Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2578-2590.doi: 10.3864/j.issn.0578-1752.2025.13.007

• PLANT PROTECTION • Previous Articles     Next Articles

Screening of Target Genes Downstream of VviERF045, a Transcription Factor Associated with Gray Mold Resistance in Vitis vinifera

ZHAO YuLei(), XIN JiaLu, LI ChengNan, LI Shan, XIE XuFei, YIN Xiao()   

  1. College of Enology and Horticulture, Ningxia University, Yinchuan 750021
  • Received:2025-04-18 Accepted:2025-05-16 Online:2025-07-01 Published:2025-07-05

Abstract:

【Background】 Gray mold is an important fungal disease that seriously endangers the grapevine (Vitis vinifera) industry worldwide. As an important transcription factor family in plants, ethylene-responsive factor (AP2/ERF) family plays a key role in regulating plant growth and development and stress response. 【Objective】 The study aimed to elucidate the molecular mechanisms by which the grapevine ethylene-responsive factor VviERF045 mediates defense against Botrytis cinerea. Through prediction and functional analysis of its downstream target genes, this research provides new insights into the transcriptional regulatory network associated with grapevine resistance to B. cinerea, establishing a foundation for breeding disease-resistant cultivars. 【Method】 Grapevine leaves were inoculated with B. cinerea using both agar disc and spore suspension methods. The expression profiles of VviERF045 and its predicted targets were evaluated via quantitative real-time PCR (qRT-PCR). Promoter cis-acting elements were analyzed using PlantCARE, while phylogenetic relationships and sequence alignments of VviERF045 were assessed using MEGA 7 and DNAMAN. Functional validation was conducted through Agrobacterium-mediated transient overexpression of VviERF045 in ‘Cabernet Sauvignon’ leaves. To further explore its regulatory landscape, DNA affinity purification sequencing (DAP-seq) was performed on ‘Pinot Noir’ leaves at 12 hours post-inoculation (hpi) with B. cinerea. 【Result】 Transient overexpression of VviERF045 significantly enhanced resistance to gray mold in ‘Cabernet Sauvignon’ leaves. DAP-seq analysis was performed on V. vinifera ‘Pinot Noir’ leaves at 12 hpi. Comparative analysis of peaks between two experimental replicates identified 51 806 consensus peaks. Subsequent genomic annotation revealed these peaks were predominantly located within ± 2 kb regions flanking promoter-transcription start sites (TSS). The top 2 000 most statistically significant peaks were selected for functional characterization through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Through integrated analysis of potential target genes and peak calling, three high-confidence candidate target genes (TCP8, SAP5, and bHLH48) were identified, all showing significant binding peaks in their promoter regions. Subsequent qRT-PCR validation confirmed the transcriptional upregulation of these genes, suggesting their cooperative involvement with VviERF045 in the grapevine’s response to B. cinerea infection.【Conclusion】VviERF045 functions as a positive regulator of grapevine defense against B. cinerea, likely by activating key stress-responsive genes such as TCP8, SAP5, and bHLH48. These results provide mechanistic insights into the pathogen-responsive transcriptional network in grapevine and identify potential molecular targets for breeding resistant V. vinifera cultivars.

Key words: Vitis vinifera, VviERF045, Botrytis cinerea, gray mold, target gene, transient transformation, DAP-seq

Table 1

Primers used for qRT-PCR"

NCBI登录号
NCBI accession number
注释
Description
引物序列
Primer sequence
XP_002272228.1 转录因子TCP8
Transcription factor TCP8
F: GCTTCACTCAACCTCGTCACTCC
R: AGGACGCAGGCTTAGAGGATGTAG
XP_003633555.1 A20/AN1型锌指胁迫相关蛋白5
Zinc finger A20 and AN1 domain-containing stress-associated protein 5
F: GGTGAATCGGTGCTCTGGATGC
R: CGGCGGTCTTGTAATCGTAGCTG
XP_002282897.1 转录因子bHLH48
Transcription factor bHLH48
F: GCGAAAGGAGCGAGAGAAGAAGG
R: GCTATGGCTATCAGTGGCTTGGC
XP_002276899.1 含LOB结构域蛋白41
LOB domain-containing protein 41
F: TGCGGATGAGTTGTAATGGCTGTC
R: GCGAGGAAGACGGTGGCATTG
KX179904.1 乙烯转录因子ERF045,ENTAV115
Ethylene transcription factor (ERF045)
F: TCTGAAATTCGCCACCCACTTCTG
R: TTCTCGCCCTCGGACCACAC
VIT_12s0178g00200 内参
Actin
F: AACCCCAAGGCCAACAGAGAAAA
R: CACCATCACCAGAATCCAGCACA

Fig. 1

Relative expression level of VviERF045 at different time points after B. cinerea inoculation"

Fig. 2

Protein sequence analysis of VviERF045"

Fig. 3

Transient overexpression of VviERF045 enhances resistance of ‘Cabernet Sauvignon’ leaves to gray mold"

Table 2

Cis-acting element analysis of the VviERF045 promoter"

元件名称
Element name
序列
Sequence
元件数量
Number of elements
功能
Function
ATCT-motif AATCTAATCC 1 光响应元件Light-responsive element
Gap-box CAAATGAA(A/G)A 1 光响应元件Light-responsive element
GARE-motif TCTGTTG 1 赤霉素响应元件Gibberellin-responsive element
GATT-motif CTCCTGATTGGA 1 光响应元件Light-responsive element
GT1-motif GGTTAA 1 光响应元件Light-responsive element
I-box TGATAATGT 1 光响应元件Light-responsive element
TCA-element TCAGAAGAGG 2 水杨酸响应元件Salicylic acid-responsive element
TC-rich repeats ATTCTCTAAC 1 防御和胁迫响应元件Defence and stress-responsive element
TCT-motif TCTTAC 1 光响应元件Light-responsive element

Fig. 4

DNA binding sites and motif analysis of VviERF045"

Fig. 5

Functional annotation of VviERF045 target genes identified by DAP-seq"

Table 3

Annotation information of potential target genes"

基因名称
Gene name
基因编号
Gene ID
P
P value
FDR 蛋白名称
Uniprot_ID
注释
Description
LOC100266605 XP_002272228.1 4.42E-133 2.33E-128 F6GYS5 转录因子TCP8 Transcription factor TCP8
LOC100852428 XP_003633555.1 2.01E-125 7.16E-121 F6HBB0 A20/AN1型锌指胁迫相关蛋白5 Zinc finger A20 and AN1 domain-containing stress-associated protein 5
LOC100241856 XP_002282897.1 7.67E-121 2.14E-116 D7TI19 转录因子bHLH48 Transcription factor bHLH48

Fig. 6

Relative expression level of target genes"

[1]
SUN X Y, XIA X, GUAN X. Genome-wide identification and characterisation of stress-associated protein gene family to biotic and abiotic stresses of grapevine. Pathogens, 2022, 11(12): 1426.
[2]
WILCOX W F, GUBLER W D, UYEMOTO J K. Compendium of Grape Diseases, Disorders, and Pests, 2nd ed. The American Phytopathological Society (APS), 2016.
[3]
FEDORINA J, TIKHONOVA N, UKHATOVA Y, IVANOV R, KHLESTKINA E. Grapevine gene systems for resistance to gray mold Botrytis cinerea and powdery mildew Erysiphe necator. Agronomy, 2022, 12(2): 499.
[4]
FENG K, HOU X L, XING G M, LIU J X, DUAN A Q, XU Z S, LI M Y, ZHUANG J, XIONG A S. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 2020, 40(6): 750-776.

doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[5]
LICAUSI F, OHME-TAKAGI M, PERATA P. APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist, 2013, 199(3): 639-649.

doi: 10.1111/nph.12291 pmid: 24010138
[6]
LI M Y, XU Z S, HUANG Y, TIAN C, WANG F, XIONG A S. Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress. Molecular Genetics and Genomics, 2015, 290(6): 2049-2061.
[7]
NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432.
[8]
MENG X Z, XU J, HE Y X, YANG K Y, MORDORSKI B, LIU Y D, ZHANG S Q. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. The Plant Cell, 2013, 25(3): 1126-1142.
[9]
SUZUKI H, ITO T, OGATA T, TSUKAHARA Y, NELSON R S, SASAKI N, MATSUSHITA Y. Overexpression of NtERF5, belonging to the ethylene response factor gene family, inhibits potato virus X infection and enhances expression of jasmonic acid/ethylene signaling marker genes in tobacco. Journal of General Plant Pathology, 2024, 90(3): 125-133.
[10]
OUYANG Z G, LIU S X, HUANG L H, HONG Y B, LI X H, HUANG L, ZHANG Y F, ZHANG H J, LI D Y, SONG F M. Tomato SlERF. A1, SlERF.B4, SlERF.C3 and SlERF.A3, members of B3 group of ERF family, are required for resistance to Botrytis cinerea. Frontiers in Plant Science, 2016, 7: 1964.
[11]
GAO H, JIANG L Y, DU B H, NING B, DING X D, ZHANG C Z, SONG B, LIU S S, ZHAO M, ZHAO Y X, RONG T Y, LIU D X, WU J J, XU P F, ZHANG S Z. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. The Plant Journal, 2022, 111(2): 473-495.
[12]
TEZUKA D, KAWAMATA A, KATO H, SABURI W, MORI H, IMAI R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiology and Biochemistry, 2019, 135: 263-271.
[13]
JIN J H, WANG M, ZHANG H X, KHAN A, WEI A M, LUO D X, GONG Z H. Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.). Genome, 2018, 61(9): 663-674.
[14]
XU Z S, CHEN M, LI L C, MA Y Z. Functions of the ERF transcription factor family in plants. Botany, 2008, 86(9): 969-977.
[15]
MARUYAMA Y, YAMOTO N, SUZUKI Y, CHIBA Y, YAMAZAKI K, SATO T, YAMAGUCHI J. The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Science, 2013, 213: 79-87.
[16]
ZHU Y X, ZHANG X M, ZHANG Q H, CHAI S Y, YIN W C, GAO M, LI Z, WANG X P. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Molecular Plant Pathology, 2022, 23(10): 1415-1432.
[17]
王梦楠. 中国野生山葡萄转录因子VaERF20克隆与功能研究[D]. 杨凌: 西北农林科技大学, 2018.
WANG M N. Cloning and functional analysis of a VaERF20 transcription factor in Chinese wild Vitis amurensis[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[18]
柴生樾. 中国野生山葡萄抗灰霉病转录因子VaERF99功能及其作用机理[D]. 杨凌: 西北农林科技大学, 2021.
CHAI S Y. Study on the function and mechanism of the transcription factor VaERF99 for Botrytis cinerea resistance in Vitis amurensis[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[19]
O’MALLEY R C, HUANG S C, SONG L, LEWSEY M G, BARTLETT A, NERY J R, GALLI M, GALLAVOTTI A, ECKER J R. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 2016, 165(5): 1280-1292.

doi: S0092-8674(16)30481-0 pmid: 27203113
[20]
BI Y, WANG H, YUAN X, YAN Y Q, LI D Y, SONG F M. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. Journal of Integrative Plant Biology, 2023, 65(3): 854-875.
[21]
LIU Y S, LIU Q W, LI X W, ZHANG Z J, AI S K, LIU C, MA F W, LI C. MdERF 114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiology, 2023, 192(3): 2015-2029.
[22]
LEIDA C, DAL RÌ A, DALLA COSTA L, GÓMEZ M D, POMPILI V, SONEGO P, ENGELEN K, MASUERO D, RÍOS G, MOSER C. Insights into the role of the berry-specific ethylene responsive factor VviERF045. Frontiers in Plant Science, 2016, 7: 1793.
[23]
DE MICCOLIS ANGELINI R M, ROTOLO C, MASIELLO M, GERIN D, POLLASTRO S, FARETRA F. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Management Science, 2014, 70(12): 1785-1796.
[24]
MA N, SUN P, LI Z Y, ZHANG F J, WANG X F, YOU C X, ZHANG C L, ZHANG Z L. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress Biology, 2024, 4(1): 2.

doi: 10.1007/s44154-023-00140-y pmid: 38163824
[25]
LI Z, ZHANG Y, REN J, JIA F L, ZENG H M, LI G Y, YANG X F. Ethylene-responsive factor ERF114 mediates fungal pathogen effector PevD1-induced disease resistance in Arabidopsis thaliana. Molecular Plant Pathology, 2022, 23(6): 819-831.
[26]
KHERADPOUR P, KELLIS M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Research, 2014, 42(5): 2976-2987.

doi: 10.1093/nar/gkt1249 pmid: 24335146
[27]
唐玉瑾. 葡萄VviBSs转录因子功能和机理研究[D]. 杨凌: 西北农林科技大学, 2022.
TANG Y J. Stugy on the function and mechanism of VviBSs transcription factor[D]. Yangling: Northwest A&F University, 2022. (in Chinese)
[28]
ZHANG S L, WANG L, YAO J, WU N, AHMAD B, VAN NOCKER S, WU J Y, ABUDUREHEMAN R, LI Z, WANG X P. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. Horticulture Research, 2023, 10(6): uhad070.
[29]
TANG Q, WEI S S, ZHENG X D, TU P C, TAO F. APETALA2/ ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Critical Reviews in Biotechnology, 2024, 44(8): 1533-1551.
[30]
LU X, ZHANG L, ZHANG F Y, JIANG W M, SHEN Q, ZHANG L D, LV Z Y, WANG G F, TANG K X. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytologist, 2013, 198(4): 1191-1202.
[31]
PENG Y, LIANG M R, ZHANG X, YU M, LIU H, CHENG Z M, XIONG J S. FaERF 2 activates two β-1,3-glucanase genes to enhance strawberry resistance to Botrytis cinerea. Plant Science, 2024, 347: 112179.
[32]
WANG L, LIU W D, WANG Y J. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Plant Science, 2020, 293: 110421.
[33]
SPEARS B J, MCINTURF S A, COLLINS C, CHLEBOWSKI M, CSEKE L J, SU J B, MENDOZA-CÓZATL D G, GASSMANN W. Class I TCP transcription factor AtTCP8 modulates key brassinosteroid-responsive genes. Plant Physiology, 2022, 190(2): 1457-1473.

doi: 10.1093/plphys/kiac332 pmid: 35866682
[34]
AGUILAR-MARTÍNEZ J A, SINHA N. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Frontiers in Plant Science, 2013, 4: 406.
[35]
GUO S Y, XU Y Y, LIU H H, MAO Z W, ZHANG C, MA Y, ZHANG Q R, MENG Z, CHONG K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications, 2013, 4: 1566.
[36]
SPEARS B J, HOWTON T C, GAO F, GARNER C M, MUKHTAR M S, GASSMANN W. Direct regulation of the EFR-dependent immune response by Arabidopsis TCP transcription factors. Molecular Plant-Microbe Interactions, 2019, 32(5): 540-549.
[37]
GIRI J, DANSANA P K, KOTHARI K S, SHARMA G, VIJ S, TYAGI A K. SAPs as novel regulators of abiotic stress response in plants. Bioessays, 2013, 35(7): 639-648.

doi: 10.1002/bies.201200181 pmid: 23640876
[38]
SHU X, DING L, GU B, ZHANG H J, GUAN P Y, ZHANG J X. A stress associated protein from Chinese wild Vitis amurensis, VaSAP15, enhances the cold tolerance of transgenic grapes. Scientia Horticulturae, 2021, 285: 110147.
[39]
FELLER A, MACHEMER K, BRAUN E L, GROTEWOLD E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 2011, 66(1): 94-116.

doi: 10.1111/j.1365-313X.2010.04459.x pmid: 21443626
[40]
LI M, SUN L, GU H, CHENG D W, GUO X Z, CHEN R, WU Z Y, JIANG J F, FAN X C, CHEN J Y. Genome-wide characterization and analysis of bHLH transcription factors related to anthocyanin biosynthesis in spine grapes (Vitis davidii). Scientific Reports, 2021, 11(1): 6863.

doi: 10.1038/s41598-021-85754-w pmid: 33767241
[41]
ZHANG Y P, ZHANG L, MA H, ZHANG Y C, ZHANG X M, JI M M, VAN NOCKER S, AHMAD B, ZHAO Z Y, WANG X P, GAO H. Overexpression of the apple (Malus×domestica) MdERF100 in Arabidopsis increases resistance to powdery mildew. International Journal of Molecular Sciences, 2021, 22(11): 5713.
[1] ZHANG TianYu, LI Bai, ZANG JinPing, CAO HongZhe, DONG JinGao, XING JiHong, ZHANG Kang. Genome-Wide Identification and Expression Analysis of HMG Family Genes in Botrytis cinerea [J]. Scientia Agricultura Sinica, 2025, 58(4): 704-718.
[2] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[3] HE JunMin, MAO JingYi, WEI Chen, REN YiFan, ZHANG GuoPing, TIAN KeChuan, LIU GuiFen. Analyzing the Molecular Mechanism of Hair Follicle Development in Subo Merino Based on miRNA Sequencing Data [J]. Scientia Agricultura Sinica, 2024, 57(19): 3917-3935.
[4] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[5] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[6] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[7] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[8] LIU DeShuai, FENG Mei, SUN YuTong, WANG Ye, CHI JingNan, YAO WenKong. Analysis of the Interaction Between VvGAI1 and VvJAZ9 Proteins in Grape and Its Expression Pattern Under Low Temperature [J]. Scientia Agricultura Sinica, 2023, 56(15): 2977-2994.
[9] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[10] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[11] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[12] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[13] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[14] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[15] HUANG YuQing,SUN YanYan,LUO RongZheng,Awangcuomu ,LU SuWen,FAN XiuCai,WANG Chen,LIU ChongHuai,FANG JingGui. A New Classification Standard for Different Grape Cluster Shapes and Investigation on Cluster Shape Dynamic Development Process [J]. Scientia Agricultura Sinica, 2021, 54(11): 2389-2405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!