展, 2024, 20(6): 782-798.
ZHAO H R, ZHANG L, QI Y, YANG C, HU L L. Effects of drought and waterlogging stress on root-shoot ratio and source-sink relationship of grain filling of summer maize. Advances in Climate Change Research, 2024, 20(6): 782-798. (in Chinese)
[28]
LIU Y H, OU L J, LIU Z B, LYU J H, WANG J, SONG J S, YANG B Z, CHEN W C, YANG S, LIU W, et al. A novel single-base mutation in CaSGR1 confers the stay-green phenotype in pepper. Horticultural Plant Journal, 2023, 9(2): 293-305.
[29]
AHMAD S, MUHAMMAD I, WANG G Y, ZEESHAN M, YANG L, ALI I, ZHOU X B. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biology, 2021, 21(1): 368.

doi: 10.1186/s12870-021-03160-w pmid: 34384391
[30]
刘鹏, 高超, 高轶楠, 董玉梅, 王崇启, 孙建磊. 叶片喷施褪黑素对盐胁迫下西瓜幼苗的影响. 天津农学院学报, 2024, 31(6): 9-14.

doi: 10.19640/j.cnki.jtau.2024.06.002
LIU P, GAO C, GAO Y N, DONG Y M, WANG C Q, SUN J L. Effects of foliar spraying of melatonin on watermelon seedlings under salt stress. Journal of Tianjin Agricultural University, 2024, 31(6): 9-14. (in Chinese)
[31]
刘炼, 赵宁, 李裕荣. 褪黑素不同施用方式对干旱胁迫下豌豆苗生长的影响. 农技服务, 2024, 41(5): 39-42.
LIU L, ZHAO N, LI Y R. Effects of different application methods of melatonin on pea seedling growth under drought stress. Agricultural Technology Service, 2024, 41(5): 39-42. (in Chinese)
[32]
张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响. 作物学报, 2021, 47(9): 1791-1805.

doi: 10.3724/SP.J.1006.2021.04154
ZHANG M C, HE S Y, QIN B, WANG M X, JIN X J, REN C Y, WU Y K, ZHANG Y X. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. (in Chinese)
[33]
YE J, YANG W J, LI Y L, WANG S W, YIN L N, DENG X P. Seed pre-soaking with melatonin improves wheat yield by delaying leaf senescence and promoting root development. Agronomy, 2020, 10(1): 84.
[34]
YANG L, YOU J, LI J Z, WANG Y P, CHAN Z L. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. Journal of Experimental Botany, 2021, 72(15): 5599-5611.
[35]
WANG Q, LIANG X T, XIANG D B, XU W W, WANG C L, ZHAN C, REN C Z, WEI L M, ZHANG S Q, ZHANG L, WANG J Y, GUO L C. The physiological mechanism of melatonin enhancing the tolerance of oat seedlings under saline-alkali stress. Agronomy, 2023, 13(9): 2343.
[36]
LI D X, BATCHELOR W D, ZHANG D, MIAO H X, LI H Y, SONG S J, LI R Q. Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLoS ONE, 2020, 15(8): e0237536.
[37]
苗含笑, 李东晓, 王久红, 孙亚倩, 刘立, 刘睿, 李红叶. 褪黑素对干旱胁迫下小麦生长发育和产量的影响. 干旱地区农业研究, 2020, 38(5): 161-167, 191.
MIAO H X, LI D X, WANG J H, SUN Y Q, LIU L, LIU R, LI HY. The effect of melatonin on the growth, development, and yield of wheat under drought stress. Agricultural Research in the Arid Areas, 2020, 38(5): 161-167, 191. (in Chinese)
[38]
KE Q B, YE J, WANG B M, REN J H, YIN L N, DENG X P, WANG S W. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Frontiers in Plant Science, 2018, 9: 914.

doi: 10.3389/fpls.2018.00914 pmid: 30018628
[39]
ZHANG Z H, LIU L T, LI H Y, ZHANG S C, FU X Y, ZHAI X Z, YANG N, SHEN J M, LI R Q, LI D X. Exogenous melatonin promotes the salt tolerance by removing active oxygen and maintaining ion balance in wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 12: 787062.
[40]
ZHENG S C, TANG Z X, LI L J, JIA P P, KONG X J, XUE H Y, CHENG X G, WANG X H, ZHANG Y, BAI N, et al. Melatonin reprograms soil microbial community, creates friendly soil environments, and promotes peanut growth. Plant Physiology and Biochemistry, 2025, 218: 109307.
[41]
李波, 昝亚玲, 杨青珍, 王霞, 孙晶. 褪黑素引发对小麦种子萌发期和苗期抗旱性的影响. 麦类作物学报, 2024, 44(12): 1630-1638.
LI B, ZAN Y L, YANG Q Z, WANG X, SUN J. Effects of seeds priming with melatonin solution on drought tolerance of wheat during germination and seedling. Journal of Triticeae Crops, 2024, 44(12): 1630-1638. (in Chinese)
[42]
马旭辉. 褪黑素对玉米根系构型及其抗旱性影响的初步研究. 北京: 中国农业科学院, 2020.
MA X H. Preliminary study on the effect of melatonin on maizeroot structure and drought resistance. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[43]
李春雨, 陈春宇, 毛浩田, 张怀渝, 陈洋尔. 干旱胁迫下外源褪黑素对小麦生长和光系统活性的影响. 麦类作物学报, 2022, 42(7): 846-856.
LI C Y, CHEN C Y, MAO H T, ZHANG H Y, CHEN Y E. Effect of exogenous melatonin on the growth and photosystem activity of wheat under drought stress. Journal of Triticeae Crops, 2022, 42(7): 846-856. (in Chinese)
[44]
XIE Z Y, WANG J, WANG W S, WANG Y R, XU J L, LI Z K, ZHAO X Q, FU B Y. Integrated analysis of the transcriptome and metabolome revealed the molecular mechanisms underlying the enhanced salt tolerance of rice due to the application of exogenous melatonin. Frontiers in Plant Science, 2021, 11: 618680.
[45]
杨艳, 肖斌. 干旱胁迫下外源褪黑素对王族海棠光合作用、ASA-GSH循环以及激素变化的影响. 河南农业科学, 2024, 53(6): 100-110.
YANG Y, XIAO B. Effects of exogenous melatonin on the photosynthesis, ASA-GSH cycle, and hormone changes of Malus‘royalty’under drought stress. Journal of Henan Agricultural Sciences, 2024, 53(6): 100-110. (in Chinese)
[46]
王晶. 外源褪黑素缓解沙芦草干旱胁迫的生理及分子机制研究. 银川: 宁夏大学, 2022.
WANG J. Physiological and molecular mechanisms of exogenous melatonin alleviating drought stress in Agropyron mongolicum. Yinchuan: Ningxia University, 2022. (in Chinese)
[47]
熊海琳. 外源褪黑素和水杨酸对干旱胁迫下白三叶种子萌发和幼苗生理特性的影响. 杨凌: 西北农林科技大学, 2024.
XIONG H L. Effect of exogenous melatonin and salicylic acid on seed germination and seedling physiological characteristics of Trifolium repens under drought stress. Yangling: Northwest A & F University, 2024. (in Chinese)
[48]
贺新蕊, 李清明. CO2加富与外源ABA对受旱黄瓜幼苗生长及叶片内源激素含量的影响. 山东农业大学学报(自然科学版), 2021, 52(3): 352-357.
HE X R, LI Q M. Effects of CO2 enrichment and exogenous ABA on growth and contents of endogenous hormones of cucumber seedlings under drought stress. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(3): 352-357. (in Chinese)
[49]
刘芯伶, 彭玉婷, 王云梅, 夏惠, 梁东, 胡容平. 外源褪黑素和脱落酸对干旱胁迫下猕猴桃幼苗生理特性的影响. 干旱地区农业研究, 2021, 39(4): 95-101.
LIU X L, PENG Y T, WANG Y M, XIA H, LIANG D, HU R P. Effects of exogenous melatonin and abscisic acid on physiological characteristics in kiwifruit seedlings under drought stress. Agricultural Research in the Arid Areas, 2021, 39(4): 95-101. (in Chinese)
[50]
REN J H, YANG X X, MA C Y, WANG Y L, ZHAO J. Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation. Plant Physiology and Biochemistry, 2021, 167: 958-969.

doi: 10.1016/j.plaphy.2021.09.007 pmid: 34571389
[51]
秦彬, 张明聪, 何松榆, 张春宇, 王明瑶, 金喜军, 王孟雪, 张玉先, 胡国华. 褪黑素浸种对大豆种子萌发过程中干旱胁迫的缓解效应. 干旱地区农业研究, 2020, 38(2): 192-198.
QIN B, ZHANG M C, HE S Y, ZHANG C Y, WANG M Y, JIN X J, WANG M X, ZHANG Y X, HU G H. Alleviating effect of melatonin soaking on drought stress during soybean seed germination. Agricultural Research in the Arid Areas, 2020, 38(2): 192-198. (in Chinese)
[52]
洪越, 周贵兰, 刘瑞, 路振宗, 袁雪, 王晔, 李润枝. 外源褪黑素对干旱胁迫下不同抗旱型玉米幼苗生理特性的影响. 北京农学院学报, 2024, 39(3): 39-46.
HONG Y, ZHOU G L, LIU R, LU Z Z, YUAN X, WANG Y, LI R Z. Effects of exogenous melatonin on physiological characteristics of different drought-resistant maize seedlings under drought stress. Journal of Beijing University of Agriculture, 2024, 39(3): 39-46. (in Chinese)
[53]
ROYCHOUDHURY A, PAUL S, BASU S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports, 2013, 32(7): 985-1006.

doi: 10.1007/s00299-013-1414-5 pmid: 23508256
[54]
武术杰, 张凤瑾, 刘骞, 周秀华, 张丹. 干旱胁迫下外源ABA和H2O2对非洲紫罗兰抗旱性影响. 东北林业大学学报, 2019, 47(10): 36-39.
WU S J, ZHANG F J, LIU Q, ZHOU X H, ZHANG D. Effects of exogenous ABA and H2O2 on drought resistance of Saintpaulia ionantha under drought stress. Journal of Northeast Forestry University, 2019, 47(10): 36-39. (in Chinese)
[55]
SHI W, LIU Y, ZHAO N, YAO L M, LI J G, FAN M, ZHONG B J, BAI M Y, HAN C. Hydrogen peroxide is required for light-induced stomatal opening across different plant species. Nature Communications, 2024, 15: 5081.

doi: 10.1038/s41467-024-49377-9 pmid: 38876991
[56]
王璐媛, 刘淋茹, 袁鑫茹, 张艳艳, 张荣, 段剑钊, 贺利, 冯伟, 王志强, 王永华, 郭天财. 干旱胁迫条件下外源褪黑素提高小麦穗花发育和穗粒数的机理. 植物营养与肥料学报, 2024, 30(8): 1477-1489.
WANG L Y, LIU L R, YUAN X R, ZHANG Y Y, ZHANG R, DUAN J Z, HE L, FENG W, WANG Z Q, WANG Y H, GUO T C. Mechanism of exogenous melatonin improving the development of spike and floret and grain numbers per spike in wheat under drought stress. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1477-1489. (in Chinese)
[57]
TAN X L, FAN Z Q, KUANG J F, LU W J, REITER R J, LAKSHMANAN P, SU X G, ZHOU J, CHEN J Y, SHAN W. Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. Journal of Pineal Research, 2019, 67(1): e12570.
[58]
乔江方, 何佳雯, 张美微, 张盼盼, 李川, 牛军, 郭涵潇, 穆蔚林. 外源脱落酸及其抑制剂喷施对夏玉米子粒灌浆及内源激素含量的影响. 玉米科学, 2024, 32(5): 50-59.
QIAO J F, HE J W, ZHANG M W, ZHANG P P, LI C, NIU J, GUO H X, MU W L. The effect of exogenous abscisic acid and its inhibitor spraying on grain filling and endogenous hormone content in summer maize. Journal of Maize Sciences, 2024, 32(5): 50-59. (in Chinese)
[59]
SUPRIYA L, DAKE D, MUTHAMILARASAN M, PADMAJA G. Melatonin-mediated regulation of autophagy is independent of ABA under drought stress in sensitive variety of Gossypium hirsutum L. Plant Physiology and Biochemistry, 2024, 207: 108409.
[60]
CUI G B, SUN F L, GAO X M, XIE K L, ZHANG C, LIU S D, XI Y J. Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 2018, 248(1): 69-87.
[61]
HE H Y, HE L F. Crosstalk between melatonin and nitric oxide in plant development and stress responses. Physiologia Plantarum, 2020, 170(2): 218-226.
[62]
ZHANG Z H, GUO L, SUN H C, WU J H, LIU L T, WANG J W, WANG B, WANG Q Y, SUN Z M, LI D X. Melatonin increases drought resistance through regulating the fine root and root hair morphology of wheat revealed with RhizoPot. Agronomy, 2023, 13(7): 1881.
[1] MENG Hui, LUO BingYu, LU ZhengYu, WANG Peng, KANG DongRu, ZHENG ChengShu, WANG WenLi. Cloning of CmASMT and Its Role in Thermotolerance of Chrysanthemum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1617-1626.
[2] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[3] ZHANG ZhiPeng, TAN YunXiu, LI BaoJun, LI YongCai, BI Yang, LI ShouQiang, WANG XiaoJing, ZHANG Yu, HU Dan. Effects of Exogenous Abscisic Acid Treatment on Periderm Suberification of Postharvest Mini-Tuber Potato from Aeroponic System and Its Possible Mechanisms [J]. Scientia Agricultura Sinica, 2023, 56(6): 1154-1167.
[4] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[5] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[6] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[7] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] SONG SongQuan,LIU Jun,XU HengHeng,LIU Xu,HUANG Hui. ABA Metabolism and Signaling and Their Molecular Mechanism Regulating Seed Dormancy and Germination [J]. Scientia Agricultura Sinica, 2020, 53(5): 857-873.
[10] ZHANG Xue,YANG HongKun,ZHENG Ting,XIAO Yun,MO Piao,FAN GaoQiong. Effects of Exogenous ABA on Pre-Harvest Sprouting Resistance and Quality of White and Red Wheat Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(23): 4750-4763.
[11] LI Ying,ZHAO JiHao,LI JinRong,QIAN BiChang,LIU ZhaoXin,GAO Fang,YANG DongQing,LI XiangDong. Effects of Exogenous 6-BA on Root Growth and Pod Yield of Flooded Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2020, 53(18): 3665-3678.
[12] CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
[13] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[14] BIAN FengE, XIAO QiuHong, HAO GuiMei, SUN YongJiang, LU WenLi, DU YuanPeng, ZHAI Heng. Effect of Root-Applied Melatonin on Endogenous Melatonin and Chlorophyll Fluorescence Characteristics in Grapevine Under NaCl Stress [J]. Scientia Agricultura Sinica, 2018, 51(5): 952-963.
[15] SUN XiePing, LUO YouJin, ZHOU GuangWen. Effects of Selenium on Melatonin Content and Glutathione Redox Cycle in Sweet Cherry Leaves [J]. Scientia Agricultura Sinica, 2017, 50(22): 4373-4381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!