Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2564-2577.doi: 10.3864/j.issn.0578-1752.2025.13.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Co-Ridge Planting on the Distribution Characteristics of Soil Available Phosphorus and the Absorption and Utilization of Phosphorus by Crops in Maize||Peanut

LIANG Na1(), WANG JiangTao1(), WANG YingChao1, ZHENG Bin1, WANG XiaoXiao1, LIU Juan2, LIU Ling1, FU GuoZhan1, JIAO NianYuan1()   

  1. 1 College of Agriculture, Henan University of Science and Technology/Henan Dryland Agricultural Engineering Technology Research Center, Luoyang 471023, Henan
    2 Institute of Peanut, Henan Academy of Agricultural Sciences, Zhengzhou 450002
  • Received:2025-01-25 Accepted:2025-05-16 Online:2025-07-01 Published:2025-07-05

Abstract:

【Objective】 Co-ridge planting can further enhance the yield advantage of maize (Zea mays L.) and peanut (Arachis hypogaea L.) intercropping (maize||peanut). This study aimed to explore the distribution characteristics of available phosphorus in maize||peanut soil and the characteristics of phosphorus absorption and utilization in crops under the co-ridge planting, which could provide theoretical and technical basis for sustainable high-yield cultivation of maize||peanut. 【Method】 The experiment was conducted in the farm of Henan University of Science and Technology from 2023 to 2024, using a field randomized block experiment. Under the conditions of no phosphorus (P0) and 180 kg P2O5·hm-2 (P180), the effects of co-ridge planting of maize and peanut intercropping (RIC) on the distribution characteristics of soil available phosphorus in 0-60 cm soil layer as well as the absorption and utilization of phosphorus by crops in maize||peanut were studied with flat planting of maize and peanut intercropping (FIC) as the control. 【Result】 In the horizontal direction, the distribution of soil available phosphorus in 0-60 cm soil layer under FIC treatment exhibited “ ” (gentle) characteristics, while under RIC treatment, it showed “ ” (ridge) characteristics, under P180 the “low-high-low” “ ” (ridge) characteristics was more prominent. Compared with FIC, RIC was beneficial to increase the soil available phosphorus content in the 0-40 cm soil layer within the planting unit, which significantly increased by 18.38%-21.29% under P180. Compared with FIC, RIC alleviated the interspecific phosphorus nutrition competition, increased the phosphorus content of intercropping maize and peanut, significantly increased the phosphorus accumulation, and promoted the phosphorus distribution to maize grain and peanut seed. Compared with FIC, RIC significantly increased the phosphorus absorption and yield of intercropping maize, intercropping peanut, and intercropping system, within the increase range of phosphorus absorption being 18.83%-32.62%, 24.08%-41.78% and 21.06%-37.14%, respectively (P<0.05). Compared with P0, P180 could further increase soil available phosphorus content and phosphorus content in maize and peanut, promote phosphorus absorption in intercropping system, and significantly increase maize and peanut yield and intercropping advantage. 【Conclusion】 The co-ridge planting could further improve the yield advantage of maize||peanut compared with flat planting. The key lied in the fact that it improved the available phosphorus distribution in 0-60 cm soil and increased the available phosphorus content in the 0-40 cm soil layer of the planting unit, alleviated the interspecific phosphorus nutrition competition, and promoted the absorption of phosphorus in maize and peanut and its distribution to seed. Phosphorus application had a significant positive regulation effect.

Key words: co-ridge planting, distribution characteristics of available phosphorus, phosphorus nutrition competition, phosphorus absorption, intercropping advantages, maize, peanut

Fig. 1

Monthly average temperature and monthly precipitation during the growth period of maize||peanut"

Fig. 2

Illustration of maize and peanut intercropping in field"

Fig. 3

Spatial distribution characteristics of soil available phosphorus in maize||peanut under the co-ridge planting P0:0 kg P2O5·hm-2;P180:180 kg P2O5·hm-2。FIC:平作种植玉米||花生 Flat planting of maize and peanut intercropping;RIC:同垄种植玉米||花生 Co-ridge planting of maize and peanut intercropping。下同 The same as below"

Table 1

Effects of co-ridge planting on soil available phosphorus content of maize||peanut"

年份
Year
磷水平
P level
种植方式
Planting pattern
土层深度
Soil depth (cm)
土壤有效磷含量 Soil available phosphorus content (mg·kg-1)
玉米行间
Maize rows
(L1)
玉米株间
Maize plants
(L2)
间距
Spacing
(L3)
花生株间Peanut plants (L4) 花生行间
Peanut rows
(L5)
种植单元
Planting unit
(L2—L5)
2023 P0 SC 0—10 3.21c 3.12c / 3.93c 4.20c /
FIC 3.39c 3.52c 4.61c 2.84c 3.75c 3.68c
RIC 3.93c 3.61c 4.84c 3.66c 3.98c 4.02c
P180 SC 27.83b 26.42b / 30.54ab 25.74ab /
FIC 32.63a 27.43b 27.92b 27.10b 24.34b 26.70b
RIC 25.66b 36.00a 35.59a 32.58a 27.74a 32.98a
P0 SC 10—20 2.16b 2.12c / 3.39c 3.57c /
FIC 2.43b 2.03c 1.89b 2.80c 2.98c 2.42c
RIC 2.12b 2.62c 2.30b 3.07c 3.21c 2.80c
P180 SC 16.59a 13.91b / 17.63ab 22.94a /
FIC 17.63a 16.50ab 16.45a 15.54b 18.49b 16.75b
RIC 15.91a 19.40a 16.59a 19.72a 22.30a 19.50a
P0 SC 20—40 2.03c 2.07b / 3.16c 3.02c /
FIC 1.94c 2.16b 1.76c 2.53c 2.93c 2.34c
RIC 1.85c 2.21b 2.21c 3.02c 3.07c 2.63c
P180 SC 4.56a 4.57a / 6.06b 5.97b /
FIC 3.75ab 4.07a 5.47b 5.97b 5.83b 5.34b
RIC 3.34b 5.02a 6.56a 7.56a 7.60a 6.68a
P0 SC 40—60 2.43a 1.80c / 2.89a 2.80a /
FIC 2.07a 1.94bc 1.66b 2.48a 2.75a 2.21c
RIC 2.43a 1.62c 2.12b 2.98a 3.02a 2.43bc
P180 SC 2.53a 2.71ab / 3.43a 3.25a /
FIC 2.48a 2.07bc 3.34a 3.21a 2.84a 2.87b
RIC 2.43a 3.21a 3.98a 3.61a 3.66a 3.61a
2024 P0 SC 0—10 3.16c 2.84d / 3.93c 3.93c /
FIC 3.70c 3.57d 4.02c 3.20c 3.34c 3.53c
RIC 3.93c 3.79d 4.43c 3.70c 3.70c 3.91c
P180 SC 27.14a 26.33c / 30.07ab 29.34a /
FIC 28.03a 28.22b 28.67b 28.50b 24.56b 27.49b
RIC 26.10b 35.61a 35.11a 33.41a 28.52a 33.17a
P0 SC 10—20 2.03c 2.12c / 3.43c 3.07c /
FIC 2.07c 2.53c 2.48b 2.52c 2.93c 2.61c
RIC 1.98c 3.07c 2.75b 3.02c 2.98c 2.96c
P180 SC 20.33ab 19.49b / 19.89ab 23.96a /
FIC 21.02a 19.97b 20.76a 18.65b 19.04b 19.60b
RIC 19.47b 21.79a 22.32a 20.83a 23.07a 22.00a
P0 SC 20—40 1.89c 1.84c / 2.93c 2.93d /
FIC 1.71c 1.71c 1.80c 2.21c 2.89d 2.15c
RIC 1.53c 1.80c 1.98c 2.34c 2.93d 2.26c
P180 SC 3.75a 4.65ab / 6.47a 5.92b /
FIC 3.20b 4.25b 4.61b 5.56b 4.79c 4.80b
RIC 3.02b 5.06a 5.79a 6.51a 7.69a 6.26a
P0 SC 40—60 2.30a 1.66b / 2.20b 2.57a /
FIC 2.43a 1.98b 1.57b 1.98b 2.43a 1.99b
RIC 2.21a 1.98b 1.93b 2.30b 2.48a 2.17b
P180 SC 2.39a 2.07b / 3.38a 3.34a /
FIC 2.84a 2.43b 3.47a 3.16a 3.29a 3.09a
RIC 2.30a 3.20a 3.70a 3.38a 3.38a 3.42a

Table 2

Effects of co-ridge planting on the interspecific phosphorus competition ratio of maize||peanut"

年份
Year
磷水平
P level
种植方式
Planting pattern
竞争比率CRmp
开花期 Anthesis stage 成熟期 Maturity stage
2023 P0 FIC 4.21a 4.25a
RIC 3.48b 3.96a
P180 FIC 2.82c 3.88a
RIC 2.73c 3.71a
2024 P0 FIC 4.83a 5.66a
RIC 4.72a 5.54a
P180 FIC 4.42b 4.45b
RIC 4.27b 4.32b

Table 3

Effects of co-ridge planting on phosphorus content in different organs of maize in maize||peanut system"

年份
Year
磷水平
P level
种植方式
Planting pattern
玉米各器官磷含量 Phosphorus content in different organs of maize (g·kg-1)
开花期 Anthesis stage 成熟期 Maturity stage

Stem

Leaf
苞叶
Bract

Stem

Leaf
苞叶
Bract
籽粒
Grain
2023 P0 SM 1.82c 1.90d 1.89d 0.82d 1.27c 0.82d 1.33b
FIM 1.93c 2.10c 1.89d 0.85d 1.32bc 0.96c 1.40b
RIM 1.98c 2.14c 2.12c 0.87d 1.49b 1.04bc 1.58b
P180 SM 2.61b 3.33b 2.34b 1.01c 2.71a 1.10b 2.39a
FIM 2.66b 3.37ab 2.44ab 1.07b 2.76a 1.29a 2.48a
RIM 2.89a 3.49a 2.59a 1.21a 2.77a 1.37a 2.61a
2024 P0 SM 1.39d 2.03d 2.09d 0.84d 1.75e 0.75c 1.50e
FIM 1.71c 2.58c 2.27c 0.91cd 1.87de 0.84bc 1.71d
RIM 1.79c 2.68c 2.32c 0.99c 2.02cd 0.89bc 1.81d
P180 SM 2.54b 3.82b 2.86b 1.17b 2.15bc 0.96b 2.56c
FIM 2.61b 3.90b 3.00a 1.33a 2.28b 1.14a 2.78b
RIM 2.84a 4.14a 3.11a 1.40a 2.65a 1.28a 3.05a

Table 4

Effects of co-ridge planting on phosphorus content in different organs of peanut in maize||peanut system"

年份
Year
磷水平
P level
种植方式
Planting pattern
花生各器官磷含量 Phosphorus content in different organs of peanut (g·kg-1)
结荚期 Podding stage 成熟期 Maturity stage
茎 Stem 叶 Leaf 果仁 Seed 茎 Stem 叶 Leaf 果仁 Seed
2023 P0 SP 0.90c 1.81c 2.92bc 0.84b 1.69d 3.38c
FIP 0.80c 1.67d 2.71d 0.68c 1.54e 3.09e
RIP 0.85c 1.74cd 2.74d 0.70c 1.61de 3.20d
P180 SP 1.55a 2.16a 3.10a 1.42a 2.05a 3.94a
FIP 1.35b 2.04b 2.89c 1.34a 1.81c 3.83b
RIP 1.42ab 2.09ab 3.04ab 1.36a 1.93b 3.92ab
2024 P0 SP 1.31d 1.98d 3.08c 1.08d 1.86c 3.40d
FIP 1.24e 1.81e 2.75d 0.81e 1.56e 2.96f
RIP 1.28de 1.87e 2.87d 1.01d 1.72d 3.25e
P180 SP 1.97a 2.61a 3.97a 1.80a 2.26a 4.22a
FIP 1.71c 2.39c 3.63b 1.41c 2.02b 3.87c
RIP 1.89b 2.51b 3.85a 1.58b 2.12b 4.14b

Table 5

Effects of co-ridge planting on phosphorus accumulation and distribution in different organs of maize in maize||peanut system"

年份
Year
磷水平
P level
种植方式
Planting pattern
磷积累量P accumulation (mg/plant) 磷分配比例P distribution proportion (%)

Stem

Leaf
苞叶
Bract
籽粒
Grain
单株
Per plant

Stem

Leaf
苞叶
Bract
籽粒
Grain
2023 P0 SM 32.1e 26.2e 6.0e 106.6e 170.9f 18.8a 15.3bc 3.5a 62.4a
FIM 36.9e 28.7e 7.6de 131.9e 205.1e 18.1ab 14.0cd 3.7a 64.2a
RIM 45.4d 34.9d 11.6cd 180.1d 272.0d 16.7abc 12.9d 4.2a 66.2a
P180 SM 63.8c 84.6c 14.5c 276.2c 439.1c 14.6c 19.3a 3.3a 62.8a
FIM 75.3b 94.5b 22.3b 324.6b 516.7b 14.6c 18.3a 4.3a 62.8a
RIM 96.2a 99.9a 27.9a 390.0a 614.0a 15.7bc 16.3b 4.5a 63.5a
2024 P0 SM 35.0f 32.6f 4.4e 93.2f 165.2f 21.2a 19.7a 2.7bc 56.4c
FIM 42.9e 38.1e 6.1e 156.4e 243.3e 17.6b 15.6b 2.5bc 64.3b
RIM 57.2d 45.6d 9.0d 202.9d 314.8d 18.2b 14.5b 2.9b 64.5b
P180 SM 80.6c 51.3c 11.4c 332.8c 476.0c 16.9bc 10.8c 2.4c 69.9a
FIM 104.5b 61.6b 16.5b 423.6b 606.1b 17.2bc 10.2c 2.7bc 69.9a
RIM 122.0a 79.9a 26.0a 537.1a 765.0a 16.0c 10.4c 3.4a 70.2a

Table 6

Effects of co-ridge planting on phosphorus accumulation and distribution in different organs of peanut in maize||peanut system"

年份
Year
磷水平
P level
种植方式
Planting pattern
磷积累量P accumulation (mg/plant) 磷分配比例P distribution proportion (%)

Stem

Leaf
果仁
Seed
单株
Per plant

Stem

Leaf
果仁
Seed
2023 P0 SP 27.4d 21.0c 57.2c 105.6c 26.0c 19.9ab 54.1a
FIP 13.8f 12.7e 30.9f 57.4e 24.1d 22.1a 53.8a
RIP 18.5e 17.1d 45.8e 81.4d 22.7e 21.0a 56.3a
P180 SP 61.3a 31.7a 95.4a 188.3a 32.5b 16.8c 50.7b
FIP 39.3c 19.9c 50.5d 109.8c 35.8a 18.1bc 46.0c
RIP 45.9b 24.2b 66.1b 136.2b 33.7b 17.8bc 48.5bc
2024 P0 SP 31.9c 21.6b 50.9b 104.4c 30.5b 20.7b 48.8a
FIP 15.6e 11.9e 24.7e 52.1f 29.9b 22.8a 47.3ab
RIP 21.7d 14.4d 32.8d 68.9e 31.4b 20.9b 47.6ab
P180 SP 61.9a 31.2a 75.4a 168.5a 36.7a 18.5c 44.8b
FIP 33.0c 18.4c 41.0c 92.4d 35.7a 19.9bc 44.3b
RIP 42.2b 22.6b 55.6b 120.4b 35.1a 18.8c 46.1ab

Table 7

Effects of co-ridge planting on phosphorus absorption and phosphorus intercropping advantage of maize||peanut system"

年份
Year
磷水平
P level
种植方式
Planting pattern
玉米Maize (kg·hm-2) 花生Peanut (kg·hm-2) 体系磷吸收量
P absorption of system (kg·hm-2)
磷间作优势
P intercropping advantage (kg P·hm-2)
单作
SC
间作
IC
单作
SC
间作
IC
2023 P0 FIC 11.4b 25.6d 27.8b 16.6d 20.2d 1.1d
RIC 11.4b 34.0c 27.8b 23.6c 27.8c 8.6b
P180 FIC 29.3a 64.6b 49.6a 31.8b 44.9b 6.1c
RIC 29.3a 76.7a 49.6a 39.5a 54.4a 15.5a
2024 P0 FIC 11.0b 30.4d 27.5b 15.1d 21.2d 2.5c
RIC 11.0b 39.3c 27.5b 20.0c 27.7c 8.9b
P180 FIC 31.7a 75.8b 44.4a 26.8b 46.4b 8.7b
RIC 31.7a 95.6a 44.4a 34.9a 59.2a 21.5a

Table 8

Effects of co-ridge planting on yield and intercropping yield advantage of maize||peanut system"

年份
Year
磷水平
P level
种植方式
Planting pattern
玉米产量
Maize yield (kg·hm-2)
花生产量
Peanut yield (kg·hm-2)
体系产量
Intercropping system yield (kg·hm-2)
间作产量优势
Intercropping yield advantage (kg·hm-2)
土地当量比
Land equivalent ratio
单作
SC
间作
IC
单作
SC
间作
IC
2023 P0 FIC 6540b 5312d 4167a 1667c 6979d 1556b 1.21c
RIC 6540b 6009c 4167a 2028b 8037c 2614a 1.41a
P180 FIC 9847a 7412b 5694a 2167b 9579b 1686b 1.14d
RIC 9847a 7911a 5694a 2778a 10689a 2796a 1.29b
2024 P0 FIC 4798b 3687d 4000b 1221c 4908d 486c 1.08b
RIC 4798b 4483c 4000b 1604b 6087c 1664b 1.34a
P180 FIC 8282a 6857b 5667a 1625b 8482b 1430b 1.11b
RIC 8282a 7565a 5667a 1923a 9488a 2437a 1.25a
[1]
JIAO N Y, WANG J T, MA C, ZHANG C C, GUO D Y, ZHANG F S, JENSEN E S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. The Crop Journal, 2021, 9(6): 1460-1469.
[2]
林松明, 孟维伟, 南镇武, 徐杰, 李林, 张正, 李新国, 郭峰, 万书波. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究. 中国生态农业学报(中英文), 2020, 28(1): 31-41.
LIN S M, MENG W W, NAN Z W, XU J, LI L, ZHANG Z, LI X G, GUO F, WAN S B. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield. Chinese Journal of Eco-Agriculture, 2020, 28(1): 31-41. (in Chinese)
[3]
陈俊南, 姜文洋, 昝志曼, 汪江涛, 郑宾, 刘领, 刘娟, 焦念元. 玉米和花生同垄间作对作物光合特性和间作优势的影响. 应用生态学报, 2023, 34(10): 2672-2682.

doi: 10.13287/j.1001-9332.202310.010
CHEN J N, JIANG W Y, ZAN Z M, WANG J T, ZHENG B, LIU L, LIU J, JIAO N Y. Effects of maize and peanut co-ridge intercropping on crop photosynthetic characteristics and intercropping advantages. Chinese Journal of Applied Ecology, 2023, 34(10): 2672-2682. (in Chinese)

doi: 10.13287/j.1001-9332.202310.010
[4]
ZHU J Q, VAN DER WERF W, ANTEN N P R, VOS J, EVERS J B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytologist, 2015, 207(4): 1213-1222.

doi: 10.1111/nph.13416 pmid: 25898768
[5]
CHEN G D, CHAI Q, HUANG G B, YU A Z, FENG F X, MU Y P, KONG X F, HUANG P. Belowground interspecies interaction enhances productivity and water use efficiency in maize-pea intercropping systems. Crop Science, 2015, 55(1): 420-428.
[6]
LI L, TILMAN D, LAMBERS H, ZHANG F S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203(1): 63-69.

pmid: 25013876
[7]
XIA H Y, WANG L, JIAO N Y, MEI P P, WANG Z G, LAN Y F, CHEN L, DING H B, YIN Y L, KONG W L, XUE Y H, GUO X T, WANG X F, SONG J, LI M. Luxury absorption of phosphorus exists in maize when intercropping with legumes or oilseed rape: Covering different locations and years. Agronomy, 2019, 9(6): 314.
[8]
BARGAZ A, NOYCE G L, FULTHORPE R, CARLSSON G, FURZE J R, JENSEN E S, DHIBA D, ISAAC M E. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology, 2017, 120: 179-188.
[9]
MEI P P, GUI L G, WANG P, HUANG J C, LONG H Y, CHRISTIE P, LI L. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Research, 2012, 130: 19-27.
[10]
ZHOU L L, CAO J, ZHANG F S, LI L. Rhizosphere acidification of faba bean, soybean and maize. Science of The Total Environment, 2009, 407(14): 4356-4362.
[11]
LI S M, LI L, ZHANG F S, TANG C. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany, 2004, 94(2): 297-303.

pmid: 15238349
[12]
焦念元, 宁堂原, 赵春, 侯连涛, 李增嘉, 李友军, 付国占, 韩宾. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响. 作物学报, 2008, 34(4): 706-712.
JIAO N Y, NING T Y, ZHAO C, HOU L T, LI Z J, LI Y J, FU G Z, HAN B. Effect of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system. Acta Agronomica Sinica, 2008, 34(4): 706-712. (in Chinese)
[13]
高明, 张磊, 魏朝富, 谢德体. 稻田长期垄作免耕对水稻产量及土壤肥力的影响研究. 植物营养与肥料学报, 2004, 10(4): 343-348, 354.
GAO M, ZHANG L, WEI C F, XIE D T. Study of the changes of the rice yield and soil fertility on the paddy field under long-term no-tillage and ridge culture conditions. Plant Nutrition and Fertilizing Science, 2004, 10(4): 343-348, 354. (in Chinese)
[14]
GU Y J, HAN C L, KONG M, SHI X Y, ZDRULI P, LI F M. Plastic film mulch promotes high alfalfa production with phosphorus-saving and low risk of soil nitrogen loss. Field Crops Research, 2018, 229: 44-54.
[15]
GRAEF H, KIOBIA D, SAIDIA P, KAHIMBA F, GRAEF F, EICHLER-LÖBERMANN B. Combined effects of biochar and fertilizer application on maize production in dependence on the cultivation method in a sub-humid climate. Communications in Soil Science and Plant Analysis, 2018, 49(22): 2905-2917.
[16]
焦念元, 侯连涛, 宁堂原, 李增嘉, 李友军, 付国占. 玉米花生间作氮磷营养间作优势分析. 作物杂志, 2007(4): 50-53.
JIAO N Y, HOU L T, NING T Y, LI Z J, LI Y J, FU G Z. Analysis on the advantages of nitrogen and phosphorus nutrition intercropping between maize and peanut. Crops, 2007(4): 50-53. (in Chinese)
[17]
李隆. 间套作体系豆科作物固氮生态学原理与应用. 北京: 中国农业大学出版社, 2013: 97-101.
LI L. The ecological principles and applications of biological N2 fixation in legumes-based intercropping systems. Beijing: China Agricultural University Press, 2013: 97-101. (in Chinese)
[18]
MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 1980, 16(3): 217-228.
[19]
ZHU S G, ZHU H, CHENG Z G, ZHOU R, YANG Y M, WANG J, WANG W, WANG B Z, TAO H Y, XIONG Y C. Soil water and phosphorus availability determines plant-plant facilitation in maize-grass pea intercropping system. Plant and Soil, 2023, 482(1): 451-467.
[20]
WANG L, CHEN X Q, CHENG B, YANG H, GAO Y, LI X N, XU M, YU L, WU Y S, ZHOU T, LIU W G, YANG W Y. Stage- specific phosphorus mobilization enhances phosphorus uptake in relay-intercropped soybean. Agriculture, Ecosystems & Environment, 2025, 388: 109660.
[21]
SUN B R, GAO Y Z, WU X, MA H M, ZHENG C C, WANG X Y, ZHANG H L, LI Z J, YANG H J. The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil, 2020, 447(1): 117-133.
[22]
SUN B R, GAO Y Z, YANG H J, ZHANG W, LI Z J. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 2019, 439(1): 145-161.
[23]
WANG L Y, HOU B C, ZHANG D S, LYU Y, ZHANG K, LI H G, RENGEL Z, SHEN J B. The niche complementarity driven by rhizosphere interactions enhances phosphorus-use efficiency in maize/alfalfa mixture. Food and Energy Security, 2020, 9(4): e252.
[24]
王旭清, 王法宏, 任德昌, 曹宏鑫, 董玉红. 小麦垄作栽培的田间小气候效应及对植株发育和产量的影响. 中国农业气象, 2003, 24(2): 6-9.
WANG X Q, WANG F H, REN D C, CAO H X, DONG Y H. Micro-climatic effect of raised-bed planting of wheat and its influence on plant development and yield. Chinese Journal of Agrometeorology, 2003, 24(2): 6-9. (in Chinese)
[25]
慈恩, 王莲阁, 丁长欢, 谢德体. 垄作免耕对稻田垄埂土壤有机碳累积和作物产量的影响. 土壤学报, 2015, 52(3): 576-586.
CI E, WANG L G, DING C H, XIE D T. Effects of no-tillage ridge-cultivation on soil organic carbon accumulation in ridges and crop yields in paddy fields. Acta Pedologica Sinica, 2015, 52(3): 576-586. (in Chinese)
[26]
OBOUR A K, MIKHA M M, HOLMAN J D, STAHLMAN P W. Changes in soil surface chemistry after fifty years of tillage and nitrogen fertilization. Geoderma, 2017, 308: 46-53.
[27]
杨封科, 何宝林, 董博, 王立明. 不同降雨年型黑膜垄作对土壤水肥环境及马铃薯产量和效益的影响. 中国农业科学, 2021, 54(20): 4312-4325. doi: 10.3864/j.issn.0578-1752.2021.20.006.
YANG F K, HE B L, DONG B, WANG L M. Effects of black film mulched ridge-furrow tillage on soil water-fertilizer environment and potato yield and benefit under different rainfall year in semiarid region. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325. doi: 10.3864/j.issn.0578-1752.2021.20.006. (in Chinese)
[28]
YANG F K, HE B L, DONG B, ZHANG G P. Autumn film mulched ridge microfurrow planting improves yield and nutrient-use efficiency of potatoes in dryland farming. Agronomy, 2023, 13(6): 1563.
[29]
赵靓, 侯振安, 李水仙, 刘立鹏, 黄婷, 张扬. 磷肥用量对土壤速效磷及玉米产量和养分吸收的影响. 玉米科学, 2014, 22(2): 123-128.
ZHAO L, HOU Z A, LI S X, LIU L P, HUANG T, ZHANG Y. Effects of P rate on soil available P, yield and nutrient uptake of maize. Maize Science, 2014, 22(2): 123-128. (in Chinese)
[30]
ZHOU T, WANG L, SUN X, WANG X C, PU T, YANG H, RENGEL Z, LIU W G, YANG W Y. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping. Field Crops Research, 2021, 262: 108054.
[31]
LIU X, RAHMAN T, SONG C, YANG F, SU B Y, CUI L, BU W Z, YANG W Y. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 2018, 224: 91-101.
[32]
谷晓博. 种植方式和施氮量对土壤环境及冬油菜产量的影响[D]. 杨凌: 西北农林科技大学, 2018.
GU X B. Effect of planting patterns and nitrogen fertilization on soil environment and yield of winter oilseed rape[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[33]
HAKIM R O, KINAMA J M, KITONYO O M, CHEMINING’WA G N. Effect of tillage method and mulch application on growth and yield of green gram in semiarid Kenya. Advances in Agriculture, 2022, 2022(1): 4037022.
[34]
佘玮, 黄璜, 郑华斌, 姚林, 崔国贤. 垄作梯式栽培对水稻养分吸收利用和根区土壤养分的影响. 作物研究, 2015, 29(4): 357-361.
SHE W, HUANG H, ZHENG H B, YAO L, CUI G X. Effects of ridge and terraced rice farming on nutrient uptake and utilization in rice and soil nutrient contents. Crop Research, 2015, 29(4): 357-361. (in Chinese)
[35]
焦念元, 汪江涛, 张均, 付国占, 李友军. 化学调控和施磷对玉米/花生间作磷吸收利用和间作优势的影响. 中国生态农业学报(中英文), 2015, 23(9): 1093-1101.
JIAO N Y, WANG J T, ZHANG J, FU G Z, LI Y J. Effects of chemical regulation and P fertilization on P absorption and utilization in maize/ peanut intercropping system. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1093-1101. (in Chinese)
[1] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[2] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[3] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[4] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[5] LI XinYu, HOU MingYu, CUI ShunLi, LIU YingRu, LI XiuKun, LIU LiFeng. Construction of Near Infrared Spectrometry Model for Flavonoids Content of Peanut with Red and Black Testa [J]. Scientia Agricultura Sinica, 2025, 58(7): 1284-1295.
[6] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[7] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[8] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[9] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[10] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[11] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[12] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[13] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[14] LI XiangYu, LIU JianZhuo, HU DanDan, LIU GengYu, CHEN LiangYu, LI Bing, DU WanLi, SONG Bo. Characterization of Maize Germplasm Resistance to Common Smut and Analysis of Physiological Differences [J]. Scientia Agricultura Sinica, 2025, 58(13): 2504-2521.
[15] WANG PengFei, YU AiZhong, WANG Feng, WANG YuLong, LÜ HanQiang, SHANG YongPan, Yin Bo, LIU YaLong, ZHANG DongLing, HUO JianZhe, JIANG KeQiang, PANG XiaoNeng. Effects of Reducing Nitrogen Application on Maize Agronomic Traits, Grain Yield and Quality Under Green Manure Returning to Field System in Arid Areas [J]. Scientia Agricultura Sinica, 2025, 58(13): 2552-2563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!