Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1154-1167.doi: 10.3864/j.issn.0578-1752.2023.06.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Exogenous Abscisic Acid Treatment on Periderm Suberification of Postharvest Mini-Tuber Potato from Aeroponic System and Its Possible Mechanisms

ZHANG ZhiPeng1(), TAN YunXiu1, LI BaoJun1, LI YongCai1(), BI Yang1, LI ShouQiang2, WANG XiaoJing1, ZHANG Yu3, HU Dan3   

  1. 1 College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070
    2 Institute of Agricultural Products Storage and Processing, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    3 Gansu Seed Station, Lanzhou 730070
  • Received:2022-05-17 Accepted:2022-11-15 Online:2023-03-23 Published:2023-03-23

Abstract:

【Objective】 The aim of this study was to evaluate the effect of exogenous abscisic acid treatment on periderm suberification of postharvest potato mini-tuber from aeroponic system, and to further explore its mechanism. 【Method】 The original seed potato mini-tubers of Tongshu No. 1, free of artificial damage, were pre-stored at 15℃ (RH86-88%) respectively in dark environment for wound healing after dipping in exogenous abscisic acid (ABA) for 10 min. The weight loss rate of tuber during wound healing was measured, the accumulation of suberin and cork in pericardium cells was observed, and the phenylpropane and reactive oxygen metabolism in pericardium tissue of potato tuber were also analyzed. 【Result】 25 mg∙L-1 ABA treatment and prestorage at 15℃ significantly reduced weight loss rate of microtuber, accelerated the accumulation of suberin and corkification in perituber tissue. Further studies showed that the key enzyme activities of phenylpropane metabolism and the content of total phenols, flavonoids and lignin of tuber tissues were significantly increased after ABA treatment, the enzyme activities of phenylalnine ammonia-lyase (PAL), 4-coumarate coenzyme A ligase (4CL), cinnamic acid 4-hydroxylase (C4H) and cinnamyl alcohol dehydrogenase (CAD) were significantly increased by 79.02%, 3.21%, 12.99% and 11.54%, respectively, compared with that of the control 21 days after storage. At the same time, ABA treatment decreased cell membrane permeability and malondialdehyde content, and increased $\mathrm{O}_2^{\bar{.}}$ and H2O2 content and enzyme activities of NADPH oxidase (NOX), super oxide dismutase (SOD), catalase (CAT) and peroxidase (POD), the enzyme activities of NOX, SOD, CAT and POD in treated tubers were increased by 47.33%, 8.61%, 27.27% and 14.50%, respectively, 21 days after storage. In addition, ABA treatment also activated antioxidant system AsA-GSH cycle and effectively maintained the intracellular redox balance. 【Conclusion】 Postharvest ABA treatment could promote the accumulation of suberin and corkification in perituber tissue by activating the metabolism of phenylpropanoid and reactive oxygen species in periderm tissue, and accelerated the postharvest suberification process of aeroponic cultivated micro-potato tubers.

Key words: aeroponic mini-tubers potato, abscisic acid, suberification, phenylpropanoid metabolism, reactive oxygen metabolism

Fig. 1

Effect of ABA treatment on weight loss of tuber during storage Bars indicate standard error (±SE). Different lowercase letters indicate significant difference between different groups at the same storage time (P<0.05). The same as below"

Fig. 2

Effects of ABA treatment on accumulation of SPP (A), SPA (B) and lignin (C) in tuber periderm during storage (Arrows point at the SPP, SPA and lignin, respectively, scale: 200 μm)"

Fig. 3

Effects of ABA treatment on cell layer thickness of SPP (A), SPA (B) and lignin (C) in tuber periderm during storage Different lowercase letters indicate significant difference (P<0.05)"

Fig. 4

Effects of ABA treatment on lignin content in tuber periderm during storage * indicate significant difference between different groups at the same storage time (P<0.05). The same as below"

Fig. 5

Effects of ABA treatment on total phenols (A) and flavonoids (B) content in tuber periderm during storage"

Fig. 6

Effects of ABA treatment on PAL (A), 4CL (B), C4H (C) and CAD (D) activity in potato tuber periderm during storage"

Fig. 7

Effects of ABA treatment on membrane permeability (A) and MDA content (B) in tuber periderm during storage"

Fig. 8

Effects of ABA treatment on H2O2 (A) and $\mathrm{O}_2^{\bar{.}}$ (B))content in tuber periderm during storage"

Fig. 9

Effects of ABA treatment on NOX (A), SOD (B), CAT (C) and POD (D) activity in potato tuber periderm during storage"

Fig. 10

Effects of ABA treatment on APX (A), MDHAR (B), DHAR (C) and GR (D) activity in tuber periderm during storage"

Fig. 11

Effects of ABA treatment on ASA (A), DHA (B), GSH (C) and GSSG (D) content in tuber periderm during storage"

[1]
荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因. 作物学报, 2022, 48(7): 1658-1668.

doi: 10.3724/SP.J.1006.2022.14115
JIAN H J, ZHANG M H, SHANG L N, WANG J C, HU B G, KHASSANOV V, D Q. Screening candidate genes involved in potato tuber development using WGCNA. Acta Agronomica Sinica, 2022, 48(7): 1658-1668. (in Chinese)
[2]
陈巧玲, 程群, 高剑华, 徐怡, 叶兴枝, 陈火云. 气雾栽培在脱毒马铃薯生产应用中的研究进展. 湖北农业科学, 2019, 58(S2): 58-60.
CHEN Q L, CHENG Q, GAO J H, XU Y, YE X Z, CHEN H Y. Advances in research on aeroponics culture in the production of potato virus-free seed. Hubei Agricultural Sciences, 2019, 58(S2): 58-60. (in Chinese)
[3]
张德银, 廖霏霏, 刘兴贵, 刘晓, 周力. 脱毒马铃薯雾化生产研究进展. 现代农业科技, 2018(20): 60-61, 63.
ZHANG D Y, LIAO F F, LIU X G, LIU X, ZHOU L. Research progress on atomization production of virus-free potato. XianDai NongYe KeJi, 2018(20): 60-61, 63. (in Chinese)
[4]
刘悦善. 浅析原原种“雾培法”生产技术对甘肃省马铃薯种薯产业发展的影响. 种子科技, 2019, 37(16): 121-122.
LIU Y S. Analysis on the influence of the original seed “fog culture” production technology on the development of potato seed potato industry in Gansu Province. Seed Science & Technology, 2019, 37(16): 121-122. (in Chinese)
[5]
LULAI E C. Skin-set wound healing, and related defects// VREUGDENHIL D. Potato biology and biotechnology:Advances and perspectives. Amsterdam, The Netherlands: Elsevier Limited, 2007: 471-496.
[6]
包改红, 毕阳, 李永才, 吴觉天, 寇宗红, 葛永红, 王毅, 王蒂. 不同愈伤时间对低温贮藏期间马铃薯块茎采后病害及品质的影响. 食品工业科技, 2013, 34(11): 330-334.
BAO G H, BI Y, LI Y C, WU J T, KOU Z H, GE Y H, WANG Y, WANG D. Effect of curing duration on incidence and quality of potato tuber during storage at low temperature. Science and Technology of Food Industry, 2013, 34(11): 330-334. (in Chinese)
[7]
LI Y C, BI Y, GE Y H, SUN X J, WANG Y. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. Journal of Food Science, 2009, 74(5): 213-218.
[8]
郭文雅, 赵京献, 郭伟珍. 脱落酸(ABA)生物学作用研究进展. 中国农学通报, 2014, 30(21): 205-210.
GUO W Y, ZHAO J X, GUO W Z. Advance of research on biological function of abscisic acid (ABA). Chinese Agricultural Science Bulletin, 2014, 30(21): 205-210. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2013-3163
[9]
KUMAR G N M, LULAI E C, SUTTLE J C, KNOWLES N R. Age-induced loss of wound-healing ability in potato tubers is partly regulated by ABA. Planta, 2010, 232(6): 1433-1445.

doi: 10.1007/s00425-010-1269-8 pmid: 20839005
[10]
李雪, 吴觉天, 王毅, 姜红, 毕阳, 司敏, 张静荣, 徐洁. 采后ABA处理促进‘陇薯3号’马铃薯块茎愈伤形成. 中国农业科学, 2017, 50(20): 4003-4011. doi: 10.3864/j.issn.0578-1752.2017.20.014.

doi: 10.3864/j.issn.0578-1752.2017.20.014
LI X, WU J T, WANG Y, JIANG H, BI Y, SI M, ZHANG J R, XU J. Postharvest ABA treatment promote wound healing of potato ‘Longshu No.3’ tubers. Scientia Agricultura Sinica, 2017, 50(20): 4003-4011. doi: 10.3864/j.issn.0578-1752.2017.20.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.20.014
[11]
HAN X Y, MAO L C, WEI X P, LU W J. Stimulatory involvement of abscisic acid in wound suberization of postharvest kiwifruit. Scientia Horticulturae, 2017, 224:244-250.

doi: 10.1016/j.scienta.2017.06.039
[12]
陶晓亚, 李家寅, 韩雪源, 黄斯, 茅林春. 脱落酸对采后番茄愈伤次生代谢物质合成的影响. 食品工业科技, 2016, 37(16): 330-334.
TAO X Y, LI J Y, HAN X Y, HUANG S, MAO L C. Effect of abscisic acid on secondary metabolite production during wound-healing in postharvest tomato fruit. Science and Technology of Food Industry, 2016, 37(16): 330-334. (in Chinese)
[13]
张一冉, 王雅楠, 杨杨, 韩育梅. 脱落酸与水杨酸处理调节李果实抗冷性及氧化酶活性. 江苏农业学报, 2020, 36(2): 471-476.
ZHANG Y R, WANG Y N, YANG Y, HAN Y M. Regulation of abscisic acid and salicylic acid treatments on chilling resist-ance and oxidase activity of plum fruit. Jiangsu Journal of Agricultural Sciences, 2020, 36(2): 471-476. (in Chinese)
[14]
张志鹏, 谭芸秀, 李宝军, 李永才, 毕阳, 李守强, 王小晶, 张宇, 胡丹. 采后不同温度预贮对雾培微型马铃薯的愈伤效果及其机理. 食品科学, 2021, 43(21): 297-304.
ZHANG Z P, TAN Y X, LI B J, LI Y C, BI Y, LI S Q, WANG X J, ZHANG Y, HU D. Effect and possible mechanism of postharvest pre-storage temperature on wound healing of potato minitubers grown in aeroponic system. Food Science, 2021, 43(21): 297-304. (in Chinese)

doi: 10.1111/j.1365-2621.1978.tb02289.x
[15]
VAN OIRSCHOT Q E A, REES D, AKED J, KIHURANI A. Sweet potato cultivars differ in efficiency of wound healing. Postharvest Biology and Technology, 2006, 42(1): 65-74.

doi: 10.1016/j.postharvbio.2006.05.013
[16]
JIANG H, WANG B, MA L, ZHENG X Y, GONG D, XUE H L, BI Y, WANG Y, ZHANG Z, PRUSKY D. Benzo-(1,2,3)-thiadiazole-7- carbothioic acid s-methyl ester (BTH) promotes tuber wound healing of potato by elevation of phenylpropanoid metabolism. Postharvest Biology and Technology, 2019, 153: 125-132.

doi: 10.1016/j.postharvbio.2019.03.003
[17]
VOO K S, WHETTEN R W, O'MALLEY D M, SEDEROFF R R. 4-coumarate: coenzyme a ligase from loblolly pine xylem. Isolation, characterization, and complementary DNA cloning. Plant Physiology, 1995, 108(1): 85-97.

doi: 10.1104/pp.108.1.85
[18]
LAMB C J, RUBERY P H. A spectrophotometric assay for trans- cinnamic acid 4-hydroxylase activity. Analytical Biochemistry, 1975, 68(2): 554-561.

doi: 10.1016/0003-2697(75)90651-X
[19]
GOFFNER D, JOFFROY I, GRIMA-PETTENATI J, HALPIN C, KNIGHT M E, SCHUCH W, BOUDET A M. Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta, 1992, 188(1): 48-53.

doi: 10.1007/BF01160711
[20]
REN Y L, WANG Y F, BI Y, GE Y H, WANG Y, FAN C F, LI D Q, DENG H W. Postharvest BTH treatment induced disease resistance and enhanced reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. European Food Research and Technology, 2012, 234: 963-971.

doi: 10.1007/s00217-012-1715-x
[21]
SOLIDAY C L, DEAN B B, KOLATTUKUDY P E. Suberization: inhibition by washing and stimulation by abscisic acid in potato disks and tissue culture. Plant Physiology, 1978, 61(2): 170-174. doi:10.1104/pp.61.2.170.

doi: 10.1104/pp.61.2.170 pmid: 16660254
[22]
JIMÉNEZ-AGUILAR D M, GRUSAK M A. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. Journal of Food Composition & Analysis, 2017, 58: 33-39.
[23]
REYES L F, CISNEROS-ZEVALLOS L. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). Journal of Agricultural and Food Chemistry, 2003, 51(18): 5296-5300.

doi: 10.1021/jf034213u
[24]
KOBAYASHI M, OHURA I, KAWAKITA K, YOKOTA N, FUJIWARA M, SHIMAMOTO K, DOKE N, YOSHIOKA H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell, 2007, 19(3): 1065-1080.

doi: 10.1105/tpc.106.048884
[25]
KOLATTUKUDY P E. Biochemistry and function of cutin and suberin. Canadian Journal of Botany, 2011, 62(12): 2918-2933.

doi: 10.1139/b84-391
[26]
CHEN J X, MAO L C, MI H B, LU W J, YING T J, LUO Z S. Involvement of abscisic acid in postharvest water-deficit stress associated with the accumulation of anthocyanins in strawberry fruit. Postharvest Biology and Technology, 2016, 111: 99-105.

doi: 10.1016/j.postharvbio.2015.08.003
[27]
BENVENISTE I, SALAUN J P, DURST F. Wounding-induced cinnamic acid hydroxylase in Jerusalem artichoke tuber. Phytochemistry, 1977, 16(1): 69-73.

doi: 10.1016/0031-9422(77)83016-1
[28]
赵淑娟, 刘涤, 胡之璧. 植物4-香豆酸:辅酶A连接酶. 植物生理学报, 2006, 42(3): 529-538.
ZHAO S J, LIU D, HU Z B. 4-Coumarate: coenzyme a ligase in plant. Chinese Journal of Plant Physiology, 2006, 42(3): 529-538. (in Chinese)
[29]
范存斐, 毕阳, 王云飞, 任亚琳, 杨志敏, 王毅. 水杨酸对厚皮甜瓜采后病害及苯丙烷代谢的影响. 中国农业科学, 2012, 45(3): 584-589. doi: 10.3864/j.issn.0578-1752.2012.03.022.

doi: 10.3864/j.issn.0578-1752.2012.03.022
FAN C F, BI Y, WANG Y F, REN Y L, YANG Z M, WANG Y. Effect of salicylic acid dipping on postharvest diseases and phenylpropanoid pathway in muskmelon fruits. Scientia Agricultura Sinica, 2012, 45(3): 584-589. doi: 10.3864/j.issn.0578-1752.2012.03.022. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.03.022
[30]
张鲁斌, 谷会, 弓德强, 常金梅. 植物肉桂醇脱氢酶及其基因研究进展. 西北植物学报, 2011, 31(1): 204-211.
ZHANG L B, GU H, GONG D Q, CHANG J M. Research progress of cinnamyl alcohol dehydrogenase and its gene. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(1): 204-211. (in Chinese)
[31]
刘尊英. 绿芦笋(Asparagus officinalis L.)木质化的生理生化基础及其调控技术研究[D]. 北京: 中国农业大学, 2003.
LIU Z Y. Study on physiological and biochemical basis of lignification of asparagus (Asparagus officinalis L.) and its regulation technology[D]. Beijing: China Agricultural University, 2003. (in Chinese)
[32]
KIM Y H, BAE J M, HUH G H. Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweet potato in response to plant developmental stage and environmental stress. Plant Cell Reports, 2010, 29(7): 779-791.

doi: 10.1007/s00299-010-0864-2
[33]
JIANG H, WANG Y, LI C J, WANG B, MA L, REN Y Y, BI Y, LI Y C, XUE H L, PRUSKY D. The effect of benzo-(1,2,3)-thiadiazole-7- carbothioic acid S-methyl ester (BTH) treatment on regulation of reactive oxygen species metabolism involved in wound healing of potato tubers during postharvest. Food Chemistry, 2020, 309: 125608.

doi: 10.1016/j.foodchem.2019.125608
[34]
JAKUBOWSKA D, JANICKA M. The role of brassinosteroids in the regulation of the plasma membrane H(+)-ATPase and NADPH oxidase under cadmium stress. Plant Science: An International Journal of Experimental Plant Biology, 2017, 264: 37-47.
[35]
WEI M L, GE Y H, LI C Y, HAN X, QIN S C, CHEN Y R, TANG Q, LI J R. G6PDH regulated NADPH production and reactive oxygen species metabolism to enhance disease resistance against blue mold in apple fruit by acibenzolar-S-methyl. Postharvest Biology and Technology, 2019, 148: 228-235.

doi: 10.1016/j.postharvbio.2018.05.017
[36]
BERNARDS M A, SUSAG L M, BEDGAR D L, ANTEROLA A M, LEWIS N G. Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. Journal of Plant Physiology, 2000, 157(6): 601-607.

pmid: 11858251
[37]
BAJJI M, M′HAMDI M, GASTINY F, DELAPLACE P, FAUCONNIER M L, DU JARDIN P. Catalase inhibition alters suberization and wound healing in potato (Solanum tuberosum) tubers. Physiologia Plantarum, 2007, 129(3): 472-483.

doi: 10.1111/ppl.2007.129.issue-3
[38]
WANG C, GAO Y, TAO Y, WU X Z, CUI Z B. Influence of γ-irradiation on the reactive-oxygen metabolism of blueberry fruit during cold storage. Innovative Food Science and Emerging Technologies, 2017, 41: 397-403.

doi: 10.1016/j.ifset.2017.04.007
[39]
TIAN S, QIN G, LI B, WANG Q, MENG X H. Effects of salicylic acid on disease resistance and postharvest decay control of fruits. Stewart Postharvest Review, 2007, 3(6): 1-7.

doi: 10.2212/spr.2007.6.16
[40]
MA Y H, MA F W, ZHANG J K, LI M J, WANG Y H, LIANG D. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Science, 2008, 175(6): 761-766.

doi: 10.1016/j.plantsci.2008.07.010
[41]
GE Y H, DENG H W, BI Y, LI C Y, LIU Y Y, DONG B Y. Postharvest ASM dipping and DPI pre-treatment regulated reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Postharvest Biology and Technology, 2015, 99: 160-167.

doi: 10.1016/j.postharvbio.2014.09.001
[42]
段园园, 岳鑫, 陈贵林. 脱落酸对锁阳茎切口愈合及抗氧化酶活性的影响. 植物生理学报, 2012, 48(3): 298-302.
DUAN Y Y, YUE X, CHEN G L. Effect of abscisic acid on wound healing and antioxidant enzyme activities of Cynomorium songaricum stem. Plant Physiology Journal, 2012, 48(3): 298-302. (in Chinese)
[1] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[2] LIANG Wei,ZHU YaTong,CHAI XiuWei,KONG Rui,LI BinShan,LI YongCai,BI Yang,DOV Prusky. p-Coumaric Acid Promoted Wound Healing of Potato Tubers by Accelerating the Deposition of Suberin Poly Phenolic and Lignin at Wound Sites [J]. Scientia Agricultura Sinica, 2021, 54(20): 4434-4445.
[3] WEI YaNan,PENG Hui,YANG Qian,ZHENG XiaoYuan,TANG ZhongQi,ZHU Yan,XIE JianMing,BI Yang. Effects of Dark and Light Treatments on Wound Healing of Potato Tubers [J]. Scientia Agricultura Sinica, 2021, 54(12): 2619-2629.
[4] SONG SongQuan,LIU Jun,XU HengHeng,LIU Xu,HUANG Hui. ABA Metabolism and Signaling and Their Molecular Mechanism Regulating Seed Dormancy and Germination [J]. Scientia Agricultura Sinica, 2020, 53(5): 857-873.
[5] ZHANG Xue,YANG HongKun,ZHENG Ting,XIAO Yun,MO Piao,FAN GaoQiong. Effects of Exogenous ABA on Pre-Harvest Sprouting Resistance and Quality of White and Red Wheat Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(23): 4750-4763.
[6] LI Ying,ZHAO JiHao,LI JinRong,QIAN BiChang,LIU ZhaoXin,GAO Fang,YANG DongQing,LI XiangDong. Effects of Exogenous 6-BA on Root Growth and Pod Yield of Flooded Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2020, 53(18): 3665-3678.
[7] CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
[8] JIANG Hong, BI Yang, LI ChangJian, WANG Yi, LI ShengE, LIU YaoNa, WANG Bin. Comparison of Healing Ability on Potato Tuber Cultivars ‘Qingshu No. 168’ and ‘Longshu No. 3’ [J]. Scientia Agricultura Sinica, 2017, 50(4): 774-782.
[9] LI Xue, WU JueTian, WANG Yi, JIANG Hong, BI Yang, SI Min, ZHANG JingRong, XU Jie. Postharvest ABA Treatment Promote Wound Healing of Potato ‘Longshu No.3’ Tubers [J]. Scientia Agricultura Sinica, 2017, 50(20): 4003-4011.
[10] ZHANG Wei-1, GAO Wei-2, CAO Zhen-1, HE Li-Shan-1, TAN Gui-Yu-1, WANG Bao-Min-1. Immunolocalization and Quantitation of ABA and IAA in the Organs of Wheat (Triticumaestivum L.) Under Drought Stress [J]. Scientia Agricultura Sinica, 2014, 47(15): 2940-2948.
[11] ZHANG Guo-Bin, YU Ji-Hua, FENG Zhi, MA Yan-Xia, 吕Jian . Effects of Exogenous Nitric Oxide and Abscisic Acid on Photosynthesis Characteristics in Pepper Seedlings Under Autotoxicity Stress [J]. Scientia Agricultura Sinica, 2013, 46(10): 2076-2084.
[12] DENG Yu-yan,MING Jian,ZHANG Zhao-qi,ZENG Kai-fang
. Effect of Chitosan on Salicylic Acid and Active Oxygen Metabolism of Navel Orange Fruit
[J]. Scientia Agricultura Sinica, 2010, 43(4): 812-820 .
[13] LIU Fei,LIU Hui,LIANG Yuan-cun,LIU Ai-xin,WEI Fang-fang,LIN Jin
. Induction of Phenolic Compounds and Lignin in Cultured Tobacco Cells Treated with Riboflavin#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3230-3235 .
[14] PAN Li-ping,LI Yan,TANG Li-song. Growth and Allocation of Photosynthetic Produces in Cotton Under Alternative Partial Root-Zone Irrigation
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2982-2986 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!