Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2162-2175.doi: 10.3864/j.issn.0578-1752.2025.11.007

• PLANT PROTECTION • Previous Articles     Next Articles

Streptomyces TOR3209 and Its Volatile Organic Compounds Enhance Tobacco Resistance to Fusarium equiseti

ZHAO LinLin1,2(), HE YuXi1(), PENG JieLi1, WANG Xu1, MA Jia1, ZHANG XiuMin2(), HU Dong1()   

  1. 1 Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Soil Fertility Improvement and Agricultural Green Development, Shijiazhuang 050051
    2 College of Life Sciences, Hebei University, Baoding 071000, Hebei
  • Received:2025-03-12 Accepted:2025-04-21 Online:2025-06-01 Published:2025-06-09
  • Contact: ZHANG XiuMin, HU Dong

Abstract:

ObjectiveThe objective of this study is to explore the effect of Streptomyces TOR3209 and its volatile organic compounds (VOCs) on tobacco disease resistance, clarify the direct and indirect mechanism of the strain and its VOCs to improve tobacco disease resistance, and to provide a theoretical basis for the biocontrol application of TOR3209 and its VOCs.【Method】Streptomyces TOR3209 and Fusarium equiseti were selected as research materials, and the inhibition ability of TOR3209 and its VOCs against F. equiseti was evaluated by using plate confrontation method and growth rate method. Tobacco was inoculated with different concentrations of TOR3209 suspension (1.0×101, 1.0×103, 1.0×105, 1.0×107 CFU/mL) and co-cultured with VOCs produced by TOR3209. The effects of the strain and its VOCs on tobacco resistance to F. equiseti were tested. The transcriptome sequencing of tobacco was performed to analyze the differential gene expression. Solid phase microextraction (SPME) method was used to identify the VOCs produced by TOR3209, and a compound with strong specificity (heptadecane) was selected to verify the resistance of tobacco to F. equisetaria. Different concentrations of heptadecane (1 mol·kg-1, 1 mmol·kg-1, 1 μmol·kg-1, 0.001 μmol·kg-1) were added as treatment groups to verify the effect of heptadecane on tobacco.【Result】Streptomyces TOR3209 and its VOCs had antagonistic effects on F. equiseti, with inhibition rates of 56.9% and 60.0%, respectively. Compared with the control, the severity of tobacco disease was significantly reduced under different concentrations of TOR3209 suspension (P<0.01), and the treatment with the concentration of 1.0×101 CFU/mL had the best disease resistance effect. Both the retained strain treatment group and the removed strain treatment group could improve the disease resistance of tobacco, the control effect was 85.7% and 72.5%, respectively. The main way was to induce tobacco systemic resistance during the action of TOR3209 VOCs. Transcriptome analysis of tobacco showed that the VOCs of TOR3209 induced up-regulation of several genes in tobacco, and many of the genes were related to the improvement of plant disease resistance. Among the VOCs produced by TOR3209, several compounds were identified, among which heptadecane could improve the resistance of tobacco to F. equiseti infection after co-culture with tobacco, and the treatment group with a mass concentration of 1 mmol·kg-1 had a significant effect.【Conclusion】Streptomyces TOR3209 and its VOCs mainly improve the resistance of tobacco by inducing systemic resistance, and the VOCs of TOR3209 can regulate the gene expression of tobacco.

Key words: Streptomyces TOR3209, tobacco, Fusarium equiseti, disease resistance, antagonism, biological control

Fig. 1

Antagonistic effect of strain TOR3209 against F. equiseti (plate confrontation method)"

Fig. 2

Antagonistic effect of strain TOR3209 against F. equiseti (mycelial growth rate method)"

Fig. 3

Antagonistic effect of VOCs of strain TOR3209 against F. equiseti"

Fig. 4

Disease resistance of tobacco after inoculation with TOR3209 suspension"

Fig. 5

Disease severity of tobacco infected by F. equiseti after co-culture with different concentrations of suspension"

Fig. 6

Effects of VOCs of strain TOR3209 on tobacco disease prevention under different treatments"

Fig. 7

Volcanic diagrams of differential expressed genes"

Table 1

Important differentially expressed genes in tobacco plants inoculated with TOR3209 (part)"

基因号Gene ID log2 fold change 基因描述Gene description
上调基因Up-regulated gene
Niben101Scf00332g06017 6.04227246102319 杂交信号转导组氨酸激酶I Hybrid signal transduction histidine kinase I
Niben101Scf05631g00014 5.74326370463322 非特异性脂质转移蛋白2 Non-specific lipid-transfer protein 2
Niben101Scf01362g04002 4.77714497698617 2-氨基乙硫醇双加氧酶样蛋白2-aminoethanethiol dioxygenase-like protein
下调基因Down-regulated gene
Niben101Scf02911g03016 -5.78546446761017 未知功能蛋白Protein of unknown function (DUF506), LENGTH=295
Niben101Scf00073g03014 -5.45982567636163 受体样蛋白激酶Receptor-like protein kinase
Niben101Scf01428g04013 -5.26257570331272 乙烯反应性转录因子14 Ethylene-responsive transcription factor 14
Niben101Scf16511g00010 -5.20322117747684 类萜合酶18 Terpenoid synthase 18
Niben101Scf04932g00014 -5.16902219728486 未知蛋白Unknown protein
Niben101Scf02917g00002 -5.09895124325375 TGACG-序列特异性DNA结合蛋白TGA-2.1
TGACG-sequence-specific DNA-binding protein TGA-2.1
Niben101Scf00448g07004 -4.92380517686696 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase 3
Niben101Scf01911g05005 -4.89265174714343 碳酸酐酶Carbonic anhydrase
Niben101Scf03309g04008 -4.82172737214981 磷脂酶A1-II Phospholipase A1-II
Niben101Scf06662g02015 -4.62438225777014 基质金属蛋白酶Matrix metalloproteinase, LENGTH=378
Niben101Scf01185g00004 -4.6100638982765 蛋白磷酸酶2C Protein phosphatase 2C
Niben101Scf00073g03013 -4.56247469616356 受体样蛋白激酶Receptor-like protein kinase
Niben101Scf24315g00001 -4.55766816248908 嘌呤渗透酶3 Purine permease 3
Niben101Scf01899g06004 -4.51115797208459 脱氢酶/还原酶SDR家族成员Dehydrogenase/reductase SDR family member 4
Niben101Scf10524g02009 -4.48990826668509 结节蛋白MtN21 /EamA样转运蛋白家族蛋白
Nodulin MtN21 /EamA-like transporter family protein, LENGTH=365
Niben101Scf02083g00003 -4.47336269506046 CRN家族蛋白[疫霉T30-4] crinkler (CRN) family protein [Phytophthora infestans T30-4], gb|EEY64563.1|
Niben101Scf01789g03005 -4.40149896063059 [疫霉T30-4] [Phytophthora infestans T30-4]
Niben101Scf07663g00007 -4.35828100466665 保守假设蛋白[蓖麻] Conserved hypothetical protein [Ricinus communis], gb|EEF51416.1|
Niben101Scf00192g01021 -4.21433821585193 细胞周期蛋白-D3-1 Cyclin-D3-1
Niben101Scf04410g03007 -4.2077309454339 D-氨基酰-tRNA脱酰基酶D-aminoacyl-tRNA deacylase
Niben101Scf00270g14005 -4.09796972283243 未知功能蛋白Protein of unknown function (DUF1264), LENGTH=241
Niben101Scf02391g00013 -4.05678468762749 丝氨酸羧肽酶样31 Serine carboxypeptidase-like 31
Niben101Scf03473g01018 -4.05495408176547 GRAS家族转录因子GRAS family transcription factor, LENGTH=490

Fig. 8

GO enrichment map of differential expressed genes"

Fig. 9

KEGG pathway of differentially expressed genes"

Fig. 10

Transcription factor distribution of differentially expressed genes"

Fig. 11

Effect of heptadecane on resistance of tobacco to F. equisetum infection A:对照Control;B—E:分别为添加质量浓度1 mol·kg-1、1 mmol·kg-1、1 μmol·kg-1、0.001 μmol·kg-1的十七烷溶液Heptadecane solution with mass concentration of 1 mol·kg-1, 1 mmol·kg-1, 1 μmol·kg-1, 0.001 μmol·kg-1 was added, respectively"

Fig. 12

Disease severity of tobacco treated differently after being infected by F. equisetum"

[1]
李俊, 姜昕, 马鸣超. 新形势下微生物肥料产业运行状况及发展方向. 植物营养与肥料学报, 2020, 26(12): 2108-2114.
LI J, JIANG X, MA M C. Situation and development direction for microbial fertilizer industry in the near future of China. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2108-2114. (in Chinese)
[2]
申建波, 白洋, 韦中, 储成才, 袁力行, 张林, 崔振岭, 丛汶峰, 张福锁. 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新. 土壤学报, 2021, 58(4): 805-813.
SHEN J B, BAI Y, WEI Z, CHU C C, YUAN L X, ZHANG L, CUI Z L, CONG W F, ZHANG F S. Rhizobiont: An interdisciplinary innovation and perspective for harmonizing resources, environment, and food security. Acta Pedologica Sinica, 2021, 58(4): 805-813. (in Chinese)
[3]
GUO K Y, YANG J, YU N, LUO L, WANG E T. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Communications, 2023, 4(2): 100499.
[4]
LI S N, LIANG W Q, HUANG H, WU H, LUO H J, MO J Q, ZHANG Z X, HU S. Antagonistic and plant growth-promoting properties of Streptomyces F2 isolated from vineyard soil. Agronomy, 2024, 14(7): 1489.
[5]
PALMIERI D, IANIRI G, DEL GROSSO C, BARONE G, DE CURTIS F, CASTORIA R, LIMA G. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae, 2022, 8(7): 577.
[6]
LUO F, GWAK H, PARK A R, NGUYEN V T, KIM J C. Biocontrol potential of natamycin-producing Streptomyces lydicus JCK-6019 against soil-borne fungal diseases of cucumber and characterization of its biocontrol mechanism. Pest Management Science, 2025, 81(4): 1971-1987.
[7]
黄军, 唐滢, 黄彬彬, 李晔, 张翠央, 郭照辉, 刘清术. 一株李维斯链霉菌的鉴定及其抗病促生性能. 微生物学报, 2024, 64(12): 4859-4868.
HUANG J, TANG Y, HUANG B B, LI Y, ZHANG C Y, GUO Z H, LIU Q S. Characterization of Streptomyces levis L2 with plant disease-inhibiting and growth-promoting effects. Acta Microbiologica Sinica, 2024, 64(12): 4859-4868. (in Chinese)
[8]
HU D, LI S, LI Y, PENG J, WEI X, MA J, ZHANG C, JIA N, WANG E, WANG Z. Streptomyces sp. strain TOR3209: A rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Scientific Reports, 2020, 10(1): 20132.
[9]
MA J, PENG J L, TIAN S, HE Y X, ZHANG C M, JIA N, WANG E T, WANG Z W, HU D. Streptomyces sp. TOR3209 alleviates cold stress in tomato plants. New Zealand Journal of Crop and Horticultural Science, 2023, 51(4): 662-682.
[10]
NAZARI M T, SCHOMMER V A, BRAUN J C A, DOS SANTOS L F, LOPES S T, SIMON V, MACHADO B S, FERRARI V, COLLA L M, PICCIN J S. Using Streptomyces spp. as plant growth promoters and biocontrol agents. Rhizosphere, 2023, 27: 100741.
[11]
LU Y X, SONG W, WANG J, CAO Y, HAN X, XU C L, WANG F, GE B B. Biocontrol of Botrytis cinerea by Streptomyces noursei C27 and preliminary identification of antimicrobial metabolites. Biological Control, 2024, 196: 105561.
[12]
CHEN J H, WEI X L, LU X, MING R H, HUANG D, YAO Y Q, LI L B, HUANG R S. Burkholderia cenocepacia ETR-B22 volatile organic compounds suppress postharvest grey mould infection and maintain aroma quality of tomato fruit. LWT, 2022, 165: 113715.
[34]
WANG N, TANG C L, FAN X, HE M Y, GAN P F, ZHANG S, HU Z Y, WANG X D, YAN T, SHU W X, et al. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185(16): 2961-2974.e19.
[35]
LI X W, LI B B, CAI S R, ZHANG Y, XU M J, ZHANG C M, YUAN B, XING K, QIN S. Identification of rhizospheric actinomycete Streptomyces lavendulae SPS-33 and the inhibitory effect of its volatile organic compounds against Ceratocystis fimbriata in postharvest sweet potato (Ipomoea batatas (L.) Lam.). Microorganisms, 2020, 8(3): 319.
[36]
周宝利, 李娜, 刘双双, 富饶, 李桂香. 2,4-二叔丁基苯酚对番茄叶霉病及幼苗生长的影响. 生态学杂志, 2013, 32: 1203-1207.
ZHOU B L, LI N, LIU S S, FU R, LI G X. Effects of 2,4-di-tert- butylphenol on tomato leaf mould and seedling growth. Chinese Journal of Ecology, 2013, 32: 1203-1207. (in Chinese)
[37]
CHEN X Y, LIU J R, CHEN A J, WANG L, JIANG X Z, GONG A, LIU W D, WU H X. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide. Pest Management Science, 2024, 80(8): 4125-4136.
[38]
SHI Z A, ZHANG M, CHEN G M, CAO A C, WANG Q X, YAN D D, FANG W S, LI Y. Evaluation of newly combination of Trichoderma with dimethyl disulfide fumigant to control Fusarium oxysporum, optimize soil microbial diversity and improve tomato yield. Ecotoxicology and Environmental Safety, 2025, 292: 117903.
[39]
LIANG C H, GAO W T, GE T, TAN X W, WANG J Y, LIU H X, WANG Y, HAN C, XU Q, WANG Q Q. Lauric acid is a potent biological control agent that damages the cell membrane of Phytophthora sojae. Frontiers in Microbiology, 2021, 12: 666761.
[40]
LUO L F, ZHANG J X, YE C, LI S, DUAN S S, WANG Z P, HUANG H C, LIU Y X, DENG W P, MEI X Y, HE X H, YANG M, ZHU S S. Foliar pathogen infection manipulates soil health through root exudate-modified rhizosphere microbiome. Microbiology Spectrum, 2022, 10(6): e0241822.
[33]
WANG Z W, JIAN X Y, ZHAO Y C, LI S, SUI Z W, LI L, KONG L Y, LUO J. Functional characterization of cinnamate 4-hydroxylase from Helianthus annuus Linn using a fusion protein method. Gene, 2020, 758: 144950.
[32]
KHATRI P, CHEN L, RAJCAN I, DHAUBHADEL S. Functional characterization of cinnamate 4-hydroxylase gene family in soybean (Glycine max). PLoS ONE, 2023, 18(5): e0285698.
[31]
AMADOR V C, SANTOS-SILVA C A D, VILELA L M B, OLIVEIRA-LIMA M, DE SANTANA RÊGO M, ROLDAN-FILHO R S, OLIVEIRA-SILVA R L D, LEMOS A B, DE OLIVEIRA W D, FERREIRA-NETO J R C, CROVELLA S, BENKO-ISEPPON A M. Lipid transfer proteins (LTPs)—Structure, diversity and roles beyond antimicrobial activity. Antibiotics, 2021, 10(11): 1281.
[30]
YANG Y X, LI P, LIU C, WANG P, CAO P J, YE X F, LI Q C. Systematic analysis of the non-specific lipid transfer protein gene family in Nicotiana tabacum reveal its potential roles in stress responses. Plant Physiology and Biochemistry, 2022, 172: 33-47.
[29]
NONGPIUR R, SONI P, KARAN R, SINGLA-PAREEK S L, PAREEK A. Histidine kinases in plants. Plant Signaling & Behavior, 2012, 7(10): 1230-1237.
[28]
ZHANG P, XIE G Q, WANG L H, XING Y Q. Bacillus velezensis BY6 promotes growth of poplar and improves resistance contributing to the biocontrol of Armillaria solidipes. Microorganisms, 2022, 10(12): 2472.
[27]
YADAV U, ANAND V, KUMAR S, VERMA I, ANSHU A, PANDEY I A, KUMAR M, BEHERA S K, SRIVASTAVA S, SINGH P C. Bacillus subtilis NBRI-W9 simultaneously activates SAR and ISR against Fusarium chlamydosporum NBRI-FOL7 to increase wilt resistance in tomato. Journal of Applied Microbiology, 2024, 135(3): lxae013.
[26]
ZHU L, LI M J, JIA R Z. Effect of OP-FTIR stability on VOCs concentration monitoring. Safety Health & Environment, 2018, 18(10): 55-59. (in Chinese)
朱亮, 李明骏, 贾润中. OP-FTIR稳定性对VOCs浓度监测的影响. 安全、健康和环境, 2018, 18(10): 55-59.
[25]
GUO W Y, GUO J Y, HE Y X, PENG J L, WANG Z W, HU D. Research progress of Streptomyces volatile compounds in improving plant disease resistance. Journal of Hebei Agricultural Sciences, 2022, 26(3): 53-58. (in Chinese)
郭纹余, 郭金英, 贺羽茜, 彭杰丽, 王占武, 胡栋. 链霉菌挥发性化合物提高植物抗病能力的研究进展. 河北农业科学, 2022, 26(3): 53-58.
[24]
RANI A, RANA A, DHAKA R K, SINGH A P, CHAHAR M, SINGH S, NAIN L, SINGH K P, MINZ D. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnology Advances, 2023, 63: 108078.
[23]
ZHANG H, CHENG J L, ZHU X F, ZHANG S L, YAN L W, LIN J S. Identification and biocontrol evaluation of Streptomyces sp. strain ZH-356 antagonistic to plant pathogenic fungi. Acta Microbiologica Sinica, 2022, 62(9): 3421-3436. (in Chinese)
张恒, 成娟丽, 朱旭飞, 张嵩林, 闫靓文, 林金水. 拮抗植物病原真菌链霉菌菌株ZH-356的鉴定及其生防评价. 微生物学报, 2022, 62(9): 3421-3436.
[22]
ZHANG X Q, ZHANG X, HE X R, NIU M Y, HUANG J X. Control efficacy of Bacillus subtilis YA-3 on tomato early blight. Journal of Northwest University (Natural Science Edition), 2015, 45(3): 423-428. (in Chinese)
张晓琴, 张晓, 何晓锐, 牛明杨, 黄建新. 枯草芽孢杆菌YA-3对番茄早疫病的防治作用. 西北大学学报(自然科学版), 2015, 45(3): 423-428.
[21]
QIN J, HUANG R K, CHEN Z D, LIANG J Z, LIU X L, HUANG Y H, CHEN X F, HUANG X J, FENG C C, JU X X. Toxicity and field control effects of several fungicides against bitter gourd fusarium wilt. Agrochemicals, 2019, 58(3): 214-217. (in Chinese)
秦健, 黄如葵, 陈振东, 梁家作, 刘杏连, 黄玉辉, 陈小凤, 黄熊娟, 冯诚诚, 琚茜茜. 杀菌剂对苦瓜枯萎病菌的室内毒力及田间防效. 农药, 2019, 58(3): 214-217.
[20]
RAJENDRAN S, SILCOCK P, BREMER P. Volatile organic compounds (VOCs) produced by Levilactobacillus brevis WLP672 fermentation in defined media supplemented with different amino acids. Molecules, 2024, 29(4): 753.
[19]
YANG J W, YU S H, RYU C M. Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. The Plant Pathology Journal, 2009, 25(4): 389-399.
[18]
SHARIFI R, RYU C M. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Frontiers in Microbiology, 2016, 7: 196.
[17]
HE Y X, GUO W Y, PENG J L, GUO J Y, MA J, WANG X, ZHANG C M, JIA N, WANG E T, HU D, WANG Z W. Volatile organic compounds of Streptomyces sp. TOR3209 stimulated tobacco growth by up-regulating the expression of genes related to plant growth and development. Frontiers in Microbiology, 2022, 13: 891245.
[16]
XUE Y Y, FAN W Z, ZHANG S W, XU B L. Screening, identification and biocontrol effect of antagonistic actinomycetes against the pathogen of Cytospora sp. for apple tree. Chinese Journal of Applied Ecology, 2016, 27(10): 3379-3386. (in Chinese)
薛应钰, 范万泽, 张树武, 徐秉良. 苹果树腐烂病菌拮抗放线菌的筛选、鉴定及防效. 应用生态学报, 2016, 27(10): 3379-3386.

doi: 10.13287/j.1001-9332.201610.010
[15]
WANG Z R, MEI X F, DU M Y, JIANG M Y, ZHANG H X, WANG K T, ZALÁN Z, HEGYI F, KAN J Q. Biocontrol of green mold decay in Jincheng citrus fruits by Pseudomonas fluorescens ZX. Acta Microbiologica Sinica, 2019, 59(5): 950-964. (in Chinese)
王智荣, 梅小飞, 杜木英, 江孟遥, 张洪新, 汪开拓, ZALÁN Z, HEGYI F, 阚建全. 荧光假单胞菌ZX对采后锦橙绿霉病的防治及其抑菌机制. 微生物学报, 2019, 59(5): 950-964.
[14]
WAKAI J, KUSAMA S, NAKAJIMA K, KAWAI S, OKUMURA Y, SHIOJIRI K. Effects of trans-2-hexenal and cis-3-hexenal on post-harvest strawberry. Scientific Reports, 2019, 9(1): 10112.

doi: 10.1038/s41598-019-46307-4 pmid: 31300659
[13]
LI Z R, LIU Q Y, WU C Y, YUAN Y J, NI X M, WU T Y, CHANG R K, WANG Y H. Volatile organic compounds produced by Metschnikowia pulcherrima yeast T-2 inhibited the growth of Botrytis cinerea in postharvest blueberry fruits. Horticultural Plant Journal, 2024, doi: 10.1016/j.hpj.2023.12.003.
[1] TAN XiBei, LAN XuYing, LIU ChongHuai, FAN XiuCai, JIANG JianFu, SUN Lei, LI Peng, YU ShuXin, ZHANG Ying. Changes of Secondary Metabolites in Grapes with Different Resistance Levels in Response to White Rot Infection [J]. Scientia Agricultura Sinica, 2025, 58(9): 1767-1778.
[2] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[3] CONG QiQi, ZHANG JingYi, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Identification of Hypovirus in Apple Ring Rot Fungus Botryosphaeria dothidea and Detection of Virus-Carrying Status in China [J]. Scientia Agricultura Sinica, 2025, 58(3): 478-492.
[4] LIAO XinLin, GUO Xin, YANG JiXue, SHAO JiaZhu, YUAN XinYu, HU JiaYan, CHEN XiaoXiao, JIANG DongHua. Screening of Actinomycetes Against Ralstonia solanacearum and Its Disease Prevention Function [J]. Scientia Agricultura Sinica, 2024, 57(7): 1319-1334.
[5] ZHAO Jie, ZHAO LongYuan, PAN NingHui, GUAN LiRong, DU YunLong, LI ChengYun, WANG YunYue, XIE Yong. Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast [J]. Scientia Agricultura Sinica, 2024, 57(23): 4607-4618.
[6] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[7] PENG ZhiXin, ZHANG XiFen, HAN XiaoBin, SI GuoDong, XU KangWen, ZHANG ChengSheng. Effect of Fatty Acid Natural Product 2E, 4E-Decadienoic Acid on Tobacco Rhizosphere Microbial Communities [J]. Scientia Agricultura Sinica, 2024, 57(18): 3601-3611.
[8] SHI Na, LU Yang, SUI Li, WANG JiaJiang, ZHAO Yu, LI QiYun, ZHANG ZhengKun. Study on the Synergistic Control Effect of Metarhizium rileyi and Harmonia axyridis Toward Aphids [J]. Scientia Agricultura Sinica, 2024, 57(17): 3398-3407.
[9] GAO XiaoXiao, TU LiQin, YANG Liu, LIU YaNan, GAO DanNa, SUN Feng, LI Shuo, ZHANG SongBai, JI YingHua. Construction of an Infectious Clone of Tobacco Mild Green Mosaic Virus Isolate Infecting Pepper from Jiangsu Based on Genomic Clone [J]. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502.
[10] GUO Ning, SUN Hua, MA HongXia, LIU ShuSen, ZHANG HaiJian, SHI Jie, ZHENG XiaoJuan, DONG YueGuang. Screening, Identification and Control Efficacy Analysis of Trichoderma Strains Against Maize Pythium Stalk Rot [J]. Scientia Agricultura Sinica, 2023, 56(22): 4453-4466.
[11] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[12] WANG Jin, LIU YanFang, LIU WenWen, WANG YaQi, SONG ShiYang, ZHANG XingZi, LI FengXia. COXⅡ Functional Analysis in Tobacco sua-CMS Line [J]. Scientia Agricultura Sinica, 2023, 56(16): 3077-3087.
[13] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[14] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[15] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!