Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3389-3399.doi: 10.3864/j.issn.0578-1752.2025.17.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis for Resistance to Stem Nematode Disease in Sweetpotato

ZHAO DongLan(), MA JuKui, XIAO ShiZhuo, ZHOU ZhiLin, ZHAO LingXiao, WANG Jie, DAI XiBin, SUN HouJun, CAO QingHe   

  1. Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, Jiangsu
  • Received:2025-03-10 Accepted:2025-04-22 Online:2025-09-02 Published:2025-09-02

Abstract:

【Objective】The purpose of this study was to analyze the quantitative trait loci (QTLs) related to stem nematode resistance in sweetpotato (Ipomoea batatas (L.) Lam.), lay a foundation for the fine mapping, cloning, and functional analysis of stem nematode resistance genes in sweetpotato. It also aimed to provide support for the study of the genetic mechanisms of stem nematode resistance, as well as the breeding of resistant varieties in sweetpotato.【Method】An F1 population of 212 progenies derived from a cross between the highly resistant cultivar Yushu 10 and the susceptible line Xin 24 was used. In this study, field-based natural infection assays were conducted to evaluate stem nematode resistance. QTL mapping was performed using composite interval mapping (CIM), and candidate genes within QTL confidence intervals were predicted. Additionally, genome-wide association studies (GWAS) were carried out using the rMVP software (a memory-efficient, visualization-enhanced, and parallel-accelerated R package). For further validation, the resistant cultivar Zhenghong 22 was artificially inoculated with D. destructor, and samples were collected at different post-inoculation time points. The expression patterns of five candidate genes (itf02g19880, itf02g20080, itf02g20100, itf13g18480 and itf13g18550) were analyzed via qRT-PCR.【Result】Three QTLs (qSNR02-1, qSNR02-2, and qSNR13-1) were identified, distributed on chromosomes 2 and 13. The phenotypic contribution rate of the individual QTL related to stem nematode resistance ranged from 9.6% to 11.7%. GWAS revealed one significantly associated locus with stem nematode resistance on chromosome 6. Based on the genomic annotation information, 36 candidate genes related to stem nematode resistance were predicted within the QTL confidence intervals, including members of the ABC transporter family, multidrug and toxic compound extrusion (MATE) efflux proteins, E3 ubiquitin ligases, and glutathione S-transferases, which are involved in defense mechanisms, post-translational modification, and stress response. qRT-PCR results showed that the expression patterns of the five candidate genes were significantly different. The expression level of itf02g20100 reached a peak at 3 days after inoculation, which was 6.2 times that of the control; the expression level of itf02g19880 increased sharply and reached the highest level at 0.5 days after inoculation, which was 43.2 times that of the control; the expression patterns of itf13g18480 and itf13g18550 were similar, and both reached a peak at 7 days after inoculation. This indicates that different candidate genes may play different regulatory roles in the defense response after Ditylenchus destructor infection.【Conclusion】Three QTLs related to stem nematode resistance in sweetpotato were identified, and 36 related candidate genes were screened out, which can be used for the subsequent cloning and functional study of genes related to stem nematode resistance in sweetpotato.

Key words: sweetpotato, F1 population, resistance to stem nematode, QTL mapping, candidate gene

Table 1

qRT-PCR primers of candidate genes"

基因
Gene
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
产物大小
Product size (bp)
Itf02g20080 GCTACTCAAGCTTTCCACAGGC GAAGGAGGAGACTGTTTCGC 107
Itf02g20100 TCAATCTTCACCGTCCACTACA GGAGTTTCTCATCATCATCAGG 200
Itf02g19880 CACCACCACCACCACCATAA AGAGAGGAGGAGATTGCGAG 161
Itf13g18480 TCATAGTTGGAGACTTGGACTTG AGCCACACCTTCAAGAACCA 122
Itf13g18550 GGCTCCACCAAGATGCAAG TCCATAGCAGTGGCCATGTT 141

Fig. 1

Distribution of resistance to stem nematode in F1 population"

Table 2

QTL mapping for resistance to stem nematode in sweetpotato"

数量性状位点 QTL 连锁群
Linkage group
标记区间
Marker interval
标记数
Marker number
物理区间
Physical interval
LOD值
LOD value
表型变异解释率 Explained variance (%) 基因数
Gene number
qSNR02-1 LG02 Marker471299-Marker479577 5 Chr.02 15795792-16767105 3.23 9.6 57
qSNR02-2 LG02 Marker484408-Marker498135 27 Chr.02 17052850-19167216 3.96 11.7 41
qSNR13-1 LG13 Marker3187715-Marker3192541 7 Chr.13 20087827-20975255 3.48 10.3 133

Fig. 2

QTL analysis of resistance to stem nematode in linkage map A: QTL analysis of resistance to stem nematode of sweetpotato; B: QTL analysis of resistance to stem nematode of sweetpotato on LG02; C: QTL analysis of resistance to stem nematode of sweetpotato on LG13. Green lines represent the position of different markers in the lingkage group"

Fig. 3

Manhattan (left) and Q-Q plots(right) of GWAS results of resistance to stem nematode in sweetpotato"

Table 3

Annotation of candidate genes"

数量性状位点
QTL
候选基因
Candidate genes
COG注释
COG annotation
GO注释
GO annotation
NR注释
NR annotation
qSNR02-1 itf02g20080
itf02g20090
防御机制
Defense mechanisms
GO:0005524 GO:0006200 GO:0016887 ABC转运蛋白A家族成员7和2
ABC transporter A family member 7 and 2
itf02g20180
itf02g20100
itf02g19820
翻译后修饰、蛋白质周转、分子伴侣
Posttranslational modification, protein turnover, chaperones
GO:0004842 GO:0006511 GO:0009650 泛素缀合酶E2 Ubiquitin-conjugating enzyme E2
E3泛素蛋白连接酶 E3 ubiquitin-protein ligase
itf02g20350
itf02g20340
itf02g20320
翻译后修饰、蛋白质周转、分子伴侣
Posttranslational modification, protein turnover, chaperones
GO:0004364 GO:0009072 GO:0016034 谷胱甘肽S转移酶zeta类
Glutathione S-transferase zeta class
itf02g20520 碳水化合物运输和代谢
Carbohydrate transport and metabolism
异胡豆苷合成酶
Strictosidine synthase
itf02g19900
itf02g19880
itf02g20190
转录因子bHLH47、TCP14和WRKY61
Transcription factor bHLH47, TCP14 and WRKY61
qSNR02-2 itf02g21100 GO:0000234 GO:0032259 磷酸乙醇胺N-甲基转移酶
Phosphoethanolamine N-methyltransferase
itf02g21980 GO:0055085 生长素外排促进因子PIN1b
Auxin efflux facilitator PIN1b
itf02g21450 GO:0004185 GO:0006508 丝氨酸羧肽酶45
Serine carboxypeptidase-like 45
itf02g21820 锌指蛋白VAR3
Zinc finger protein VAR3
qSNR13-1 itf13g19430 itf13g19700 GO:0016772 丝裂原活化蛋白激酶激酶激酶2
Mitogen-activated protein kinase kinase kinase 2-like(MAPKKK2)
itf13g19030 无机离子运输和代谢
Inorganic ion transport and metabolism
GO:0004784 GO:0009651 GO:0042742 超氧化物歧化酶
Superoxide dismutase
itf13g18440 itf13g18450 itf13g18920 itf13g18910 GO:0016787 果胶酯酶28、29
Pectinesterase 28, 29
itf13g18480 itf13g18470 itf13g18520 itf13g18490
itf13g18500 itf13g18530 itf13g18510
GO:0008152
GO:0016787
环氧化物酶
Epoxide hydrolase
itf13g18550 防御机制
Defense mechanisms
GO:0006855 GO:0015238 GO:0015297 MATE(多药和毒性化合物外排转运蛋白)外排家族蛋白5
MATE (Multidrug and toxic extrusion transporters) efflux family protein 5-like
itf13g18640 防御机制
Defense mechanisms
ABC转运蛋白C家族成员14异构体X1
ABC transporter C family member 14 like isoform X1
itf13g19860 氨基酸转运和代谢
Amino acid transport and metabolism
GO:0004124 GO:0006535 GO:0016740 半胱氨酸合成酶
Cysteine synthase
itf13g19220 itf13g18940 itf13g19630 翻译后修饰、蛋白质周转、分子伴侣
Posttranslational modification, protein turnover, chaperones
GO:0046872
GO:0051716 GO:0050794
E3泛素连接酶
E3 ubiquitin-protein ligase

Fig. 4

Analysis of the expression patterns of candidate genes for resistance to stem nematode in sweetpotato"

[1]
RODRIGUEZ-BONILLA L, CUEVAS H E, MONTERO-ROJAS M, BIRD-PICO F, LUCIANO-ROSARIO D, SIRITUNGA D. Assessment of genetic diversity of sweet potato in Puerto Rico. PLoS ONE, 2014, 9(12): e116184.
[2]
ZHAO D L, WU S, DAI X B, SU Y J, DAI S B, ZHANG A, ZHOU Z L, TANG J, CAO Q H. QTL analysis of root diameter in a wild diploid relative of sweetpotato (Ipomoea batatas (L.) Lam.) using a SNP-based genetic linkage map generated by genotyping-by- sequencing. Genetic Resources and Crop Evolution, 2021, 68(4): 1375-1388.
[3]
OKADA Y, KOBAYASHI A, TABUCHI H, KURANOUCHI T. Review of major sweetpotato pests in Japan, with information on resistance breeding programs. Breeding Science, 2017, 67(1): 73-82.

doi: 10.1270/jsbbs.16145 pmid: 28465670
[4]
马居奎, 张成玲, 杨冬静, 谢逸萍, 孙厚俊. 甘薯腐烂茎线虫重组酶聚合酶扩增方法的建立与应用. 西南农业学报, 2021, 34(2): 293-298.
MA J K, ZHANG C L, YANG D J, XIE Y P, SUN H J. Development and application of recombinase polymerase amplification assay for rapid detection of Ditylenchus destructor. Southwest China Journal of Agricultural Sciences, 2021, 34(2): 293-298. (in Chinese)
[5]
赵洪海, 梁晨, 张浴, 段方猛, 宋雯雯, 史倩倩, 黄文坤, 彭德良. 腐烂茎线虫(Ditylenchus destructor Thorne, 1945)生物学研究进展. 生物技术通报, 2021, 37(7): 45-55.

doi: 10.13560/j.cnki.biotech.bull.1985.2021-0600
ZHAO H H, LIANG C, ZHANG Y, DUAN F M, SONG W W, SHI Q Q, HUANG W K, PENG D L. Research advances of biology in Ditylenchus destructor thorne, 1945. Biotechnology Bulletin, 2021, 37(7): 45-55. (in Chinese)
[6]
姜培, 冯晓东, 王晓亮, 朱莉, 秦萌, 李潇楠, 闫硕. 近年来我国腐烂茎线虫为害与防控形势. 中国植保导刊, 2020, 40(7): 87-90.
JIANG P, FENG X D, WANG X L, ZHU L, QIN M, LI X N, YAN S. Analysis of the occurrence and control of Ditylenchus destructor in China in recent years. China Plant Protection, 2020, 40(7): 87-90. (in Chinese)
[7]
刘霞霞, 坚晋卓, 徐鹏刚, 刘永刚, 李惠霞. 甘肃岷县当归茎线虫病发生情况调查分析. 草原与草坪, 2015, 35(4): 1-4.
LIU X X, JIAN J Z, XU P G, LIU Y G, LI H X. A survey of the Ditylenchus destructor on Angelica in Min County of Gansu Province. Grassland and Turf, 2015, 35(4): 1-4. (in Chinese)
[8]
马娟, 李秀花, 高波, 王容燕, 陈书龙. 噻唑膦与氨基寡糖素联合应用对甘薯茎线虫病的防治效果. 河北农业科学, 2022, 26(6): 50-55.
MA J, LI X H, GAO B, WANG R Y, CHEN S L. Control effect of combined application of thiazolidine and aminooligosaccharin on sweetpotato stem nematode disease. Journal of Hebei Agricultural Sciences, 2022, 26(6): 50-55. (in Chinese)
[9]
马娟, 高波, 李秀花, 王容燕, 黄山, 陈书龙. 噻唑膦与硅肥联合使用对甘薯茎线虫病的防治效果. 植物保护, 2024, 50(2): 307-312, 324.
MA J, GAO B, LI X H, WANG R Y, HUANG S, CHEN S L. Control efficacy of fosthiazate and silicon fertilizer on Ditylenchus destructor disease. Plant Protection, 2024, 50(2): 307-312, 324. (in Chinese)
[10]
刘强, 刘环环, 吴春娟, 聂庭彬, 王瑞文. 生物菌剂在甘薯茎线虫病防治中的应用效果. 中国植保导刊, 2023, 43(8): 89-92.
LIU Q, LIU H H, WU C J, NIE T B, WANG R W. Comparison of effects of different biological agents on the control of sweet potato stem nematode disease. China Plant Protection, 2023, 43(8): 89-92. (in Chinese)
[11]
QIAO S C, MA J K, WANG Y N, CHEN J W, KANG Z H, BIAN Q Q, CHEN J J, YIN Y M, CAO G Z, ZHAO G R, YANG G H, SUN H J, YANG Y F. Integrated transcriptome and metabolome analyses reveal details of the molecular regulation of resistance to stem nematode in sweet potato. Plants, 2023, 12(10): 2052.
[12]
闫会, 张成玲, 张允刚, 马居奎, 马猛, 孙厚俊, 李强. 甘薯茎线虫病抗扩展性遗传特性分析与QTL定位. 植物遗传资源学报, 2023, 24(6): 1766-1777.

doi: 10.13430/j.cnki.jpgr.20230420002
YAN H, ZHANG C L, ZHANG Y G, MA J K, MA M, SUN H J, LI Q. Analysis of resistance inheritance and QTL mapping of sweet potato stem nematode disease. Journal of Plant Genetic Resources, 2023, 24(6): 1766-1777. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20230420002
[13]
ZHAO D L, XIAO S Z, ZHANG A, ZHAO L X, DAI X B, YUAN R, WANG J, WANG Y, LI Q L, ZHOU Z L. Construction of high-density genetic map based on SLAF-seq and QTL analysis of major traits in sweetpotato [Ipomoea batatas (L.) Lam. Plant Physiology and Biochemistry, 2024, 211: 108647.
[14]
WU S, LAU K H, CAO Q H, HAMILTON J P, SUN H H, ZHOU C X, ESERMAN L, GEMENET D C, OLUKOLU B A, WANG H Y, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 2018, 9: 4580.

doi: 10.1038/s41467-018-06983-8 pmid: 30389915
[15]
YIN L L, ZHANG H H, TANG Z S, XU J Y, YIN D, ZHANG Z W, YUAN X H, ZHU M J, ZHAO S H, LI X Y, LIU X L. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 2021, 19(4): 619-628.
[16]
吴政, 蒋文翔, 胡霞菲, 张泽霖, 王晓清, 叶晴, 贺浩华, 胡丽芳. ABC转运蛋白对植物花药发育的影响. 分子植物育种, 2024: 1-11. (2024-08-20). https://.cnki.net/kcms/detail/46.1068.S.20240312.1759.022.html.
WU Z, JIANG W X, HU X F, ZHANG Z L, WANG X Q, YE Q, HE H H, HU L F. Effects of ABC transporter on anther development in plants. Molecular Plant Breeding, 2024: 1-11. (2024-08-20). https://kns.cnki.net/kcms/detail/46.1068.S.20240312.1759.022.html. (in Chinese)
[17]
张嘉, 李启东, 李翠, 王庆海, 侯新村, 赵春桥, 李树和, 郭强. 植物MATE转运蛋白研究进展. 植物学报, 2023, 58(3): 461-474.

doi: 10.11983/CBB22092
ZHANG J, LI Q D, LI C, WANG Q H, HOU X C, ZHAO C Q, LI S H, GUO Q. Research progress on MATE transporters in plants. Chinese Bulletin of Botany, 2023, 58(3): 461-474. (in Chinese)
[18]
MOWBRAY S L, ELFSTRÖM L T, AHLGREN K M, ANDERSSON C E, WIDERSTEN M. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Science, 2006, 15(7): 1628-1637.

pmid: 16751602
[19]
宋佳乐, 刘洋洋, 司增志, 刘云峰, 吉志新, 乔亚科, 朱英波, 靳恒星. 不同甘薯品种(系)对茎线虫病的抗性鉴定及评价. 江西农业学报, 2023, 35(1): 116-123.
SONG J L, LIU Y Y, SI Z Z, LIU Y F, JI Z X, QIAO Y K, ZHU Y B, JIN H X. Identification and evaluation of resistance of different sweet potato varieties(species) to Ditylenchus destructor. Acta Agriculturae Jiangxi, 2023, 35(1): 116-123. (in Chinese)
[20]
李爱贤, 刘庆昌, 王庆美, 翟红, 阎文昭, 张海燕, 李明. 甘薯淀粉含量的QTL定位. 分子植物育种, 2010, 8(3): 516-520.
LI A X, LIU Q C, WANG Q M, ZHAI H, YAN W Z, ZHANG H Y, LI M. Mapping QTLs for starch content in sweetpotato. Molecular Plant Breeding, 2010, 8(3): 516-520. (in Chinese)
[21]
蒲志刚, 王大一, 谭文芳, 吴洁, 阎文昭. 利用AFLP构建甘薯连锁图及淀粉含量QTL定位. 西南农业学报, 2010, 23(4): 1047-1050.
PU Z G, WANG D Y, TAN W F, WU J, YAN W Z. AFLP maps and QTL analysis of starch content of sweet potato. Southwest China Journal of Agricultural Sciences, 2010, 23(4): 1047-1050. (in Chinese)
[22]
唐道彬, 张凯, 吕长文, 谢德斌, 傅体华, 王季春. 基于EST-SSR标记甘薯连锁图谱构建及淀粉性状的QTL定位. 中国农业科学, 2016, 49(23): 4488-4506. doi: 10.3864/j.issn.0578-1752.2016.23.003.
TANG D B, ZHANG K, C W, XIE D B, FU T H, WANG J C. Genetic linkage map construction based on EST-SSR and analysis of QTLs for starch content in sweetpotato (Ipomoea batatas (L.) Lam. Scientia Agricultura Sinica, 2016, 49(23): 4488-4506. doi: 10.3864/j.issn.0578-1752.2016.23.003. (in Chinese)
[23]
吴洁, 谭文芳, 何俊蓉, 蒲志刚, 王大一, 张正圣, 詹付凤, 阎文昭. 甘薯SRAP连锁图构建淀粉含量QTL检测. 分子植物育种, 2005, 3(6): 841-845.
WU J, TAN W F, HE J R, PU Z G, WANG D Y, ZHANG Z S, ZHAN F F, YAN W Z. Construct on of SRAP linkage map and QTL mapping for starch content in sweet potato. Molecular Plant Breeding, 2005, 3(6): 841-845. (in Chinese)
[24]
ZHAO N, YU X X, JIE Q, LI H, LI H, HU J, ZHAI H, HE S Z, LIU Q C. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Molecular Breeding, 2013, 32(4): 807-820.
[25]
李爱贤, 申春云, 王庆美, 解备涛, 侯夫云, 董顺旭, 张海燕, 张立明. 甘薯β-胡萝卜素含量的QTL定位. 分子植物育种, 2014, 12(2): 270-277.
LI A X, SHEN C Y, WANG Q M, XIE B T, HOU F Y, DONG S X, ZHANG H Y, ZHANG L M. Mapping QTLs for carotene content in sweetpotato (Ipomoea batatas (L.) Lam.). Molecular Plant Breeding, 2014, 12(2): 270-277. (in Chinese)
[26]
CERVANTES-FLORES J C, SOSINSKI B, PECOTA K V, MWANGA R O M, CATIGNANI G L, TRUONG V D, WATKINS R H, ULMER M R, YENCHO G C. Identification of quantitative trait loci for dry-matter, starch, and β-carotene content in sweetpotato. Molecular Breeding, 2011, 28(2): 201-216.
[27]
LI H, ZHAO N, YU X X, LIU Y X, ZHAI H, HE S Z, LI Q, MA D F, LIU Q C. Identification of QTLs for storage root yield in sweetpotato. Scientia Horticulturae, 2014, 170: 182-188.
[28]
CHANG K Y, LO H, LAI Y, YAO P, LIN K, HWANG S. Identification of quantitative trait loci associated with yield-related traits in sweet potato (Ipomoea batatas). Botanical Studies, 2009, 50(1): 43-55.
[29]
SHIRASAWA K, TANAKA M, TAKAHATA Y, MA D F, CAO Q H, LIU Q C, ZHAI H, KWAK S S, JEONG J C, YOON U H, LEE H U, HIRAKAWA H, ISOBE S. A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas). Scientific Reports, 2017, 7: 44207.

doi: 10.1038/srep44207 pmid: 28281636
[30]
YAN H, MA M, AHMAD M Q, ARISHA M H, TANG W, LI C, ZHANG Y G, KOU M, WANG X, GAO R F, SONG W H, LI Z Y, LI Q. High-density single nucleotide polymorphisms genetic map construction and quantitative trait locus mapping of color-related traits of purple sweet potato [Ipomoea batatas (L.) Lam. Frontiers in Plant Science, 2022, 12: 797041.
[31]
SASAI R M, TABUCHI H, SHIRASAWA K, KISHIMOTO K, SATO S, OKADA Y, KURAMOTO A, KOBAYASHI A, ISOBE S, TAHARA M, MONDEN Y. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato. DNA Research, 2019, 26(5): 399-409.
[32]
MA Z M, GAO W C, LIU L F, LIU M H, ZHAO N, HAN M K, WANG Z, JIAO W J, GAO Z Y, HU Y Y, LIU Q C. Identification of QTL for resistance to root rot in sweetpotato (Ipomoea batatas (L.) Lam) with SSR linkage maps. BMC Genomics, 2020, 21(1): 366.
[33]
KRETZSCHMAR T, BURLA B, LEE Y, MARTINOIA E, NAGY R. Functions of ABC transporters in plants. Essays in Biochemistry, 2011, 50(1): 145-160.

doi: 10.1042/bse0500145 pmid: 21967056
[34]
ZHANG C Y, FANG H, WANG J S, TAO H, WANG D B, QIN M C, HE F, WANG R Y, WANG G L, NING Y S. The rice E3 ubiquitin ligase-transcription factor module targets two trypsin inhibitors to enhance broad-spectrum disease resistance. Developmental Cell, 2024, 59(15): 2017-2033.
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu. The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle [J]. Scientia Agricultura Sinica, 2025, 58(6): 1239-1258.
[3] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[4] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[5] LI Ning, GAO LiFeng, HUANG Xin, SHI HuaWei, YANG JinWen, SHI YuGang, CHEN Ming, JIA JiZeng, SUN DaiZhen. Screening of Wheat Varieties with Low Nitrogen Tolerance and Genome-Wide Association Studies of Low Nitrogen Stress Tolerance Index [J]. Scientia Agricultura Sinica, 2025, 58(13): 2487-2503.
[6] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[7] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[8] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[9] XIONG ShangYe, ZHANG Xiang, LIANG BaoHui, YE YangDong, LI YuYang, ZHU Xiao, ZHU ZhiHong, GUAN HuaZhong, ZHANG Shuai, WU JianGuo, HU Jie. Fine Mapping and Analysis of Pyramiding Effects of Rice Brown Planthopper Resistance Genes QBPH1 and QBPH4 [J]. Scientia Agricultura Sinica, 2024, 57(23): 4619-4631.
[10] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[11] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[12] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[13] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[14] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[15] ZHANG LiYun, HUANG ZhiRong, YANG Liu, CHEN JunPeng, LIN ZhenPing, HUANG HongYan, WU ZhongPing, ZHANG XuMeng, TIAN YunBo, HUANG YunMao, LI XiuJin. Identification of Copy Number Variation and Its Association with Body Weight and Size of Lion-Head Geese by Next-Generation Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(14): 2889-2900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!