Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 779-791.doi: 10.3864/j.issn.0578-1752.2025.04.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Regression Analysis of the Differences in the Bioaccessibility of Six Nutrients in the Flesh of Melons from Different Production Areas and Their Relationship with Soil Element Content

WANG XiaoTing1,2(), SHEN Qi2, PAN JuXiu1,2, MA Lei2,3, HE WeiZhong2(), WANG Cheng4()   

  1. 1 College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052
    2 Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences/Laboratory of Agricultural Product Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Zone (Jointly Built by Ministry of Agriculture and Rural Affairs)/Key Laboratory of Quality and Safety of Xinjiang Agricultural Products, Urumqi 830091
    3 College of Agriculture, Xinjiang Agricultural University, Urumqi 830052
    4 Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2024-08-13 Accepted:2024-10-18 Online:2025-02-16 Published:2025-02-24
  • Contact: HE WeiZhong, WANG Cheng

Abstract:

【Objective】This study aimed to clarify the differences in the bioaccessibility of four sugars and two vitamins in melon pulp from different producing areas, and to explore the influence of soil element content on the formation of this difference, so as to provide suggestions and dietary references for melon cultivation and consumers.【Method】Taking the pulp of 30 samples of the same variety of melon Nasimi and the corresponding rhizosphere soil from Turpan, Hami, Yining producing areas as the research object, the content of reducing sugar, fructose, glucose, sucrose, VB1, VB2 and 22 elements (such as Fe, Mn, and Zn) in soil samples were analyzed with test equipment, such as high-performance liquid chromatograph (HPLC) and inductively co,upled plasma mass spectrometer (ICP-MS). In vitro simulated digestion was used to detect the content of related nutrients, and the bioaccessibility of nutrients was calculated. Statistical analysis methods such as correlation analysis, orthogonal partial least squares regression PLS-DA, and multiple linear regression analysis were used to compare the differences in the bioaccessibility of the above four sugars and two vitamins in melon pulp from three producing areas, and to explore the influence of soil element content on this difference.【Result】The bioaccessibility of reducing sugar and fructose in Turpan melon pulp was 118.35% and 113.02%, respectively, which was higher than that in the other two producing areas. The bioaccessibility of glucose in Hami melon pulp was higher than that in the other two producing areas, reaching 195.27%. The content and bioaccessibility of VB1 and VB2 in Yining melon pulp were higher than those in the other two producing areas. The results of correlation analysis showed that the bioaccessibility of reducing sugar in melon pulp was significantly negatively correlated with the contents of seven elements (Cr, Ni, Sn, Sb, Ba, Tl, and Pb) in soil, and positively correlated with the content of B element. The bioaccessibility of glucose was negatively correlated with the content of Be, Al, Sr, Sn, Sb, Ba, Tl, and Pb in soil, and positively correlated with the content of Ti, V, Co, Cu, As, Se, and Mo. The bioaccessibility of VB1 was positively correlated with the content of Cr, Co, Ni, Cu, B, and Sr in soil. The bioaccessibility of VB2 was positively correlated with the content of Al and Sr in soil. Regression analysis results showed that soil element content was an important factor affecting the bioaccessibility of four nutrients in melon pulp, and the influence degree was in the order of glucose > VB1 > reducing sugar > VB2. The content of Tl, V, Zn, Sn; Al, Zn, Sb, Tl, Fe, Mn, Zn; Al, V, Sr, Cd, and Ba in soil were important factors affecting the bioaccessibility of glucose, reducing sugar, VB1, and VB2 in melon pulp.【Conclusion】The technology for improving the bioaccessibility of glucose, reducing sugar, VB1, and VB2 in melon pulp could be explored by regulating the content of elements, such as Tl, V, Zn, Sn; Al, Zn, Sb, Tl, Fe, Mn, Zn; Al, V, Sr, Cd, and Ba in soil.

Key words: melon, nutrients, soil elements, bioaccessibility, PLS-DA, regression analysis

Table 1

One-way ANOVA analysis"

指标 Index 吐鲁番 Turpan 哈密 Hami 伊宁 Yining P P value
还原糖 Reduced sugar (%) 6.950±1.017a 4.323±0.524c 6.013±0.679b <0.001
果糖 Fructose (%) 2.293±0.354a 1.937±0.353b 2.493±0.312a 0.005
葡萄糖 Glucose (%) 1.996±0.415a 1.398±0.292b 1.708±0.230a 0.001
蔗糖 Sucrose (%) 2.232±0.882b 4.802±0.585a 1.078±0.819c <0.001
VB1 (mg/100 g) 0.037±0.010a 0.022±0.002b 0.025±0.007b <0.001
VB2 (mg/100 g) 0.001±0.001c 0.004±0.002b 0.007±0.002a <0.001
Be (mg·kg-1) 1.226±0.047a 1.007±0.068b 1.185±0.106a <0.001
B (mg·kg-1) 6403.081±3292.233a 6859.677±764.490a 3470.557±1720.768b 0.005
Al (mg·kg-1) 26045.146±2210.051a 22081.539±3094.380a 24310.284±2744.053ab 0.011
Ti (mg·kg-1) 2679.798±84.611b 2905.186±158.030a 2660.514±187.023b 0.002
V (mg·kg-1) 61.757±1.617b 79.872±6.827a 66.745±6.840b <0.001
Cr (mg·kg-1) 29.047±1.199b 36.724±3.263a 37.497±1.183a <0.001
Mn (mg·kg-1) 427.963±18.289b 509.549±48.605a 478.974±23.009a <0.001
Fe (mg·kg-1) 16658.762±464.857c 19546.061±1678.809a 18249.946±696.376b <0.001
Co (mg·kg-1) 11.715±0.621c 16.688±1.983a 15.012±1.057b <0.001
Ni (mg·kg-1) 23.630±0.981b 32.612±3.278a 33.968±0.828a <0.001
Cu (mg·kg-1) 24.206±1.535c 41.251±4.111a 34.608±5.288b <0.001
Zn (mg·kg-1) 52.971±19.797b 101.975±64.296a 88.037±31.239ab 0.049
As (mg·kg-1) 16.101±4.361b 23.899±2.699a 18.355±3.640b <0.001
Se (mg·kg-1) 0.972±0.077c 1.331±0.137a 1.156±0.107b <0.001
Sr (mg·kg-1) 259.549±54.345a 192.192±33.019b 217.217±19.466b 0.002
Mo (mg·kg-1) 2.696±0.692b 4.014±0.473a 2.497±0.911b <0.001
Cd (mg·kg-1) 0.354±0.074b 0.470±0.050a 0.430±0.050a <0.001
Sn (mg·kg-1) 2.696±0.190b 2.664±0.208b 3.193±0.268a <0.001
Sb (mg·kg-1) 1.455±0.081b 1.398±0.124b 1.874±0.261a <0.001
Ba (mg·kg-1) 438.375±108.901b 390.512±58.132b 579.006±104.139a <0.001
Tl (mg·kg-1) 0.385±0.011b 0.361±0.038b 0.482±0.068a <0.001
Pb (mg·kg-1) 17.872±0.773b 17.896±1.883b 23.676±3.232a <0.001

Fig. 1

Comparison of reducing sugar before and after digestion of muskmelon fruit in 3 producing areas"

Fig. 2

Comparison of fructose, glucose and sucrose before and after digestion of muskmelon from 3 producing areas"

Fig. 3

Comparison of melon VB1 and VB2 before and after digestion from 3 producing areas"

Fig. 4

Correlation between the digestibility and utilization of melon fruit quality and soil elements .Bio indicate bioaccessibility"

Fig. 5

Weights for the effect of soil elements on nutrient bioaccessibility in melon"

Fig. 6

Double plot of nutrient bioaccessibility and origin samples of melon"

Fig. 7

Weights of the influence of soil elements on the digestive indicators of origin characterization"

[1]
古娜斯·叶尔肯, 魏征, 王豪杰, 朱靖蓉, 华震宇, 孙涛, 陈洁, 王成. 新疆地区栽培5种甜瓜营养成分比较分析. 食品研究与开发, 2019, 40(6): 115-119, 125.
GUNASIYEERKEN, WEI Z, WANG H J, ZHU Z R, HUA Z Y, SUN T, CHEN J, WANG C. Comparative analysis of nutritional ingredients in five different melon varieties in Xinjiang. Food Research and Development, 2019, 40(6): 115-119, 125. (in Chinese)
[2]
杨世英, 马玉娥, 贾斌鑫, 华震宇, 沈琦, 刘峰娟, 王成. 油菜素内酯对甜瓜农药残留的降解作用分析. 新疆农业科学, 2023, 60(10): 2541-2550.

doi: 10.6048/j.issn.1001-4330.2023.10.024
YANG S Y, MA Y E, JIA B X, HUA Z Y, SHEN Q, LIU F J, WANG C. Study on degradation of pesticide residues in muskmelon by brassinolide. Xinjiang Agricultural Sciences, 2023, 60(10): 2541-2550. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2023.10.024
[3]
DEMIR B, GÜRBÜZ M, JALE Ç, UĞUR H, DUMAN E, BECEREN Y, YAMAN M. In vitro bioaccessibility of vitamins B1, B2, and B3 from various vegetables. Food Chemistry, 2023, 398: 133944.
[4]
HERNÁNDEZ-MALDONADO L M, BLANCAS-BENÍTEZ F J, ZAMORA-GASGA V M, CÁRDENAS-CASTRO A P, TOVAR J, SÁYAGO-AYERDI S G. In vitro gastrointestinal digestion and colonic fermentation of high dietary fiber and antioxidant-rich mango (Mangifera indica L.) “ataulfo” -based fruit bars. Nutrients, 2019, 11(7): 1564.
[5]
SUN Y J, TAO W Y, HUANG H Z, YE X Q, SUN P L. Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating Citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chemistry, 2019, 279: 321-327.
[6]
罗牡康, 贾栩超, 张瑞芬, 刘磊, 董丽红, 池建伟, 白亚娟, 张名位. 杨桃的酚类成分含量及其生物可及性与抗氧化活性. 中国农业科学, 2020, 53(7): 1459-1472. doi: 10.3864/j.issn.0578-1752.2020.07.014.
LUO M K, JIA X C, ZHANG R F, LIU L, DONG L H, CHI J W, BAI Y J, ZHANG M W. Phenolic content, bioavailability and antioxidant activity of carambola. Scientia Agricultura Sinica, 2020, 53(7): 1459-1472. doi: 10.3864/j.issn.0578-1752.2020.07.014. (in Chinese)
[7]
MIRAJI K F, LINNEMANN A R, FOGLIANO V, LASWAI H S, CAPUANO E. Nutritional quality and in vitro digestion of immature rice-based processed products. Food & Function, 2020, 11(9): 7611-7625.
[8]
LYU F, VAN DER POEL A F B, HENDRIKS W H, THOMAS M. Particle size distribution of hammer-milled maize and soybean meal, its nutrient composition and in vitro digestion characteristics. Animal Feed Science and Technology, 2021, 281: 115095.
[9]
SCROB T, COVACI E, HOSU A, TANASELIA C, CASONI D, TOROK A I, FRENTIU T, CIMPOIU C. Effect of in vitro simulated gastrointestinal digestion on some nutritional characteristics of several dried fruits. Food Chemistry, 2022, 385: 132713.
[10]
TOUTOUNJI M R, FARAHNAKY A, SANTHAKUMAR A B, OLI P, BUTARDO V M, BLANCHARD C L. Intrinsic and extrinsic factors affecting rice starch digestibility. Trends in Food Science & Technology, 2019, 88: 10-22.
[11]
NIEDBAŁA G, WRÓBEL B, PIEKUTOWSKA M, ZIELEWICZ W, PASZKIEWICZ-JASIŃSKA A, WOJCIECHOWSKI T, NIAZIAN M. Application of artificial neural networks sensitivity analysis for the pre-identification of highly significant factors influencing the yield and digestibility of grassland sward in the climatic conditions of central Poland. Agronomy, 2022, 12(5): 1133.
[12]
ICHINOSE J, OBA K, ARASE Y, KANESHIRO J, TATE S I, WATANABE T M. Quantitative prediction of rice starch digestibility using Raman spectroscopy and multivariate calibration analysis. Food Chemistry, 2024, 435: 137505.
[13]
HABERMANN E, CONTIN D R, AFONSO L F, BAROSELA J R, DE PINHO COSTA K A, VICIEDO D O, GROPPO M, MARTINEZ C A. Future warming will change the chemical composition and leaf blade structure of tropical C3 and C4 forage species depending on soil moisture levels. Science of the Total Environment, 2022, 821: 153342.
[14]
MATHEWS B W, CARPENTER J R, SOLLENBERGER L E. In vitro digestibility and chemical composition of kikuyugrass as influenced by soil silicon, liming, and genotype. Communications in Soil Science and Plant Analysis, 2009, 40(17/18): 2855-2873.
[15]
ZHU K X, YAO S W, ZHANG Y J, LIU Q B, XU F, WU G, DONG W J, TAN L H. Effects of in vitro saliva, gastric and intestinal digestion on the chemical properties, antioxidant activity of polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit) Pulp. Food Hydrocolloids, 2019, 87: 952-959.
[16]
OGAWA Y, DONLAO N, THUENGTUNG S, TIAN J H, CAI Y D, REGINIO F C Jr, KETNAWA S, YAMAMOTO N, TAMURA M. Impact of food structure and cell matrix on digestibility of plant-based food. Current Opinion in Food Science, 2018, 19: 36-41.
[17]
HOLLAND C, RYDEN P, EDWARDS C H, GRUNDY M M. Plant cell walls: impact on nutrient bioaccessibility and digestibility. Foods, 2020, 9(2): 201.
[18]
SANTOS-ORTEGA Y, KILLINY N. Silencing of sucrose hydrolase causes nymph mortality and disturbs adult osmotic homeostasis in Diaphorina citri (Hemiptera: Liviidae). Insect Biochemistry and Molecular Biology, 2018, 101: 131-143.
[19]
VENTURA M R, BASTIANELLI D, DENIZ S, SAAVEDRA P, REY L, BONNAL L, GONZÁLEZ-GARCÍA E. Phenolic and tannin compounds in subtropical shrubs (Bituminaria bituminosa, Chamaecytisus proliferus, and Adenocarpus foliosus) and the effects on in vitro digestibility. Tropical Animal Health and Production, 2019, 51(6): 1757-1761.
[20]
李同欢, 马振东, 西玉玲, 陈玉莲, 张新东, 杨恩政, 王卓刚. 不同品种高粱对酱香型白酒酿造的影响研究. 酿酒科技, 2023(9): 93-96, 102.
LI T H, MA Z D, XI Y L, CHEN Y L, ZHANG X D, YANG E Z, WANG Z G. Influence of different Sorghum varieties on the production of Jiangxiang Baijiu. Liquor-Making Science & Technology, 2023(9): 93-96, 102. (in Chinese)
[21]
徐丽丽, 解春霞, 刘云鹏, 郑华英. 树皮内含物对星天牛寄主选择的影响. 安徽农业大学学报, 2023, 50(5): 777-783.
XU L L, XIE C X, LIU Y P, ZHENG H Y. The influence of bark nutrients to host selection of Anoplophora chinensis. Journal of Anhui Agricultural University, 2023, 50(5): 777-783. (in Chinese)
[22]
孟宪宸. 碣石山产区红色酿酒葡萄成熟度指标体系研究[D]. 秦皇岛: 河北科技师范学院, 2024.
MENG X C. Study on the maturity index system of red wine grape in Jieshishan area[D]. Qinhuangdao: Hebei Normal University Of Science & Technology, 2024. (in Chinese)
[23]
PICO J, CORBIN S, FERRUZZI M G, MARTINEZ M M. Banana flour phenolics inhibit trans-epithelial glucose transport from wheat cakes in a coupled in vitro digestion/Caco-2 cell intestinal model. Food & Function, 2019, 10(10): 6300-6311.
[24]
PALAFOX-CARLOS H, AYALA-ZAVALA J F, GONZÁLEZ- AGUILAR G A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science, 2011, 76(1): R6-R15.
[25]
SUTER P M. The B-vitamins. Essential and Toxic Trace Elements and Vitamins in Human Health. Amsterdam: Elsevier, 2020: 217-239.
[26]
ANDAÇ ÖZTÜRK S, YAMAN M. Investigation of bioaccessibility of vitamin C in various fruits and vegetables under in vitro gastrointestinal digestion system. Journal of Food Measurement and Characterization, 2022, 16(5): 3735-3742.
[27]
LIU Z B, HUANG Y, TAN F J, CHEN W C, OU L J. Effects of soil type on trace element absorption and fruit quality of pepper. Frontiers in Plant Science, 2021, 12: 698796.
[28]
SUN H L, HUANG X, CHEN T, ZHOU P Y, HUANG X X, JIN W X, LIU D, ZHANG H T, ZHOU J G, WANG Z J, HAYAT F, GAO Z H. Fruit quality prediction based on soil mineral element content in peach orchard. Food Science & Nutrition, 2022, 10(6): 1756-1767.
[29]
GUPTA C, ARORA S, SYAMA M A, SHARMA A. Preparation of milk protein-vitamin a complexes and their evaluation for vitamin a binding ability. Food Chemistry, 2017, 237: 141-149.

doi: S0308-8146(17)30908-1 pmid: 28763979
[30]
穆东祺, 王同智, 金昆, 贾鑫, 曹阳, 薛焱. 不同生境土壤元素对冷蒿有效成分含量的影响. 中成药, 2024, 46(4): 1089-1092.
MU D Q, WANG T Z, JIN K, JIA X, CAO Y, XUE Y. Effects of soil elements in different habitats on the contents of active constituents in Artemisia frigida. Chinese Traditional Patent Medicine, 2024, 46(4): 1089-1092. (in Chinese)
[31]
陈宇宁. 江西省南丰县白垩系成土母岩-土壤地球化学特征及其对南丰蜜桔品质的影响[D]. 南昌: 东华理工大学, 2022.
CHEN Y N. Geochemical characteristics of parent rock and soil of Cretaceous in Nanfeng County, Jiangxi Province and its influence on the quality of Nanfeng tangerine[D]. Nanchang: East China University of Technology, 2022. (in Chinese)
[32]
孙雨默, 程林, 韩梅, 杨利民. 不同产地桔梗皂苷生物合成与土壤元素关系的研究. 中草药, 2022, 53(15): 4844-4852.
SUN Y M, CHENG L, HAN M, YANG L M. Effects of soil elements on platycodin biosynthesis process in Platycodon grandiflorum from different habitats. Chinese Traditional and Herbal Drugs, 2022, 53(15): 4844-4852. (in Chinese)
[33]
MIGNARD P, BEGUERÍA S, GIMÉNEZ R, FONT I FORCADA C, REIG G, MORENO M Á. Effect of genetics and climate on apple sugars and organic acids profiles. Agronomy, 2022, 12(4): 827.
[34]
GAMBETTA J, COZZOLINO D, BASTIAN S, JEFFERY D. Exploring the effects of geographical origin on the chemical composition and quality grading of Vitis vinifera L. cv. Chardonnay grapes. Molecules, 2017, 22(2): 218.
[35]
BIGARD A, BERHE D T, MAODDI E, SIRE Y, BOURSIQUOT J M, OJEDA H, PÉROS J P, DOLIGEZ A, ROMIEU C, TORREGROSA L. Vitis vinifera L. fruit diversity to breed varieties anticipating climate changes. Frontiers in Plant Science, 2018, 9: 455.
[36]
GLAHN R P, WORTLEY G M, SOUTH P K, MILLER D D. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2:  Studies using an in vitro digestion/caco-2 cell model. Journal of Agricultural and Food Chemistry, 2002, 50(2): 390-395.
[37]
ANTOINE T, GEORGÉ S, LECA A, DESMARCHELIER C, HALIMI C, GERVAIS S, AUPY F, MARCONOT G, REBOUL E. Reduction of pulse “antinutritional” content by optimizing pulse canning process is insufficient to improve fat-soluble vitamin bioavailability. Food Chemistry, 2022, 370: 131021.
[38]
朱吟非, 谭美, 吴新怡, 王超, 段翰英. 超高压和发芽对大豆中主要营养成分生物利用率的影响. 食品与发酵工业, 2022, 48(12): 145-151.

doi: 10.13995/j.cnki.11-1802/ts.028209
ZHU Y F, TAN M, WU X Y, WANG C, DUAN H Y. Effects of high hydrostatic pressure and germination on nutrient bioavailability in soybeans. Food and Fermentation Industries, 2022, 48(12): 145-151. (in Chinese)

doi: 10.13995/j.cnki.11-1802/ts.028209
[39]
JIMOH M O, AFOLAYAN A J, LEWU F B. Nutrients and antinutrient constituents of Amaranthus caudatus L. cultivated on different soils. Saudi Journal of Biological Sciences, 2020, 27(12): 3570-3580.
[1] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[2] YANG YaHeng, JIA PeiLong, NIE LanChun, ZHAO WenSheng, ZHAO JiaTeng, WANG JinXiang, LIU Jie. Evaluation of Fruit Texture Quality in Melon [J]. Scientia Agricultura Sinica, 2024, 57(8): 1560-1574.
[3] HU HengLiang, GU TianYu, CHEN SiYing, WANG Yao, PENG JiaShi. Isolation and Functional Verification of Genes Mediating Mineral Element Stress Tolerance in Lotus [J]. Scientia Agricultura Sinica, 2024, 57(5): 980-988.
[4] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[5] LUO YuHong, HUANG YuShu, ZHU Na, LI Le, CHENG YanBin, LIU JiaHui, ZHANG JingMin, BAO YuFan, XU Nuo, YAN YuChun. Effects of Cultivation and Cropland Afforestation on Soil Particle- Size Distribution and Soil Nutrients in the Typical Steppe of Xilingol League [J]. Scientia Agricultura Sinica, 2024, 57(24): 4919-4932.
[6] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[7] FAN Peng, YANG TianLe, ZHU ShaoLong, WANG ZhiJie, ZHANG MingYue, WEI HaiYan, LIU GuoDong. Preliminary Study on Appearance Quality Evaluation of Semi-Waxy Rice in Yangtze River Delta Region [J]. Scientia Agricultura Sinica, 2024, 57(16): 3105-3115.
[8] LI HaiPeng, DU WuYan, WU HanQian, ZHANG Jie, MENG HuiSheng, HONG JianPing, XU MingGang, HAO XianJun, GAO WenJun. Different Manures Affect Soil Nutrients and Bacterial Community Structure in Mining Reclamation Area [J]. Scientia Agricultura Sinica, 2024, 57(16): 3207-3219.
[9] SU HaiLan, ZHU YanMing, CHEN Hong, NIU YuQing, ZHENG MeiXia, ZHU YuJing. Effects of Different Intercropping Methods on Mesona Chinesis Quality and Its Rhizosphere Soil Characteristic [J]. Scientia Agricultura Sinica, 2024, 57(14): 2755-2770.
[10] WANG QingYang, CAO DianYun, WANG Di, ZHAN ZengYi, HE WanYing, SUN Qiang, CHEN WenFu, LAN Yu. Effects of Long-Term Application of Biochar on Nutrients, Fractions of Humic in Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(13): 2612-2622.
[11] BU MingNa, YANG XiWen, TENG ZhengKai, HU NaiYue, ZHANG Shuo, WANG ChunYan, YANG Jian, LIANG WenXian, MA WenQi, HE DeXian, ZHOU SuMei. Effects of Layered Fertilization Under Different Irrigation Conditions on Vertical Distribution of Soil Nutrients and Root Growth and Function of Wheat [J]. Scientia Agricultura Sinica, 2024, 57(11): 2125-2142.
[12] GUO HanYue, WANG DongSheng, RUAN Yang, QIAO YiZhu, ZHANG YunTao, LI Ling, HUANG QiWei, GUO ShiWei, LING Ning, SHEN QiRong. Characteristics and Succession of Rhizosphere Soil Microbial Communities in Continuous Cropping Watermelon [J]. Scientia Agricultura Sinica, 2023, 56(21): 4245-4258.
[13] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[14] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[15] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!