Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 676-691.doi: 10.3864/j.issn.0578-1752.2025.04.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Physiological Response of Longzhong Alfalfa to Exogenous Spermine Under Drought Stress

WANG WenJuan(), SHI ShangLi(), KANG WenJuan(), DU YuanYuan, YIN Chen   

  1. Pratacultural College, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070
  • Received:2024-06-28 Accepted:2024-10-31 Online:2025-02-16 Published:2025-02-24
  • Contact: SHI ShangLi, KANG WenJuan

Abstract:

【Objective】Spermine (Spm) can improve the tolerance of plants to abiotic stresses and reduce the damage caused by abiotic stresses to plants. To investigate the effect of exogenous Spm on drought resistance of alfalfa under drought stress, to provide a theoretical basis for exogenous Spm to improve drought resistance of alfalfa, and then to provide a scientific basis for the application of utilizing exogenous Spm to enhance drought resistance of plants. 【Method】Longzhong alfalfa (Medicago sativa L. cv. Longzhong) was used as the experimental material, and polyethylene glycol 6000 was used to simulate drought stress. Under normal water and drought stress after the root application of 0.1, 0.5 and 1.0 mmol·L-1 concentration of Spm, the change characteristics in Longzhong alfalfa were studied, including plant height, leaf relative water content (RWC), photosynthetic pigments content, gas exchange parameters, antioxidant enzymes activity, antioxidants content, superoxide anion ($O^{\bar{.}}_{2}$) content, hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content and osmoregulatory substances content. 【Result】Under drought stress, exogenous Spm increased plant height and leaf RWC of Longzhong alfalfa, slowed down the degradation of chlorophyll a, chlorophyll b (Chlb), and carotenoids, elevated the net photosynthetic rate, transpiration rate, and stomatal conductance of leaves, reduced the concentration of intercellular carbon dioxide, enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), raised the ascorbic acid (ASA) content, ASA/ dehydroascobic acid (DHA) ratio, glutathione (GSH) content and GSH/ glutathione disulfide (GSSG) ratio, decreased DHA and GSSG content, enhanced ascorbate peroxidase and glutathione reductase activities, decreased $O^{\bar{.}}_{2}$ and H2O2 production, inhibited MDA accumulation, and increased proline and soluble sugar content. The results of principal component analysis and calculation of average affiliation function values of all physiological indexes under each treatment showed that Spm application under normal water conditions had no effect on the growth of alfalfa, whereas Spm application under drought condition improved the drought tolerance of Longzhong alfalfa under drought stress, with the best enhancement effect of 0.5 mmol·L-1 Spm. A further redundancy analysis showed that 0.5 mmol·L-1 Spm enhanced the drought tolerance of Longzhong alfalfa mainly by slowing down the degradation of leaf Chlb, increasing the ASA-GSH cycle and CAT activity.【Conclusion】Exogenous Spm could reduce the degradation of photosynthetic pigments, alleviate the non-stomatal restriction of drought stress on alfalfa leaves, increase the activities of SOD, POD and CAT, promote the ASA-GSH cycle, increase the content of osmoregulatory substances, reduce the production of $O^{\bar{.}}_{2}$ and H2O2, and decrease the degree of membrane lipid peroxidation, thus increasing the plant height and leaf RWC of Longzhong alfalfa under drought stress, thereby enhancing its drought resistance. Exogenous application of 0.5 mmol·L-1 Spm was an effective method to improve the drought resistance of alfalfa under drought stress, and it could be applied to improve the drought resistance of alfalfa in dry areas for practical production.

Key words: alfalfa, drought stress, exogenous spermine, drought tolerance, physiology

Table 1

Experimental treatments and methods"

处理Treatment 具体方法Concrete method
正常水分+0 Spm
Normal water+ 0 Spm
未经Spm预处理的陇中紫花苜蓿在Hoagland营养液中培养
Longzhong alfalfa without Spm pretreatment was cultivated in Hoagland nutrient solution
正常水分+0.1 mmol·L-1 Spm
Normal water + 0.1 mmol·L-1 Spm
经0.1 mmol·L-1 Spm预处理的陇中紫花苜蓿在Hoagland营养液中培养
Longzhong alfalfa pretreated with 0.1 mmol·L-1 Spm was cultivated in Hoagland nutrient solution
正常水分+0.5 mmol·L-1 Spm
Normal water + 0.5 mmol·L-1 Spm
经0.5 mmol·L-1 Spm预处理的陇中紫花苜蓿在Hoagland营养液中培养
Longzhong alfalfa pretreated with 0.5 mmol·L-1 Spm was cultivated in Hoagland nutrient solution
正常水分+1.0 mmol·L-1 Spm
Normal water + 1.0 mmol·L-1 Spm
经1.0 mmol·L-1 Spm 预处理的陇中紫花苜蓿在Hoagland营养液中培养
Longzhong alfalfa pretreated with 1.0 mmol·L-1 Spm was cultivated in Hoagland nutrient solution
干旱+0 Spm
Drought+ 0 Spm
未经Spm预处理的陇中紫花苜蓿在含有-1.2 MPa PEG-6000 的营养液中培养
Longzhong alfalfa without Spm pretreatment was cultivated in nutrient solution containing -1.2 MPa PEG-6000
干旱+0.1 mmol·L-1 Spm
Drought+ 0.1 mmol·L-1 Spm
经0.1 mmol·L-1 Spm预处理的陇中紫花苜蓿幼苗在含有-1.2 MPa PEG-6000 的营养液中培养
Longzhong alfalfa pretreated with 0.1 mmol·L-1 Spm was cultivated in nutrient solution containing -1.2 MPa PEG-6000
干旱+0.5 mmol·L-1 Spm
Drought+ 0.5 mmol·L-1 Spm
经0.5 mmol·L-1 Spm预处理的陇中紫花苜蓿幼苗在含有-1.2 MPa PEG-6000的营养液中培养
Longzhong alfalfa pretreated with 0.5 mmol·L-1 Spm was cultivated in nutrient solution containing -1.2 MPa PEG-6000
干旱+1.0 mmol·L-1 Spm
Drought+ 1.0 mmol·L-1 Spm
经1.0 mmol·L-1 Spm预处理的陇中紫花苜蓿幼苗在含有-1.2 MPa PEG-6000的营养液中培养
Longzhong alfalfa pretreated with 1.0 mmol·L-1 Spm was cultivated in nutrient solution containing -1.2 MPa PEG-6000

Fig. 1

Effect of exogenous Spm on plant height and leaf RWC of Longzhong alfalfa under drought stress"

Fig. 2

Effects of exogenous Spm on photosynthetic pigment content of Longzhong alfalfa leaves under drought stress"

Fig. 3

Effect of exogenous Spm on gas exchange parameters of Longzhong alfalfa leaves under drought stress"

Fig. 4

Effects of exogenous Spm on SOD, POD and CAT activities of Longzhong alfalfa leaves under drought stress"

Fig. 5

Effect of exogenous Spm on ASA-GSH cycle in Longzhong alfalfa under drought stress"

"

Fig. 7

Effect of exogenous Spm on the content of osmoregulatory substances in Longzhong alfalfa leaves under drought stress"

Table 2

Ranking of the affiliation function of exogenous Spm on physiological indexes of Longzhong alfalfa under drought stress"

处理
Treatment
平均隶属函数值
Average affiliation function values
隶属函数排名
Ranking of affiliation functions
正常水分+0 Spm Normal water +0 Spm 0.49 4
正常水分+0.1 mmol·L-1 Spm Normal water +0.1 mmol·L-1 Spm 0.52 3
正常水分+0.5 mmol·L-1 Spm Normal water +0.5 mmol·L-1 Spm 0.52 3
正常水分+1.0 mmol·L-1 Spm Normal water +1.0 mmol·L-1 Spm 0.52 3
干旱+0 Spm Drought +0 Spm 0.24 6
干旱+0.1 mmol·L-1 Spm Drought +0.1 mmol·L-1 Spm 0.47 5
干旱+0.5 mmol·L-1 Spm Drought +0.5 mmol·L-1 Spm 0.80 1
干旱+1.0 mmol·L-1 Spm Drought +1.0 mmol·L-1 Spm 0.61 2

Fig. 8

PCA analysis of the effect of exogenous Spm on physiological indexes of Longzhong alfalfa under drought stress"

Fig. 9

RDA analysis of the effect of exogenous Spm on physiological indexes of Longzhong alfalfa under drought stress"

[1]
PÁL M, SZALAI G, JANDA T. Speculation: Polyamines are important in abiotic stress signaling. Plant Science, 2015, 237: 16-23.

doi: 10.1016/j.plantsci.2015.05.003 pmid: 26089148
[2]
KHOSROWSHAHI Z T, GHASSEMI-GOLEZANI K, SALEHI- LISAR S Y, MOTAFAKKERAZAD R. Changes in antioxidants and leaf pigments of safflower (Carthamus tinctorius L.) affected by exogenous spermine under water deficit. Biologia Futura, 2020, 71(3): 313-321.
[3]
BAI J H, JIN K, QIN W, WANG Y Q, YIN Q. Proteomic responses to Alkali stress in oats and the alleviatory effects of exogenous spermine application. Frontiers in Plant Science, 2021, 12: 627129.
[4]
XIE X T, GU Y J, WANG W L, ABBAS F, QIN S N, FU S Y, MEI J Q, WANG J Y, MA D X, WEN G C, YANG Y, SHARMA A, WANG X F, YAN D L, ZHENG B S, HE Y, YUAN H W. Exogenous spermidine improved drought tolerance in Ilex verticillata seedlings. Frontiers in Plant Science, 2023, 14: 1065208.
[5]
SHU S, YUAN L Y, GUO S R, SUN J, YUAN Y H. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiology and Biochemistry, 2013, 63: 209-216.
[6]
SUN W J, HAO J H, FAN S X, LIU C J, HAN Y Y. Transcriptome and metabolome analysis revealed that exogenous spermidine- modulated flavone enhances the heat tolerance of lettuce. Antioxidants, 2022, 11(12): 2332.
[7]
CAI S Y, WANG G F, XU H, LIU J X, LUO J, SHEN Y. Exogenous spermidine improves chilling tolerance in sweet corn seedlings by regulation on abscisic acid, ROS and Ca2+ pathways. Journal of Plant Biology, 2021, 64(6): 487-499.
[8]
SADEGHIPOUR O. Polyamines protect mung bean [Vigna radiata (L.) Wilczek] plants against drought stress. Biologia Futura, 2019, 70(1): 71-78.
[9]
WANG W J, SHI S L, KANG W J, HE L. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H2O2 production to increase antioxidant enzyme activity. Journal of Plant Physiology, 2023, 291: 154139.
[10]
王文娟, 师尚礼, 何龙, 武蓓, 刘旵旵. 干旱胁迫下多胺在植物体内的积累及其作用. 草业学报, 2023, 32(6): 186-202.

doi: 10.11686/cyxb2022303
WANG W J, SHI S L, HE L, WU B, LIU C C. Accumulation and functions of polyamines in plants under drought stress. Acta Prataculturae Sinica, 2023, 32(6): 186-202. (in Chinese)
[11]
ARNON D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in BETA VULGARIS. Plant Physiology, 1949, 24(1): 1-15.
[12]
BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971, 44(1): 276-287.

doi: 10.1016/0003-2697(71)90370-8 pmid: 4943714
[13]
MUÑOZ-MUÑOZ J L, GARCÍA-MOLINA F, GARCÍA-RUIZ P A, ARRIBAS E, TUDELA J, GARCÍA-CÁNOVAS F, RODRÍGUEZ-LÓPEZ J N. Enzymatic and chemical oxidation of trihydroxylated phenols. Food Chemistry, 2009, 113(2): 435-444.
[14]
DRAPER H H, HADLEY M. Malondialdehyde determination as index of lipid Peroxidation. Methods in Enzymology, 1990, 186: 421-431.

pmid: 2233309
[15]
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[16]
BUYSSE J, MERCKX R. An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 1993, 44(10): 1627-1629.
[17]
ROSEN H. A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, 1957, 67(1): 10-15.

doi: 10.1016/0003-9861(57)90241-2 pmid: 13412116
[18]
王志恒, 赵延蓉, 黄思麒, 王悦娟, 起金娥, 魏玉清. 外源海藻糖影响甜高粱幼苗抗旱性的生理生化机制. 植物生理学报, 2022, 58(4): 654-666.
WANG Z H, ZHAO Y R, HUANG S Q, WANG Y J, QI J E, WEI Y Q. Physiological and biochemical mechanism of exogenous trehalose on drought resistance in sweet Sorghum seedlings. Plant Physiology Journal, 2022, 58(4): 654-666. (in Chinese)
[19]
赵东晓, 董亚茹, 孙景诗, 娄齐年, 朱红, 陈传杰, 王照红. 外源亚精胺对桑树盐胁迫的缓解效应. 蚕业科学, 2019, 45(4): 484-493.
ZHAO D X, DONG Y R, SUN J S, LOU Q N, ZHU H, CHEN C J, WANG Z H. Alleviation effect of exogenous spermidine on mulberry under salt stress. Acta Sericologica Sinica, 2019, 45(4): 484-493. (in Chinese)
[20]
ZHANG Y, HU X H, SHI Y, ZOU Z R, YAN F, ZHAO Y Y, ZHANG H, ZHAO J Z. Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline-alkaline stress. Journal of the American Society for Horticultural Science, 2013, 138(1): 38-49.
[21]
BANGAR P, CHAUDHURY A, TIWARI B, KUMAR S, KUMARI R, BHAT K V. Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology, 2019, 43(1): 58-69.
[22]
XU J W, YANG J Y, XU Z J, ZHAO D K, HU X H. Exogenous spermine-induced expression of SlSPMS gene improves salinity- alkalinity stress tolerance by regulating the antioxidant enzyme system and ion homeostasis in tomato. Plant Physiology and Biochemistry, 2020, 157: 79-92.
[23]
苏芸芸, 付菲菲, 欧晓彬. 外源钙对干旱胁迫下桔梗幼苗生理特性和药用品质的影响. 西北植物学报, 2024, 44(4): 551-561.
SU Y Y, FU F F, OU X B. Effects of exogenous calcium on physiological characteristics and medicinal quality of Platycodon grandiflorus seedlings under drought stress. Acta Botanica Boreali- Occidentalia Sinica, 2024, 44(4): 551-561. (in Chinese)
[24]
李舒琦, 许喆, 吴邦高, 任健, 代微然. 外源脱落酸对干旱胁迫下狗牙根幼苗光合特性的影响. 草原与草坪, 2024, 44(1): 99-105.
LI S Q, XU Z, WU B G, REN J, DAI W R. Effects of exogenous ABA application on the photosynthetic characteristics of bermudagrass seedlings exposed to drought stress. Grassland and Turf, 2024, 44(1): 99-105. (in Chinese)
[25]
曾继娟, 朱强, 岑晓斐, 李双喜. 胡枝子幼苗对干旱胁迫的生理响应. 北方农业学报, 2022, 50(2): 53-60.

doi: 10.12190/j.issn.2096-1197.2022.02.07
ZENG J J, ZHU Q, CEN X F, LI S X. The physiological response of Lespedeza bicolor seedlings under drought stress. Journal of Northern Agriculture, 2022, 50(2): 53-60. (in Chinese)
[26]
DONDINI L, DEL DUCA S, DALL’AGATA L, BASSI R, GASTALDELLI M, MEA M D, DI SANDRO A, CLAPAROLS I, SERAFINI-FRACASSINI D. Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta, 2003, 217(1): 84-95.
[27]
GHASSEMI-GOLEZANI K, LOTFI R, NAJAFI N. Some physiological responses of mungbean to salicylic acid and silicon under salt stress. Advances in bioresearch, 2015, 64(64): 7-13.
[28]
YANG X Y, HAN Y Y, HAO J H, QIN X X, LIU C J, FAN S X. Exogenous spermidine enhances the photosynthesis and ultrastructure of lettuce seedlings under high-temperature stress. Scientia Horticulturae, 2022, 291: 110570.
[29]
HASSAN N, EBEED H, ALJAARANY A. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants, 2020, 26(2): 233-245.

doi: 10.1007/s12298-019-00744-7 pmid: 32158131
[30]
SOFY M R, ELHAWAT N, TAREK ALSHAAL. Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 2020, 200: 110732.
[31]
HA H C, SIRISOMA N S, KUPPUSAMY P, ZWEIER J L, WOSTER P M, CASERO R A Jr. The natural polyamine spermine functions directly as a free radical scavenger. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(19): 11140-11145.
[32]
SHI J, FU X Z, PENG T, HUANG X S, FAN Q J, LIU J H. Spermine pretreatment confers dehydration tolerance of Citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology, 2010, 30(7): 914-922.
[33]
BERBERICH T, SAGOR G H M, KUSANO T. Polyamines in plant stress response. Polyamines. Tokyo: Springer Japan, 2014: 155-168.
[34]
AHANGER M A, QIN C, QI M D, DONG X X, AHMAD P, ABD_ALLAH E F, ZHANG L X. Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiology and Biochemistry, 2019, 144: 1-13.
[35]
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.

doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416
[36]
XU C, TANG Y Q, LIU X C, YANG H D, WANG Y T, HU Z D, HU X L, LIU B C, SU J. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of Citrus seedlings under high temperature. Plant Signaling & Behavior, 2022, 17(1): 2086372.
[37]
NAHAR K, HASANUZZAMAN M, ALAM M M, RAHMAN A, MAHMUD J A, SUZUKI T, FUJITA M. Insights into spermine- induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma, 2017, 254(1): 445-460.
[38]
PASCUAL L S, LÓPEZ-CLIMENT M F, SEGARRA-MEDINA C, GÓMEZ-CADENAS A, ZANDALINAS S I. Exogenous spermine alleviates the negative effects of combined salinity and paraquat in tomato plants by decreasing stress-induced oxidative damage. Frontiers in Plant Science, 2023, 14: 1193207.
[39]
曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 17(2): 126-135.
QU T, NAN Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135. (in Chinese)
[40]
张玲, 麻冬梅, 刘晓霞, 马巧利, 侯汶君, 李嘉文, 苏立娜, 杭嘉慧. 根灌外源褪黑素对干旱胁迫下紫花苜蓿生理特性的影响研究. 草地学报, 2024, 32(1): 198-206.

doi: 10.11733/j.issn.1007-0435.2024.01.021
ZHANG L, MA D M, LIU X X, MA Q L, HOU W J, LI J W, SU L N, HANG J H. The effects of exogenous melatonin on seedling physiological characteristics of alfalfa under drought stress. Acta Agrestia Sinica, 2024, 32(1): 198-206. (in Chinese)

doi: 10.11733/j.issn.1007-0435.2024.01.021
[41]
QIAN R J, MA X H, ZHANG X L, HU Q D, LIU H J, ZHENG J. Effect of exogenous spermidine on osmotic adjustment, antioxidant enzymes activity, and gene expression of Gladiolus gandavensis seedlings under salt stress. Journal of Plant Growth Regulation, 2021, 40(4): 1353-1367.
[42]
KISHOR P, SANGAM S, NAIDU K R, RAO K, RAO S, REDDL J K, THERIAPPAN P, SREENIVASULU N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 2005, 88: 424-438.
[43]
LI Z, JING W, PENG Y, ZHANG X Q, MA X, HUANG L K, YAN Y H. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. PLoS ONE, 2015, 10(4): e0120708.
[44]
SHI H T, YE T T, CHAN Z L. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 2013, 12(11): 4951-4964.

doi: 10.1021/pr400479k pmid: 23944872
[45]
HUANG H T, HAN Y Y, HAO J H, QIN X X, LIU C J, FAN S X. Exogenous spermidine modulates osmoregulatory substances and leaf stomata to alleviate the damage to lettuce seedlings caused by high temperature stress. Journal of Plant Growth Regulation, 2023, 42(2): 1236-1255.
[46]
张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究[D]. 兰州: 甘肃农业大学, 2019.
ZHANG C M. Physiological and molecular mechanisms of response to drought stress in different drought-resistant alfalfa (Medicago sativa L.) varieties[D]. Lanzhou: Gansu Agricultural University, 2019. (in Chinese)
[47]
李丽杰. 外源亚精胺(Spd)对玉米干旱胁迫的缓解效应及调控机理[D]. 哈尔滨: 东北农业大学, 2019.
LI L J. Mitigation effect and regulation mechanism of exogenous spermidine (Spd) on maize under drought stress[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese)
[48]
TANOU G, ZIOGAS V, BELGHAZI M, CHRISTOU A, FILIPPOU P, JOB D, FOTOPOULOS V, MOLASSIOTIS A. Polyamines reprogram oxidative and nitrosative status and the proteome of Citrus plants exposed to salinity stress. Plant, Cell & Environment, 2014, 37(4): 864-885.
[49]
PYNGROPE S, BHOOMIKA K, DUBEY R S. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma, 2013, 250(2): 585-600.
[1] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[2] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[3] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[4] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[5] PEI ShuYao, CAO HongXia, ZHANG ZeYu, ZHAO FangYang, LI ZhiJun. Physiological Response of Potted Tomatoes to NaCl and Na2SO4 Brackish Water Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(3): 570-583.
[6] ZENG XiangCui, YANG YongNian, LI RuYue, JIANG XueQian, JIANG Xu, XU YanRan, LIU ZhongKuan, LONG RuiCai, KANG JunMei, YANG QingChuan, LI MingNa. Identification of Alfalfa (Medicago sativa) MsCEP Genes and Functional Analysis of Its Regulation in Root Growth and Development [J]. Scientia Agricultura Sinica, 2024, 57(24): 4839-4853.
[7] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[8] ZHOU HanMi, MA LinShuang, SUN QiLi, CHEN JiaGeng, LI JiChen, SU YuMin, CHEN Cheng, WU Qi. Optimization of Integrated Water and Nitrogen Regulation System in Apple Based on Multi-Objective Comprehensive Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(18): 3654-3670.
[9] CHEN FeiEr, ZHANG ZhiPeng, JIANG QingXue, MA Lin, WANG XueMin. Cloning and Biological Function Verification of Alfalfa MsSPL17 [J]. Scientia Agricultura Sinica, 2024, 57(17): 3335-3349.
[10] CAO LiRu, YE FeiYu, KU LiXia, MA ChenChen, PANG YunYun, LIANG XiaoHan, ZHANG Xin, LU XiaoMin. Analysis of Maize Phenylalanine Ammonia-Lyase (PAL) Family Genes and Functional Study of ZmPAL5 [J]. Scientia Agricultura Sinica, 2024, 57(12): 2265-2281.
[11] LI Han, JIANG ShangTao, PENG HaiYing, LI PeiGen, GU ChangYi, ZHANG JinLian, CHEN TingSu, XU YangChun, SHEN QiRong, DONG CaiXia. Effects of Inoculation with Indigenous and Exogenous Arbuscular Mycorrhizal Fungi on Drought Resistance of Pyrus betulaefolia and Its Adaptation Mechanism [J]. Scientia Agricultura Sinica, 2024, 57(1): 159-172.
[12] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[13] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[14] WANG Qian, DONG KongJun, XUE YaPeng, LIU ShaoXiong, WANG RuoNan, YANG JiaQi, LU Ping, WANG RuiYun, YANG TianYu, LIU MinXuan. Identification and Evaluation of Drought Tolerance and Screening of Drought-Tolerant Germplasm for Core Germplasms in Proso Millet at Adult Stage [J]. Scientia Agricultura Sinica, 2023, 56(21): 4163-4174.
[15] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!