Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4243-4254.doi: 10.3864/j.issn.0578-1752.2021.19.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Detection of Interaction Between Porcine Type I Complement Receptor and C3b Active Fragment in Vitro

SUN YuChen(),JIA RuiPu,FAN KuoHai,SUN Na,SUN YaoGui,SUN PanPan,LI HongQuan(),YIN Wei()   

  1. College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2021-03-09 Accepted:2021-05-12 Online:2021-10-01 Published:2021-10-12
  • Contact: HongQuan LI,Wei YIN E-mail:15935454178@163.com;livets@163.com;dkyyinwei@126.com

Abstract:

【Objective】In order to provide scientific data for elucidating the molecular mechanism of porcine erythrocyte immune adhesion function, it was investigated whether CR1-like (Complement receptor 1-like, CR1-like) of porcine erythrocyte could bind to the C3b or not.【Method】In this study, the recombinant plasmids of CR1-like(3-6) and CR1-like(8-11) functional domain fragments were constructed first, which were used to establish a yeast two-hybrid detection system. The bait plasmid (recombinant pGBKT7-CR1-like) and capture plasmid (recombinant pGADT7-C3b) were co-transformed into Y2HGold yeast cells. The single deficient SD/-Leu, SD/-Trp and double-deficient SD/-Leu/-Trp (DDO) media were used to strictly screen the co-transformed yeast cells. Then, according to the expression of report factor, the growth of transformants were identified on the double-deficient medium SD/-Leu/-Trp/X-α-Gal (DDO/X) or SD/-Leu/-Trp/X-α-Gal/Aba (DDO/X/A) combined with the color change phenomenon of the colony to comprehensively determine whether CR1-like active fragments and complement C3b bind to each other in yeast cells or not. The CR1-like-C3b binding complex in yeast cells was then separated by immunoprecipitation, and the specificity of the complex was identified by Western blot. 【Result】The co-transformed yeast clones showed normal growth on SD/-Leu, SD/-Trp, DDO and DDO/X, DDO/X/A media with blue color colonies, and this indicated that positive yeast colonies were successfully obtained. The results of PCR reverse identification showed that the co-transformed yeast contained the target genes CR1-like(3-6) and CR1-like(8-11). The C3b gene fragment appeared after the plasmid was digested, indicating that the recombinant plasmid pGBKT7-CR1-like and pGADT7-C3b were successfully co-transformed into yeast cells. In the immunoprecipitation test, the tag antibody c-Myc of the pGBKT7 vector was used to precipitate the fusion protein in yeast cells. Western blot detection with c-Myc as the primary antibody revealed that the fusion protein transformed pGBKT7-CR1-like(3-6) and pGBKT7-CR1-like(8-11) separately showed a specific band at 50 kDa; the yeast fusion protein co-transformed with pGBKT7-CR1-like(3-6) + pGADT7-C3b and pGBKT7-CR1-like(8-11) + pGADT7-C3b showed a specific band at 83 kDa; when the HA monoclonal antibody was used as the primary antibody for Western blot detection, no specific bands appeared in the pGBKT7-CR1-like(3-6) and pGBKT7-CR1-like(8-11) fusion proteins, and only the yeast fusion protein co-transformed in lane 3 and 4 showed a specific band at 83 kD. It showed that there was a complex of CR1-like and C3b in Y2HGold yeast cells. Using CR1-like monoclonal antibody to precipitate the fusion protein in yeast cells, Western blot detection with CR1-like as the primary antibody revealed that the fusion protein transformed with pGBKT7-CR1-like(3-6) and pGBKT7-CR1-like(8-11) separately showed a specific band at 50 kD; the yeast fusion protein co-transformed with pGBKT7-CR1-like(3-6) + pGADT7-C3b and pGBKT7-CR1-like(8-11) + pGADT7-C3b showed a specific band at 83 kD; when the C3 monoclonal antibody was used as the primary antibody for Western blot detection, no specific bands appeared in the pGBKT7-CR1-like(3-6) and pGBKT7-CR1-like(8-11) fusion proteins, lanes 3 and 4 showed that only the co-transformed yeast fusion protein had a specific band at 83 kD. This indicated that there was a biologically active CR1-like and C3b binding complex in Y2HGold yeast cells. The bait plasmid expression products CR1-like(3-6), CR1-like(8-11) fragments and capture plasmid expression products C3b fragment could be combined in yeast cells.【Conclusion】In summary, the recognition ligand for porcine erythrocyte CR1-like to exert immune adhesion function was C3b, which provided an important data basis for the further analysis of the molecular structure of CR1-like functional domain.

Key words: CR1-like, C3b, yeast two-hybrid, immune adherence

Table 1

Yeast hybridization"

菌株Strains 阳性组 Positive groups 阴性组 Negative groups
Y2HGold pGBKT7-53 pGBKT7-Lam
Y187 pGADT7-T pGADT7-T

Table 2

Preparation of 5% concentrated gel"

试剂 Reagents 体积 Volumes
H2O 2.67 mL
30% Acr-Bis(29:1) 0.67 mL
1.0 mol·L-1 Tris-HCl(pH6.8) 0.67 mL
10% SDS 53.3 µL
10% AP 40.0 µL
N,N,N',N'-四甲基乙二胺TEMED 5.33 µL

Table 3

Preparation of 10% separation gel"

试剂 Reagents 体积 Volumes
H2O 3.20 mL
30% Acr-Bis(29:1) 2.64 mL
1.5 mol·L-1 Tris-HCl(pH8.8) 2.00 mL
10% SDS 0.08 mL
10% AP 0.08 mL
N,N,N',N'-四甲基乙二胺TEMED 3.00 µL

Fig. 1

Yeast two-hybrid assay for pGBKT7-CR1-like(3-6) and pGADT7-C3b A-E: The growth of yeasts co-transformed with pGBKT7-CR1-like (3-6) and pGADT7-C3b in SD/-Leu, SD/-Trp, DDO, DDO/X and DDO/X/A culture plates"

Fig. 2

Yeast two-hybrid assay for pGBKT7-CR1-like(8-11) and pGADT7-C3b A-E: The growth of yeasts co-transformed with pGBKT7-CR1-like(8-11) and pGADT7-C3b in SD/-Leu, SD/-Trp, DDO, DDO/X and DDO/X/A culture plates"

Fig. 3

Yeast two-hybrid positive control A-E: The growth of yeasts co-transformed with pGBKT7-53 and pGADT7-T in SD/-Leu, SD/-Trp, DDO, DDO/X/A and QDO/X/A culture plates"

Fig. 4

Yeast two-hybrid negative control E: The growth of yeasts co-transformed with pGBKT7-Lam and pGADT7-T in SD/-Leu, SD/-Trp, DDO, DDO/X/A and QDO/X/A culture plates"

Fig. 5

Gene identification of recombinant plasmids A: An electrophoresis image of the pGBKT7-CR1-like plasmid:M1: DL2 000 DNA Marker; 1. Co-conversion pGBKT7-CR1-like;2. Co- transformation of pGBKT7-CR1-like. B: An electrophoresis image of the pGADT7-C3b plasmid: M2: DL5 000 DNA Marker; 1,2. Co-conversion pGADT7-C3b"

Fig. 6

Western blot detection of fusion proteins M: Protein Marker; A and B:Western blot detection of c-Myc antibody; C: Western blot detection of HA antibody"

Fig. 7

Western blot detection of fusion proteins M: Protein Marker; A and B:Western blot detection of CR1-like antibody; C: Western blot detection of C3 antibody"

[1] 周琳, 杨祯妮, 张敏, 程广燕. 肉类全产业链损耗及可食用系参数研究. 中国农业科学, 2019, 52(21):3934-3942. doi: 10.3864/j.issn.0578-1752.2019.21.020.
doi: 10.3864/j.issn.0578-1752.2019.21.020
ZHOU L, YANG Z N, ZHANG M, CHENG G Y. Whole-industry chain loss and edible rate of chinese meats. Scientia Agricultura Sinica, 2019, 52(51):3934-3942. doi: 10.3864/j.issn.0578-1752.2019.21.020. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.21.020
[2] 罗玉子, 孙元, 王涛, 仇华吉. 非洲猪瘟:我国养猪业的重大威胁. 中国农业科学, 2018, 51(21):4177-4187. doi: 10.3864/j.issn.0578-1752.2018.21.016.
doi: 10.3864/j.issn.0578-1752.2018.21.016
LUO Y Z, SUN Y, WANG T, QIU H J. African swine fever: A major threat to the Chinese swine industry. Scientia Agricultura Sinica, 2018, 51(21):4177-4187. doi: 10.3864/j.issn.0578-1752.2018.21.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.21.016
[3] 王琴. 猪瘟与非洲猪瘟对养猪业的重大冲击. 中国农业科学, 2018, 51(21):4143-4145. doi: 10.3864/j.issn.0578-1752.2018.21.012.
doi: 10.3864/j.issn.0578-1752.2018.21.012
WANG Q. The impact of classical swine fever and African swine fever on pig industry. Scientia Agricultura Sinica, 2018, 51(21):4143-4145. doi: 10.3864/j.issn.0578-1752.2018.21.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.21.012
[4] 张建武, 庄金山, 袁世山. 中国部分地区高致病性猪繁殖与呼吸综合征病毒的分子流行病学研究. 中国农业科学, 2008, 41(6):1822-1831. doi: 10.3864/j.issn.0578-1752.2008.06.033.
doi: 10.3864/j.issn.0578-1752.2008.06.033
ZHANG J W, ZHUANG J S, YUAN S S. Molecular epidemiology study on high pathogenic porcine reproductive and respiratory syndrome virus in some regions of China. Scientia Agricultura Sinica, 2008, 41(6):1822-1831. doi: 10.3864/j.issn.0578-1752.2008.06.033. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.06.033
[5] 贾云慧, 许程志, 隋金钰, 吴运谱, 许榜丰, 陈艳, 杨焕良, 乔传玲, 陈化兰. 欧亚类禽型H1N1猪流感病毒HA蛋白的表达及免疫原性评估. 中国农业科学, 2019, 52(5):930-938. doi: 10.3864/j.issn.0578-1752.2019.05.014.
doi: 10.3864/j.issn.0578-1752.2019.05.014
JIA Y H, XU C Z, SUI J Y, WU Y P, XU B F, CHEN Y, YANG H L, QIAO C L, CHEN H L. Immunogenicity evaluation of eukaryotic expressing plasmids encoding HA protein of eurasian avian-like H1N1 swine influenza virus. Scientia Agricultura Sinica, 2019, 52(5):930-938. doi: 10.3864/j.issn.0578-1752.2019.05.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.05.014
[6] TAYLOR R P, LINDORFER M A, ATKINSON J P. Clearance of amyloid-beta with bispecific antibody constructs bound to erythrocytes. Alzheimer's & Dementia (New York, N Y), 2020, 6(1):e12067. doi: 10.1002/trc2.12067.
doi: 10.1002/trc2.12067
[7] ZHU X C, DAI W Z, MA T. Impacts of CR1 genetic variants on cerebrospinal fluid and neuroimaging biomarkers in Alzheimer's disease. BMC Medical Genetics, 2020, 21(1):181. doi: 10.1186/s12881-020-01114-x.
doi: 10.1186/s12881-020-01114-x
[8] PRAJAPATI S K, BORLON C, ROVIRA-VALLBONA E, GRUSZCZYK J, MENANT S, THAM W H, KATTENBERG J H, VILLASIS E, DE MEULENAERE K, GAMBOA D, VINETZ J, FUJITA R, XUAN X N, URBANO FERREIRA M, NIÑO C H, PATARROYO M A, SPANAKOS G, KESTENS L, ABBEELE J V D, ROSANAS-URGELL A. Complement Receptor 1 availability on red blood cell surface modulates Plasmodium vivax invasion of human reticulocytes. Scientific Reports, 2019, 9(1):8943.
doi: 10.1038/s41598-019-45228-6
[9] MCQUAID F, ROWE J A. Rosetting revisited: A critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology, 2020, 147(1):1-11.
doi: 10.1017/S0031182019001288
[10] OCHOLA-OYIER L I, WAMAE K, OMEDO I, OGOLA C, MATHARU A, MUSABYIMANA J P, NJOGU F K, MARSH K. Few plasmodium falciparum merozoite ligand and erythrocyte receptor pairs show evidence of balancing selection. Infection Genetics & Evolution Journal of Molecular Epidemiology & Evolutionary Genetics in Infectious Diseases, 2019, 69:235-245. doi: 10.1016/j.meegid.2019.02.004.
doi: 10.1016/j.meegid.2019.02.004
[11] BARCELLINI W, ZANINONI A, GIANNOTTA J A, FATTIZZO B. New insights in autoimmune hemolytic anemia: From pathogenesis to therapy. Journal of Clinical Medicine, 2020, 9(12):3859. doi: 10.3390/jcm9123859.
doi: 10.3390/jcm9123859
[12] KULIK L, LASKOWSKI J, RENNER B, WOOLAVER R, ZHANG L A, LYUBCHENKO T, YOU Z Y, THURMAN J M, HOLERS V M. Targeting the immune complex-bound complement C3d ligand as a novel therapy for lupus. Journal of Immunology, 2019, 203(12):3136-3147. doi: 10.4049/jimmunol.1900620.
doi: 10.4049/jimmunol.1900620
[13] CROW A R, KAPUR R, KOERNIG S, CAMPBELL I K, JEN C C, MOTT P J, MARJORAM D, KHAN R, KIM M, BRASSEIT J, CRUZ-LEAL Y, AMASH A, KAHLON S, YOUGBARE I, NI H, ZUERCHER A W, KASERMANN F, SEMPLE J W, LAZARUS A H. Treating murine inflammatory diseases with an anti-erythrocyte antibody. Science Translational Medicine, 2019, 11(506):eaau8217. doi: 10.1126/scitranslmed.aau8217.
doi: 10.1126/scitranslmed.aau8217
[14] OLIVEIRA L C, KRETZSCHMAR G C, DOS SANTOS A C M, CAMARGO C M, NISIHARA R M, FARIAS T D J, FRANKE A, WITTIG M, SCHMIDT E, BUSCH H, PETZL-ERLER M L, BOLDT A B W. Complement receptor 1 (CR1, CD35) polymorphisms and soluble CR1: A proposed anti-inflammatory role to quench the fire of “fogo selvagem” Pemphigus foliaceus. Frontiers in Immunology, 2019, 10:2585. doi: 10.3389/fimmu.2019.02585.
doi: 10.3389/fimmu.2019.02585
[15] SIMMONS K T, MAZZILLI J L, MUELLER-ORTIZ S L, DOMOZHIROV A Y, GARCIA C A, ZSIGMOND E M, WETSEL R A. Complement receptor 1 (CR1/CD35)-expressing retinal pigment epithelial cells as a potential therapy for age-related macular degeneration. Molecular Immunology, 2020, 118:91-98. doi: 10.1016/j.molimm.2019.11.007.
doi: 10.1016/j.molimm.2019.11.007
[16] CRANE A, BRUBAKER W D, JOHANSSON J U, TRIGUNAITE A, CEBALLOS J, BRADT B, GLAVIS-BLOOM C, WALLACE T L, TENNER A J, ROGERS J. Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: 2. Relationship to amyloid β immunotherapy. Alzheimer's & Dementia, 2018, 14(2):243-252. doi: 10.1016/j.jalz.2017.04.015.
doi: 10.1016/j.jalz.2017.04.015
[17] JOHANSSON J U, BRUBAKER W D, JAVITZ H, BERGEN A W, NISHITA D, TRIGUNAITE A, CRANE A, CEBALLOS J, MASTROENI D, TENNER A J, SABBAGH M, ROGERS J. Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: Polymorphisms, structure, and function of complement receptor 1. Alzheimer's & Dementia, 2018, 14(11):1438-1449. doi: 10.1016/j.jalz.2018.04.003.
doi: 10.1016/j.jalz.2018.04.003
[18] 牛胜, 李欣, 张宁, 宁官保, 张鼎, Ali Raza Jahejo, 马海利, 郝卫芳, 高文伟, 赵宇军, 高诗敏, 李桂兰, 李建慧, 闫芳, 高荣琨, 毕玉海, 韩凌霞, 田文霞. 马立克病病毒感染鸡红细胞6种免疫相关因子转录水平的鉴定. 动物医学进展, 2018, 39(12):49-53. doi: 10.3969/j.issn.1007-5038.2018.12.010
doi: 10.3969/j.issn.1007-5038.2018.12.010
NIU S, LI X, ZHANG N, NING G B, ZHANG D, JAHEJO A, MA H L, HAO W F, GAO W W, ZHAO Y J, GAO S M, LI G L, LI J H, YAN F, GAO R K, BI Y H, HAN L X, TIAN W X. Identification of transcription levels of six immune-related factors in chicken erythrocytes infected with marek’s disease virus. Progress in Veterinary Medicine, 2018, 39(12):49-53. doi: 10.3969/j.issn.1007-5038.2018.12.010. (in Chinese)
doi: 10.3969/j.issn.1007-5038.2018.12.010
[19] 郑世民, 葛依阳, 马宏伟, 高雪丽, 刘超男, 吕晓萍. 鹅源H5N1禽流感病毒感染对雏鸭红细胞免疫功能的影响. 东北农业大学学报, 2019, 50(1):45-51.
doi: 10.19720/j.cnki.issn.1005-9369.2019.01.006
ZHENG S M, GE Y Y, MA H W, GAO X L, LIU C N, LV X P. Effect of goose source H5N1 avian influenza virus infection to erythrocyte immune function of duckling. Journal of Northeast Agricultural University, 2019, 50(1):45-51. doi: 10.19720/j.cnki.issn.1005-9369.2019.01.006. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2019.01.006
[20] NOMBELA I, LOPEZ-LORIGADOS M, SALVADOR-MIRA M E, PUENTE-MARIN S, CHICO V, CIORDIA S, MENA M C, MERCADO L, COLL J, PEREZ L, ORTEGA-VILLAIZAN M D M. Integrated transcriptomic and proteomic analysis of red blood cells from rainbow trout challenged with VHSV point towards novel immunomodulant targets. Vaccines (Basel), 2019, 7(3):63-91. doi: 10.3390/vaccines7030063.
doi: 10.3390/vaccines7030063
[21] 卫含伟, 朱娜娜, 王欢, 刘小倩, 段立双, 周循, 郭建荣. 改良保存液处理红细胞对糖尿病小鼠创面愈合的影响. 基础医学与临床, 2020, 40(8):1031-1036. doi: 10.16352/j.issn.1001-6325.2020.08.003.
doi: 10.16352/j.issn.1001-6325.2020.08.003
WEI H W, ZHU N N, WANG H, LIU X Q, DUAN L S, ZHOU X, GUO J R. Influences on wound healing in diabetic mice by blood transfusion treated with improved blood preservation solution. Basic & Clinical Medicine, 2020, 40(8):1031-1036. doi: 10.16352/j.issn.1001-6325.2020.08.003. (in Chinese)
doi: 10.16352/j.issn.1001-6325.2020.08.003
[22] SUN Y G, YIN W, FAN X F, FAN K H, JIANG J B, LI H Q. The cytological observation of immune adherence of porcine erythrocyte. Cell Communication & Adhesion, 2012, 19(5/6):79-84. doi: 10.3109/15419061.2012.743999.
doi: 10.3109/15419061.2012.743999
[23] 张静静, 王春, 贾瑞璞, 尹伟, 范阔海, 孙娜, 孙耀贵, 李宏全. 猪红细胞免疫黏附功能与CR1-like表达水平的研究. 中国兽医科学, 2018, 48(5):593-604. doi: 10.16656/j.issn.1673-4696.2018.0114.
doi: 10.16656/j.issn.1673-4696.2018.0114
ZHANG J J, WANG C, JIA R P, YIN W, FAN K H, SUN N, SUN Y G, LI H Q. Study on immune adhesion function and CRl-like expression level of porcine erythrocytes. Chinese Veterinary Science, 2018, 48(5):593-604. doi: 10.16656/j.issn.1673-4696.2018.0114. (in Chinese)
doi: 10.16656/j.issn.1673-4696.2018.0114
[24] 张琪琪, 凌小雅, 孙雨晨, 尹伟, 范阔海, 孙娜, 孙耀贵, 李宏全. 猪红细胞类补体受体I型膜结合蛋白的筛选. 中国兽医科学, 2020, 50(1):42-48. doi: 10.16656/j.issn.1673-4696.2019.0213.
doi: 10.16656/j.issn.1673-4696.2019.0213
ZHANG Q Q, LING X Y, SUN Y C, YIN W, FAN K H, SUN N, SUN Y G, LI H Q. Screening of membrane-binding proteins of complement receptor 1-like on porcine erythrocytes. Chinese Veterinary Science, 2020, 50(1):42-48. doi: 10.16656/j.issn.1673-4696.2019.0213. (in Chinese)
doi: 10.16656/j.issn.1673-4696.2019.0213
[25] YIN W, WANG C, FAN K H, SUN N, SUN Y G, LI H Q. In vitro observation: the GFP-E. coli adhering to porcine erythrocytes can be removed by porcine alveolar macrophages. Peer J, 2019, 7:e6439. doi: 10.7717/peerj.6439.
doi: 10.7717/peerj.6439
[26] 贾瑞璞, 凌小雅, 孙雨晨, 尹伟, 范阔海, 孙娜, 孙耀贵, 李宏全. 猪CR1-like蛋白酵母双杂交诱饵质粒的构建及鉴定. 中国兽医杂志, 2020, 56(1):5-9.
JIA R P, LING X Y, SUN Y C, YIN W, FAN K H, SUN N, SUN Y G, LI H Q. Construction and identification of yeast two-hybrid bait plasmid for porcine erythrocyte CR1-like protein. Chinese Journal of Veterinary Medicine, 2020, 56(1):5-9.(in Chinese)
[27] LUCHENA C, ZUAZO-IBARRA J, ALBERDI E, MATUTE C, CAPETILLO-ZARATE E. Contribution of neurons and glial cells to complement-mediated synapse removal during development, aging and in Alzheimer's disease. Mediators of Inflammation, 2018, 2018:2530414. doi: 10.1155/2018/2530414.
doi: 10.1155/2018/2530414
[28] 石莉. 血清免疫球蛋白、红细胞免疫及外周血T淋巴细胞亚群检验对治疗小儿肺炎支原体感染的临床观察. 世界最新医学信息文摘(连续型电子期刊), 2019, 19(73):195-197. doi: 10.19613/j.cnki.1671-3141.2019.73.127.
doi: 10.19613/j.cnki.1671-3141.2019.73.127
SHI L. Clinical observation of serum immunoglobulin, erythrocyte immunity and peripheral blood T lymphocyte subgroup test in the treatment of children with Mycoplasma pneumoniae infection. World Latest Medicine Information, 2019, 19(73):195-197. doi: 10.19613/j.cnki.1671-3141.2019.73.127.(in Chinese)
doi: 10.19613/j.cnki.1671-3141.2019.73.127
[29] 张壮龙, 田红卫, 李克鑫, 张然, 王诚, 李倩, 李克钦, 牛绪东, 张元瑞, 刘建柱. 猪附红细胞体感染. 猪业科学, 2020, 37(11):99-102.
ZHANG Z L, TIAN H W, LI K X, ZHANG R, WANG C, LI Q, LI K Q, NIU X D, ZHANG Y R, LIU J Z. Swine Eperythrozoon suis infection. Swine Industry Science, 2020, 37(11):99-102.(in Chinese)
[30] BUSUTTI M, DIOMEDI-CAMASSEI F, DONADELLI R, MELE C, EMMA F, VIVARELLI M. Efficacy of eculizumab in coexisting complement C3 glomerulopathy and atypical hemolytic uremic syndrome. Kidney International Reports, 2021, 6(2):534-537. doi: 10.1016/j.ekir.2020.10.037.
doi: 10.1016/j.ekir.2020.10.037
[31] YIN W, CUI J Y, JIANG J B, ZHAO J X, FAN K H, SUN N, WANG Z W, SUN Y G, MA H L, LI H Q. The immune adherence receptor CR1-like existed on porcine erythrocytes membrane. Scientific Reports, 2015, 5:13290. doi: 10.1038/srep13290.
doi: 10.1038/srep13290
[32] CHENG J, JIANG J B, ZHAO J X, WANG Z R, SUN Y G, MA H L, FAN K H, YIN W, SUN N, WANG Z W, ZHAO X, LI H Q. Cloning and bioinformatics analysis of a full-length cDNA of porcine CR1-like gene. Acta Biochimica et Biophysica Sinica, 2014, 46(11):997-1000. doi: 10.1093/abbs/gmu084.
doi: 10.1093/abbs/gmu084
[33] 公惟欣, 尹伟, 王春, 范阔海, 孙娜, 孙耀贵, 李宏全. 长白猪CR1-like基因单核苷酸多态性和拷贝数变异的研究. 黑龙江畜牧兽医(上半月), 2018(6):113-118, 254. doi: 10.13881/j.cnki.hljxmsy.2018.02.0141
doi: 10.13881/j.cnki.hljxmsy.2018.02.0141
GONG W X, YIN W, WANG C, FAN K H, SUN N, SUN Y G, LI H Q. Study on single nucleotide polymorphism and copy number variation of CR1-like gene in landrace. Heilongjiang Animal Science and Veterinary Medicine, 2018(6):113-118, 254. doi: 10.13881/j.cnki.hljxmsy.2018.02.0141. (in Chinese)
doi: 10.13881/j.cnki.hljxmsy.2018.02.0141
[34] 薛翼鹏. 猪CR1-like单克隆抗体的制备及CR1-like在猪红细胞膜表面分布状态的研究[D]. 太谷: 山西农业大学, 2015.
XUE Y P. The monoclonal antibody of porcine CR1-like and its distribution on erythrocyte membrane[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese)
[35] 王春. 猪肺泡巨噬细胞移除红细胞免疫粘附致敏GFP-E.coli的研究[D]. 太谷: 山西农业大学, 2019.
WANG C. Study on porcine alveolar macrophages removing opsonized GFP-E.coli from erythrocytes[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
[1] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[2] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[3] XU HaiFeng,YANG GuanXian,ZHANG Jing,ZOU Qi,WANG YiCheng,QU ChangZhi,JIANG ShengHui,WANG Nan,CHEN XueSen. Molecular Mechanism of Apple MdWRKY18 and MdWRKY40 Participating in Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(23): 4514-4521.
[4] WANG YuKui,BAI XiaoJing,LIAN XiaoPing,ZHANG HeCui,LUO ShaoLan,PU Min,ZUO TongHong,LIU QianYing,ZHU LiQuan. Cloning and Expression Analysis of BoSPx in Brassica oleracea [J]. Scientia Agricultura Sinica, 2018, 51(22): 4328-4338.
[5] ZHAO QingQing, LI JunPing, LIANG LiBin, HUANG ShanYu, ZHOU ChenChen, ZHAO YuHui, WANG Qian, ZHOU Yuan, JIANG Li, CHEN HuaLan, LI ChengJun. Interaction between Influenza Virus PA Protein and Host Protein PCBP1 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396.
[6] LI Shuai, JIANG XiZi, LIANG WeiFang, CHEN SiHan, ZHANG XiangXiang, ZUO DengPan, HU YaHui, JIANG Tong. Screening of the Host Factors of Woodland Strawberry Interacting with P6 of Strawberry vein banding virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2017, 50(18): 3519-3528.
[7] RU JingNa, YU TaiFei, CHEN Jun, CHEN Ming, ZHOU YongBin, MA YouZhi, XU ZhaoShi, MIN DongHong. Response of Wheat Zinc-Finger Transcription Factor TaDi19A to Cold and Its Screening of Interacting Proteins [J]. Scientia Agricultura Sinica, 2017, 50(13): 2411-2422.
[8] ZHAO JuanYing, LIU JiaMing, FENG ZhiJuan, CHEN Ming, ZHOU YongBin, CHEN Jun, XU ZhaoShi, GUO ChangHong. The Response to Heat and Screening of the Interacting Proteins of Zinc Finger Protein GmDi19-5 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(12): 2389-2398.
[9] WANG Yu-qiu, LI Guo-bang, YANG Juan, LI Liang, ZHAO Zhi-xue, FAN Jing, WANG Wen-ming. Construction and Application of a Yeast Two-Hybrid cDNA Library from Rice Spikelets Infected with Ustilaginoidea virens [J]. Scientia Agricultura Sinica, 2016, 49(5): 865-873.
[10] ZHANG He-cui, LIU Jing, LIAN Xiao-ping, ZENG Jing, YANG Kun, ZHANG Xue-jie, YANG Dan, SHI Song-mei, GAO Qi-guo, ZHU Li-quan. Expression and Interaction Between ROH1 and EXO70A1 in Reproductive Development [J]. Scientia Agricultura Sinica, 2016, 49(4): 775-783.
[11] WANG Jia-feng, LIU Hao, WANG Hui, CHEN Zhi-qiang . Screening of Putative Proteins That are Interacted with NBS-LRR Protein Pik-h by the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2016, 49(3): 482-490.
[12] LUO Wei-yu, ZHU Peng-yang, ZHANG Jie, HU Yong-hao, KONG Hui-hui, LIANG Li-bin, ZHOU Yuan, LI Cheng-jun, JIANG Li, CHEN Hua-lan. Construction of cDNA Library Derived from Human Lung Epithelial Cell Lines and Screening for Host Cellular Proteins Interacting with Influenza Virus Nucleoprotein [J]. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459.
[13] SHI Song-mei, GAO Qi-guo, LIAN Xiao-ping, BI Yun-long, LIU Xiao-huan, PU Quan-ming, LIU Gui-xi, LIU Jing, REN Xue-song, YANG Xiao-hong, ZHU Li-quan, WANG Xiao-jia. Identification of Interaction Domain of SRK-ARC1-Exo70A1 and Interaction Strength Analysis in Brassica oleracea var. capitata L. [J]. Scientia Agricultura Sinica, 2016, 49(1): 14-26.
[14] SUN Yu-jing, MA Wen-xiu, CAI Lu-lu, LIU Liang, ZOU Li-fang, CHEN Gong-you. Identification of a Protein both in Tobacco and Rice that Interacts with an HR-elicitor SsbX of Xanthomonas oryzae pv. oryzicola [J]. Scientia Agricultura Sinica, 2015, 48(4): 683-694.
[15] AN Xiu-hong, ZHANG Xiu-de, CHEN Ke-qin, LIU Xiao-juan, HAO Yu-jin, CHENG Cun-gang. Expression and Protein Interaction Analysis of MdMYB9 and MdMYB11 in Apple [J]. Scientia Agricultura Sinica, 2015, 48(11): 2208-2216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!