Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (15): 3064-3080.doi: 10.3864/j.issn.0578-1752.2025.15.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Streptomyces sp. TOR3209 on Chlorophyll Synthesis and Polyamine Content in Tomato Plants Under Low Temperature Stress

MA Jia(), PENG JieLi, WANG Xu, JIA Nan, LI MengKai, HU Dong*()   

  1. Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences/Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051
  • Received:2025-04-10 Accepted:2025-04-24 Online:2025-08-01 Published:2025-07-30
  • Contact: HU Dong

Abstract:

【Objective】 This study aims to elucidate the biological mechanisms underlying the mitigation of low temperature-induced damage in tomato plants by Streptomyces sp. TOR3209, with particular emphasis on evaluating the impact of TOR3209 inoculation on light-harvesting complex of PSII (LHCII). The investigation focuses primarily on the alterations in chlorophyll biosynthesis pathways and polyamine accumulation.【Method】 Tomato seedlings at the quadrifoliate stage were inoculated with Streptomyces sp. TOR3209 during transplantation into the pots. Low-temperature stress (5 ℃) was conducted 30 days post-transplantation. The experimental design comprised four treatment groups: TOR3209-inoculated plants (TOR3209), non-inoculated plants (NI), TOR3209-inoculated plants exposed to cold stress (TOR3209+C), and non-inoculated plants exposed to cold stress (NI+C). The conformational alterations in LHCII were analyzed through sucrose density gradient centrifugation. Chlorophyll content, precursor metabolite levels, and enzymatic activities in chlorophyll biosynthesis pathways were quantified using microplate-based enzymatic assays. Polyamine speciation profiles were determined by high performance liquid chromatography, while the expression differences of key genes involved in chlorophyll and polyamine biosynthesis metabolism were examined via quantitative real-time PCR.【Result】 Low temperature stress markedly decreased the abundance of LHCII monomers and trimers in thylakoid membranes, while TOR3209 inoculation effectively alleviated the degradation. The chlorophyll content in tomato leaves showed a pronounced decrease by low temperature, concurrent with substantial accumulation of the chlorophyll precursors porphobilinogen (PBG). This accumulation coincided with a marked decline in the level of downstream chlorophyll precursors, including uroporphyrinogen III (Urogen III), protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-proto IX), and protochlorophyll (Pchl). The reduction in chlorophyll content was mainly caused by the blocked site, which was from PBG to Urogen III in chlorophyll synthesis. Streptomyces sp. TOR3209 enhanced porphobilinogen deaminase (PBGD) enzymatic activity and upregulated expression of the encoded gene HemC. This regulatory effect mitigated the inhibitory impact of low temperature stress on the metabolic conversion from PBG to Urogen III, consequently facilitating the recovery of the previously impaired chlorophyll biosynthesis pathway. Concurrently, the inoculation suppressed both chlorophyllase (Chlase) activity and Clh gene expression levels, promoting chlorophyll accumulation. The contents of free and conjugated polyamines were all decreased significantly under low temperature stress, accompanied by a decreased putrescine (Put)/spermine (Spm) ratio. TOR3209 inoculation alleviated the decline of polyamines, and the levels of different forms of polyamines were significantly elevated at the early stage of stress. Extended stress duration activated the metabolic conversion from Put to spermidine (Spd) through Odc gene upregulation, resulting in progressive accumulation of free/conjugated Put and conjugated Spd. Notably, while Spm levels showed no significant variation relative to NI+C, the elevated ratio of Put/Spm contributed to enhancing the abundance of LHCII and stabilized the aggregation state of LHCII. In addition, TOR3209 effectively reversed the cold stress-induced reduction in transglutaminases (TGase) activity while stimulating polyamine conjugation processes.【Conclusion】 TOR3209 treatment enhanced chlorophyll biosynthesis in tomato leaves through relieving the hindrance on the transformation from PBG to Urogen III caused by low temperature stress, and elevating Put accumulation and the Put/Spm ratio. These biochemical modifications collectively stabilized monomeric and trimeric LHCII configurations, providing comprehensive protection for the photosynthetic apparatus against low temperature stress.

Key words: Streptomyces, tomato (Solanum lycopersicum), low temperature stress, light-harvesting complex of PSII (LHCII), chlorophyll synthesis, polyamine

Table 1

The primer sequences used for quantitative real-time PCR (qRT-PCR) analysis"

基因Gene 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
HemC TTCTCCACCGCTATCCCTCA ATACCAATGGCACCCTGAGC
Clh GCAAACTCCGCCATCAGTTC TGCCTCGAATCCCTTTGGTC
Spds GAGGAGGAGATGGTGGTGTC ATGCAACTCCGTCACCAATG
Odc ACTTCCACGACTTCCCTGAG TTCGACATGCACGCTAATGG
Actin TGTCCCTATTTACGAGGGTTATGC CAGTTAAATCACGACCAGCAAGAT

Fig. 1

Effects of TOR3209 on thylakoid membranes isolated from the tomato leaves under low temperature stress"

Fig. 2

Effects of TOR3209 on the relative abundance of LHCII monomers and trimers isolated from the tomato leaves under low temperature stress Each bar represents the mean values from three experiments±SD. Statistical difference was tested with one-way ANOVA (ns: P>0.05, *P<0.05, **P<0.01, ***P<0.001)"

Fig. 3

Effects of TOR3209 on the absorption spectra of LHCII monomers and trimers in the tomato leaves under low temperature stress"

Table 2

Effects of TOR3209 on chlorophyll contents of tomato leaves under low temperature stress"

叶绿素含量Chlorophyll content 处理Treatment 0 d 1 d 3 d 6 d 10 d
叶绿素a
Chl a (mg·g-1 FW)
TOR3209+C 11.67±0.49a 5.77±0.42b 6.07±0.26b 7.38±0.32b 6.23±0.57b
NI+C 9.52±0.43b 4.61±0.42c 4.55±0.33c 4.68±0.65d 4.06±0.79c
TOR3209 11.67±0.49a 8.11±0.36a 9.23±0.48a 9.03±0.66a 8.46±0.55a
NI 9.52±0.43b 6.14±0.34b 6.54±0.54b 6.32±0.04c 5.78±0.06b
叶绿素b
Chl b (mg·g-1 FW)
TOR3209+C 4.65±0.40a 3.13±0.51c 2.74±0.39b 6.72±1.23b 2.77±0.11c
NI+C 3.66±0.42b 2.66±0.37c 1.95±0.45b 3.28±0.97c 2.05±0.54c
TOR3209 4.65±0.40a 9.01±0.53a 7.26±0.13a 9.02±0.20a 8.26±0.56a
NI 3.66±0.42b 6.53±0.22b 7.29±0.14a 6.49±0.05b 5.54±0.58b
总叶绿素
Chl t (mg·g-1 FW)
TOR3209+C 16.69±0.90a 9.11±0.54c 9.01±0.67c 14.45±1.58b 9.21±0.57c
NI+C 13.47±0.61b 7.44±0.79d 6.65±0.23d 8.16±1.02c 6.25±1.34d
TOR3209 16.69±0.90a 17.57±0.78a 16.89±0.62a 18.51±0.84a 17.14±1.14a
NI 13.47±0.61b 13.00±0.51b 14.19±0.69b 13.15±0.09bc 11.60±0.66b

Fig. 4

Effects of TOR3209 on content of precursor substances and activity of key enzymes in chlorophyll biosynthesis of tomato leaves under low temperature stress Each assay was conducted at 0, 1, 3, 6, and 10 days post low temperature treatment. Data are the mean values from three experiments±SD. Different lowercase letters at each time point indicate significant differences among treatments (P<0.05)"

Fig. 5

Effects of TOR3209 on expression of key genes involved in chlorophyll biosynthesis metabolism in tomato leaves under low temperature stress"

Fig. 6

Effects of TOR3209 on endogenous levels of three polyamines in tomato leaves under low temperature stress"

Fig. 7

Effects of TOR3209 on the ratio of free and conjugated Put/Spm in tomato leaves under low temperature stress"

Fig. 8

Effects of TOR3209 on expression of key enzyme genes involved in polyamine synthesis in tomato leaves under low temperature stress"

Table 3

Effect of TOR3209 on TGase activity in tomato leaves under low temperature stress"

处理
Treatment
转谷酰胺酶活性TGase activity (mmol·h-1·g-1)
0 d 1 d 3 d 6 d 10 d
TOR3209+C 0.60±0.03a 0.51±0.00bc 0.49±0.02c 0.54±0.01c 0.53±0.02b
NI+C 0.55±0.02b 0.45±0.04c 0.45±0.01d 0.46±0.01d 0.36±0.02c
TOR3209 0.60±0.03a 0.73±0.03a 0.65±0.00a 0.63±0.02a 0.63±0.03a
NI 0.55±0.02b 0.53±0.04b 0.55±0.03b 0.58±0.02b 0.60±0.03a
[1]
SCHNEIDER A, STEINBERGER I, HERDEAN A, GANDINI C, EISENHUT M, KURZ S, MORPER A, HOECKER N, RÜHLE T, LABS M, et al. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT 71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis. The Plant Cell, 2016, 28(4): 892-910.
[2]
SHU S, YUAN R N, SHEN J L, CHEN J, WANG L J, WU J Q, SUN J, WANG Y, GUO S R. The positive regulation of putrescine on light-harvesting complex II and excitation energy dissipation in salt-stressed cucumber seedlings. Environmental and Experimental Botany, 2019, 162: 283-294.
[3]
NICOL L, NAWROCKI W J, CROCE R. Disentangling the sites of non-photochemical quenching in vascular plants. Nature Plants, 2019, 5(11): 1177-1183.

doi: 10.1038/s41477-019-0526-5 pmid: 31659240
[4]
KIM E, AHN T K, KUMAZAKI S. Changes in antenna sizes of photosystems during state transitions in granal and stroma-exposed thylakoid membrane of intact chloroplasts in Arabidopsis mesophyll protoplasts. Plant and Cell Physiology, 2015, 56(4): 759-768.
[5]
HATMI S, TROTEL-AZIZ P, VILLAUME S, COUDERCHET M, CLÉMENT C, AZIZ A. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. Journal of Experimental Botany, 2014, 65(1): 75-88.
[6]
TIAN J, ZHAO Y, PAN Y, CHEN X, WANG Y, LIN J, WANG J, YANG Q. Exogenous applications of spermidine improve drought tolerance in seedlings of the ornamental grass Hordeum jubatum in Northeast China. Agronomy, 2022, 12(5): 1180.
[7]
WANG P, GRIMM B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynthesis Research, 2015, 126(2/3): 189-202.
[8]
LI S M, WANG S, WANG P, GAO L L, YANG R T, LI Y. Label-free comparative proteomic and physiological analysis provides insight into leaf color variation of the golden-yellow leaf mutant of Lagerstroemia indica. Journal of Proteomics, 2020, 228: 103942.
[9]
VANISRI S, SREEDHAR M, JEEVAN L, PAVANI A, CHATURVEDI A, APARNA M, PAVAN KUMAR D, SUNITHA T, ARUNA K, TRIPURA VENKATA V G N, SURENDER RAJU C, JAGADEESWAR R. Evaluation of rice genotypes for chlorophyll content and scavenging enzyme activity under the influence of mannitol stress towards drought tolerance. International Journal of Current Microbiology and Applied Sciences, 2017, 6(12): 2907-2917.
[10]
DALAL V K, TRIPATHY B C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell and Environment, 2012, 35(9): 1685-1703.
[11]
BIRHANE E, STERCK F J, FETENE M, BONGERS F, KUYPER T W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 2012, 169(4): 895-904.

doi: 10.1007/s00442-012-2258-3 pmid: 22286084
[12]
NESHAT M, ABBASI A, HOSSEINZADEH A, SARIKHANI M R, CHAVAN D D, RASOULNIA A. Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiology and Molecular Biology of Plants, 2022, 28(2): 347-361.

doi: 10.1007/s12298-022-01128-0 pmid: 35400886
[13]
DANISH S, ZAFAR-UL-HYE M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Scientific Reports, 2019, 9: 5999.

doi: 10.1038/s41598-019-42374-9 pmid: 30979925
[14]
陈军, 关欣, 范翠枝, 赵海燕, 吴馨怡, 韩鹰, 顾志壮, 郑青松, 郑春芳. 盐胁迫对番茄种子萌发中多胺形态变化和抗氧化的影响. 土壤学报, 2021, 58(6): 1598-1609.
CHEN J, GUAN X, FAN C Z, ZHAO H Y, WU X Y, HAN Y, GU Z Z, ZHENG Q S, ZHENG C F. Effects of salt stress on form of polyamine and antioxidation in germinating tomato seed. Acta Pedologica Sinica, 2021, 58(6): 1598-1609. (in Chinese)
[15]
MOSTOFA M G, YOSHIDA N, FUJITA M. Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regulation, 2014, 73: 31-44.
[16]
HE L, NADA K, KASUKABE Y, TACHIBANA S. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant and Cell Physiology, 2002, 43(2): 196-206.
[17]
LI J, HU L, ZHANG L, PAN X, HU X. Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biology, 2015, 15: 303.

doi: 10.1186/s12870-015-0699-7 pmid: 26715057
[18]
KORBAS A, KUBIŚ J, RYBUS-ZAJĄC M, CHADZINIKOLAU T. Spermidine modify antioxidant activity in cucumber exposed to salinity stress. Agronomy, 2022, 12(7): 1554.
[19]
徐超, 吴小芹. 菌根化马尾松对干旱胁迫的响应及其内源多胺的变化. 西北植物学报, 2009, 29(2): 296-301.
XU C, WU X Q. Drought responses and related endogenous polyamine changes in mycorrhizaed Pinus massoniana. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(2): 296-301. (in Chinese)
[20]
LI H Z, JIANG X C, LV X Z, AHAMMED G J, GUO Z X, QI Z Y, YU J Q, ZHOU Y H. Tomato GLR3.3 and GLR3.5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis. Plant, Cell and Environment, 2019, 42(12): 3326-3339.
[21]
MA J, PENG J L, TIAN S, HE Y X, ZHANG C M, JIA N, WANG E T, WANG Z W, HU D. Streptomyces sp. TOR3209 alleviates cold stress in tomato plants. New Zealand Journal of Crop and Horticultural Science, 2023, 51(4): 662-682.
[22]
赵琳琳, 贺羽茜, 彭杰丽, 王旭, 马佳, 张秀敏, 胡栋. 链霉菌TOR3209及其挥发性有机化合物提高烟草抗木贼镰孢的能力. 中国农业科学, 2025, 58(11): 2162-2175. doi: 10.3864/j.issn.0578-1752.2025.11.007.
ZHAO L L, HE Y X, PENG J L, WANG X, MA J, ZHANG X M, HU D. Streptomyces TOR3209 and its volatile organic compounds enhance tobacco resistance to Fusarium equiseti. Scientia Agricultura Sinica, 2025, 58(11): 2162-2175. doi: 10.3864/j.issn.0578-1752.2025.11.007. (in Chinese)
[23]
WEI X P, SU X D, CAO P, LIU X Y, CHANG W R, LI M, ZHANG X Z, LIU Z F. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature, 2016, 534(7605): 69-74.
[24]
LI X X, HUANG G Q, ZHU L X, HAO C Y, SUI S F, QIN X C. Structure of the red-shifted Fittonia albivenis photosystem I. Nature Communications, 2024, 15: 6325.
[25]
杨清, 艾沙江·买买提, 王志霞, 刘国杰. DA-6对桃树叶片叶绿素合成途径的调控研究. 园艺学报, 2012, 39(4): 621-628.
YANG Q, MAIMAITI A S J, WANG Z X, LIU G J. Effects of DA-6 on chlorophyll biosythesis pathway in peach leaves. Acta Horticulturae Sinica, 2012, 39(4): 621-628. (in Chinese)
[26]
李可悦, 王丹丹, 刘江涛, 申琼, 盖少杰, 武峻新. 西葫芦嫩瓜皮叶绿素合成代谢与其皮色形成的关联性研究. 植物遗传资源学报, 2024, 25(8): 1336-1346.

doi: 10.13430/j.cnki.jpgr.20231019002
LI K Y, WANG D D, LIU J T, SHEN Q, GAI S J, WU J X. Study on the correlation between chlorophyll synthesis metabolism and skin color formation in skin of tender fruit of zucchini (Cucurbita pepo L.). Journal of Plant Genetic Resources, 2024, 25(8): 1336-1346. (in Chinese)
[27]
周珩. 外源亚精胺缓解高温胁迫下黄瓜幼苗叶绿素代谢的作用机理研究[D]. 南京: 南京农业大学, 2016.
ZHOU H. Effects of exogenous SPD on chlorophyll metabolism in cucumber seedlings under high temperature stress[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[28]
SOBIESZCZUK-NOWICKA E, KRZESLOWSKA M, LEGOCKA J. Transglutaminases and their substrates in kinetin-stimulated etioplast- to-chloroplast transformation in cucumber cotyledons. Protoplasma, 2008, 233(3/4): 187-194.
[29]
金梦娇, 刘博, 王抗抗, 张广忠, 钱万强, 万方浩. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应. 中国农业科学, 2022, 55(12): 2347-2359. doi: 10.3864/j.issn.0578-1752.2022.12.007.
JIN M J, LIU B, WANG K K, ZHANG G Z, QIAN W Q, WAN F H. Light energy utilization and response of chlorophyll synthesis under different light intensities in Mikania micrantha. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359. doi: 10.3864/j.issn.0578-1752.2022.12.007. (in Chinese)
[30]
KOURIL R, DEKKER J P, BOEKEMA E J. Supramolecular organization of photosystem II in green plants. Biochimica et Biophysica Acta, 2012, 1817(1): 2-12.

doi: 10.1016/j.bbabio.2011.05.024 pmid: 21723248
[31]
叶露幻, 沈唯军, 郑宝刚, 宋涛, 陈国祥, 吕川根. 两优培九剑叶衰老过程光合膜功能及蛋白质复合物的变化. 作物学报, 2013, 39(11): 2030-2038.

doi: 10.3724/SP.J.1006.2013.02030
YE L H, SHEN W J, ZHENG B G, SONG T, CHEN G X, C G. Changes of photosynthetic membrane function and protein complexes in flag leaves of Liangyoupeijiu during leaf senescence. Acta Agronomica Sinica, 2013, 39(11): 2030-2038. (in Chinese)
[32]
NICK S, MEURER J, SOLL J, ANKELE E. Nucleus-encoded light-harvesting chlorophyll a/b proteins are imported normally into chlorophyll b-free chloroplasts of Arabidopsis. Molecular Plant, 2013, 6(3): 860-871.
[33]
TANAKA R, TANAKA A. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynthesis Research, 2005, 85(3): 327-340.
[34]
TSIAVOS T, IOANNIDIS N E, KOTZABASIS K. Polyamines induce aggregation of LHCII and quenching of fluorescence in vitro. Biochimica et Biophysica Acta, 2012, 1817(5): 735-743.
[35]
马佳, 彭杰丽, 贾楠, 王旭, 王占武, 胡栋. 低温胁迫下链霉菌TOR3209对番茄叶绿素荧光特性和叶黄素循环的影响. 中国农业科学, 2024, 57(22): 4522-4540. doi: 10.3864/j.issn.0578-1752.2024.22.011.
MA J, PENG J L, JIA N, WANG X, WANG Z W, HU D. Effects of Streptomyces sp. TOR3209 on chlorophyll fluorescence characteristics and xanthophyll cycle in tomato plants under cold stress. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540. doi: 10.3864/j.issn.0578-1752.2024.22.011. (in Chinese)
[36]
SEZGIN A, ALTUNTAS C, DEMIRALAY M, CINEMRE S, TERZI R. Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought. Journal of Plant Physiology, 2019, 232: 65-73.

doi: S0176-1617(18)30775-2 pmid: 30537614
[37]
CROCE R, VAN AMERONGEN H. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 2014, 10(7): 492-501.

doi: 10.1038/nchembio.1555 pmid: 24937067
[38]
周伟, 何林文, 陆勤勤, 朱建一, 高山, 杨睿灵, 杨芳, 王广策. 条斑紫菜类囊体膜蛋白质组双向电泳研究方法. 海洋科学, 2014, 38(3): 63-68.
ZHOU W, HE L W, LU Q Q, ZHU J Y, GAO S, YANG R L, YANG F, WANG G C. Two-dimensional electrophoresis of thylakoid membrane proteome in Porphyra yezoensis. Marine Sciences, 2014, 38(3): 63-68. (in Chinese)
[39]
袁若楠. 外源腐胺调节盐胁迫下黄瓜LHCII耗散过剩激发能的机理研究[D]. 南京: 南京农业大学, 2017.
YUAN R N. The regulatory mechanism of exogenous putrescine on LHCII aggregation and its dissipation of excess excitation energy in salt-stressed cucumber seedlings[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[40]
LIU M F, WANG Y Q, NIE Z X, GAI J Y, BHAT J A, KONG J J, ZHAO T J. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr]. Plant Molecular Biology, 2020, 103(4/5): 527-543.
[41]
刘凯强, 贾志锋, 梁国玲, 刘勇, 马祥, 刘文辉. ‘青燕1号’幼苗叶绿素合成和荧光特性对土壤干旱的响应. 草业科学, 2022, 39(6): 1165-1175.
LIU K Q, JIA Z F, LIANG G L, LIU Y, MA X, LIU W H. Response of chlorophyll synthesis and fluorescence characteristics of oat seedlings to soil drought. Pratacultural Science, 2022, 39(6): 1165-1175. (in Chinese)
[42]
王志红, 孔德钧, 陈丽莉, 吴春, 陈浩, 杨志晓, 韦克苏, 林英超. 低氮下外源海藻糖对烤烟叶绿素代谢及叶绿体发育的影响. 南方农业学报, 2019, 50(6): 1191-1196.
WANG Z H, KONG D J, CHEN L L, WU C, CHEN H, YANG Z X, WEI K S, LIN Y C. Effects of exogenous trehalose on chlorophyll metabolism and chloroplast development under low nitrogen condition. Journal of Southern Agriculture, 2019, 50(6): 1191-1196. (in Chinese)
[43]
ZHOU H, GUO S R, AN Y H, SHAN X, WANG Y, SHU S, SUN J. Exogenous spermidine delays chlorophyll metabolism in cucumber leaves (Cucumis sativus L.) under high temperature stress. Acta Physiologiae Plantarum, 2016, 38(9): 224.
[44]
YUAN R N, SHU S, GUO S R, SUN J, WU J Q. The positive roles of exogenous putrescine on chlorophyll metabolism and xanthophyll cycle in salt-stressed cucumber seedlings. Photosynthetica, 2018, 56(2): 557-566.
[45]
王峰, 闫家榕, 陈雪玉, 姜程浩, 孟思达, 刘玉凤, 许涛, 齐明芳, 李天来. 光调控植物叶绿素生物合成的研究进展. 园艺学报, 2019, 46(5): 975-994.

doi: 10.16420/j.issn.0513-353x.2018-0799
WANG F, YAN J R, CHEN X Y, JIANG C H, MENG S D, LIU Y F, XU T, QI M F, LI T L. Light regulation of chlorophyll biosynthesis in plants. Acta Horticulturae Sinica, 2019, 46(5): 975-994. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2018-0799
[46]
KIM D K, HONG S J, BAE J H, YIM N, JIN E, LEE C G. Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnology and Bioprocess Engineering, 2011, 16: 698-705.
[47]
HU L P, XIANG L X, LI S T, ZOU Z R, HU X H. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress. Physiologia Plantarum, 2016, 156(4): 468-477.
[48]
STANDFUSS J, VAN SCHELTINGA A C, LAMBORGHINI M, KUEHLBRANDT W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. The EMBO Journal, 2005, 24(5): 919-928.
[49]
BIBI A, OOSTERHUIS D, GONIAS E. Exogenous application of putrescine ameliorates the effect of high temperature in Gossypium hirsutum L. flowers and fruit development. Journal of Agronomy and Crop Science, 2010, 196: 205-211.
[50]
SFICHI-DUKE L, IOANNIDIS N E, KOTZABASIS K. Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress: A comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. Planta, 2008, 228: 341-353.
[51]
YU Z, JIA D Y, LIU T B. Polyamine oxidases play various roles in plant development and abiotic stress tolerance. Plants, 2019, 8(6): 184.
[52]
DEMETRIOU G, NEONAKI C, NAVAKOUDIS E, KOTZABASIS K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus - The protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(4): 272-280.
[53]
SHU S, YUAN Y H, CHEN J, SUN J, ZHANG W H, TANG Y Y, ZHONG M, GUO S R. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Scientific Reports, 2015, 5: 14390.

doi: 10.1038/srep14390 pmid: 26435404
[54]
TASSONI A, FRANCESCHETTI M, BAGNI N. Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiology and Biochemistry, 2008, 46(5/6): 607-613.
[55]
ALCÁZAR R, MARCO F, CUEVAS J C, PATRON M, FERRANDO A, CARRASCO P, TIBURCIO A F, ALTABELLA T. Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 2006, 28(23): 1867-1876.

doi: 10.1007/s10529-006-9179-3 pmid: 17028780
[56]
ALCÁZAR R, ALTABELLA T, MARCO F, BORTOLOTTI C, REYMOND M, KONCZ C, CARRASCO P, TIBURCIO A F. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231(6): 1237-1249.

doi: 10.1007/s00425-010-1130-0 pmid: 20221631
[57]
HE L X, BAN Y, INOUE H, MATSUDA N, LIU J H, MORIGUCHI T. Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry, 2008, 69(11): 2133-2141.

doi: 10.1016/j.phytochem.2008.05.015 pmid: 18586287
[58]
李斌, 郭世荣, 孙锦, 李娟. 外源亚精胺对盐胁迫下黄瓜幼苗游离态多胺含量和多胺合成酶基因表达的影响. 植物科学学报, 2011, 29(4): 480-485.
LI B, GUO S R, SUN J, LI J. Effects of exogenous spermidine on free polyamine content and polyamine biosynthesis gene expression in cucumber seedlings under salt stress. Plant Science Journal, 2011, 29(4): 480-485. (in Chinese)
[59]
王文娟, 师尚礼, 康文娟, 杜媛媛, 殷辰. 干旱胁迫下陇中紫花苜蓿对外源精胺的生理响应. 中国农业科学, 2025, 58(4): 676-691. doi: 10.3864/j.issn.0578-1752.2025.04.005.
WANG W J, SHI S L, KANG W J, DU Y Y, YIN C. The physiological response of Longzhong alfalfa to exogenous spermine under drought stress. Scientia Agricultura Sinica, 2025, 58(4): 676-691. doi: 10.3864/j.issn.0578-1752.2025.04.005. (in Chinese)
[60]
LIU T, QU J, FANG Y, YANG H, LAI W, PAN L, LIU J H. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. Journal of Integrative Plant Biology, 2025, 67(3): 582-595.

doi: 10.1111/jipb.13796
[61]
JIANG D X, CHU X, LI M, HOU J J, TONG X, GAO Z P, CHEN G X. Exogenous spermidine enhances salt-stressed rice photosynthetic performance by stabilizing structure and function of chloroplast and thylakoid membranes. Photosynthetica, 2020, 58(1): 61-71.
[62]
LUO L, LI Z, TANG M Y, CHENG B Z, ZENG W H, PENG Y, NIE G, ZHANG X Q. Metabolic regulation of polyamines and c-aminobutyric acid in relation to spermidine-induced heat tolerance in white clover. Plant Biology, 2020, 22: 794-804.
[63]
SHU S, YUAN L Y, GUO S R, SUN J, LIU C J. Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. African Journal of Biotechnology, 2012, 11(22): 6064-6074.
[64]
KOU S, CHEN L, TU W, SCOSSA F, WANG Y, LIU J, FERNIE A R, SONG B, XIE C. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. The Plant Journal, 2018, 96(6): 1283-1298.
[65]
IOANNIDIS N E, LOPERA O, SANTOS M, TORNE J M, KOTZABASIS K. Role of plastid transglutaminase in LHCII polyamination and thylakoid electron and proton flow. PLoS ONE, 2012, 7(7): e41979.
[1] ZHANG YaFeng, DONG WeiJin, LI QiYun, LU Yang, ZHANG ZhengKun, SUI Li. Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality [J]. Scientia Agricultura Sinica, 2025, 58(6): 1131-1144.
[2] ZHAO LinLin, HE YuXi, PENG JieLi, WANG Xu, MA Jia, ZHANG XiuMin, HU Dong. Streptomyces TOR3209 and Its Volatile Organic Compounds Enhance Tobacco Resistance to Fusarium equiseti [J]. Scientia Agricultura Sinica, 2025, 58(11): 2162-2175.
[3] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[4] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[5] MA Jia, PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress [J]. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540.
[6] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[7] ZHU PeiPei, QIN HaoXiang, ZHANG JianXia. Changes of Endogenous Hormones and Polyamines During Ovule Development of Stenospermocarpic Seedless Grape [J]. Scientia Agricultura Sinica, 2023, 56(23): 4789-4800.
[8] WANG JunJuan, LU XuKe, WANG YanQin, WANG Shuai, YIN ZuJun, FU XiaoQiong, WANG DeLong, CHEN XiuGui, GUO LiXue, CHEN Chao, ZHAO LanJie, HAN YingChun, SUN LiangQing, HAN MingGe, ZHANG YueXin, FAN YaPeng, YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[9] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[10] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[11] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[12] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[13] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[14] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[15] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!