Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 520-536.doi: 10.3864/j.issn.0578-1752.2025.03.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Nitrogen Fertilizer Application on the Rhizosphere Microbial Community Structure and Function in Black Soil and Sandy Soil

WANG Zhao(), ZHANG Bing, DONG SiQi, HU YuXi, QI ShuYu, FENG GuoZhong, GAO Qiang, ZHOU Xue()   

  1. College of Resource and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province, Changchun 130118
  • Received:2024-02-13 Accepted:2024-03-14 Online:2025-02-01 Published:2025-02-11
  • Contact: ZHOU Xue

Abstract:

【Objective】This study investigated the differential responses of rhizosphere microbial communities, keystones and indicators to nitrogen fertilizer application in black and sandy soils under identical climatic conditions. The aim of this study was to provide a scientific basis for guiding precision fertilization and promoting green production. 【Method】This study was based on a long-term field experiment (12 years) involving nitrogen fertilizer application in a maize continuous cropping system in Jilin Province. The experimental design included two main treatments: sandy soil and black soil. Under each main treatment, three nitrogen levels were applied: 0 (N0), 168 kgN·hm-2 (N168), and 312 kgN·hm-2 (N312). Utilizing high-throughput sequencing technology, the differential impacts of long-term nitrogen fertilizer application on the composition, structure, and functional attributes of rhizosphere microbe communities in both black soil and sandy soil were studied. 【Result】Long-term nitrogen fertilizer application significantly decreased the Alpha diversity and changed the community structure of rhizosphere microbes in both black and sandy soils. The greatest impact was observed under N312 treatment, which significantly reduced Alpha diversity by 2.6%-7.5%. The impact of the same nitrogen application on the rhizosphere microbes was more pronounced in sandy soil than in black soil. Species analysis indicated that nitrogen fertilizer application significantly increased the relative abundance of Bacteroidetes and Patescibacteria phylum and decreased the relative abundance of Frimicutes and Chloroflexi, with the N312 treatment having the greatest impact (80%-90%) in both black and sandy soils. Co-occurrence network analysis revealed that the impact of nitrogen fertilizer application on the network structure was greater in sandy soil than in black soil. Moreover, nitrogen fertilizer application significantly influenced 43% of the keystone species in black soil and all keystone species in sandy soil. Random forest analysis indicated that the impact of nitrogen fertilizer application on indicators was more pronounced in sandy soil than in black soil. Compared with N0, the N168 and N312 treatments had no specific indicator species in black soils, whereas two specific indicators were identified under these two treatments in sandy soil, belonging to the Intrasporangiaceae family of the Actinomycetes phylum and the Noviherbaspirillum genus of the Proteobacteria phylum. PICRUSt2 functional prediction revealed that nitrogen fertilizer application significantly affected 88.5% of nitrogen transformation-related functional genes in black soil and 96.2% in sandy soil, with a greater influence observed at higher nitrogen application rates. 【Conclusion】The research findings suggested that nitrogen fertilizer application significantly reduced the diversity of rhizosphere microbial communities, and changed the community structure and species composition characteristics, resulting in significant differences in nitrogen transformation-related functional genes. The overall impact of nitrogen fertilizer application on rhizosphere microbes was more pronounced in sandy soil than in black soil, with a greater influence observed at higher nitrogen application rates. Therefore, it was important to further promote N fertilizer reduction in black and sandy soils to maintain the stability of rhizosphere microbial community structure in farmland.

Key words: nitrogen fertilizer application, black soil, sandy soil, microbial community, indicator, keystone

Fig. 1

The alpha diversity of bacteria in black soil (a) and sandy soil (b) under different nitrogen application rates BN0: No nitrogen fertilizer application to black soil; BN168, BN312: Nitrogen fertilizer application to black soil at 168 and 312 kgN·hm-2, respectively. SN0: No nitrogen fertilizer application to sandy soil; SN168, SN312: Nitrogen fertilizer application to sandy soil at 168 and 312 kgN·hm-2, respectively. The same as below"

Fig. 2

The NMDS analysis of soil microbe communities (a) and the ANOSIM analysis of black soil (b) and sandy soil (c) under different nitrogen application rates *: P<0.05; ***: P<0.001"

Fig. 3

The community composition of black soil (a) and sandy soil (b) at the level of microbe phylum under each treatment"

Table 1

The phylum level relative abundance (%) of microbes under different nitrogen application rates in black soil"

处理
Treatment
放线菌门
Actinobacteria
变形菌门
Proteobacteria
酸杆菌门
Acidobacteria
绿弯菌门
Chloroflexi
芽单胞菌门
Gemmatimonadete
拟杆菌门
Bacteroidetes
疣微菌门
Verrucomicrobia
Patescibacteria
厚壁菌门
Frimicutes
浮霉菌门
Planctomycetes
BN0 36.82 29.79 10.33 8.89 5.31 2.38 1.78 0.86 0.72 0.64
BN168 40.77 29.89 8.45 6.25 4.48 3.39 1.64 1.38 0.53 0.45
BN312 42.12 32.79 6.04 4.73 4.29 4.87 1.18 1.82 0.46 0.28
BN168-BN0 3.95*** 1.21 -1.88*** -2.64*** -0.83*** 0.99*** -0.16 0.52*** -0.19 -0.19***
BN312-BN0 5.28*** 2.98 *** -4.29*** -4.16*** -1.01*** 2.47*** -0.62** 0.96*** -0.26* -0.36***

Table 2

The phylum level relative abundance (%) of microbes under different nitrogen application rates in sandy soil"

处理
Treatment
放线菌门
Actinobacteria
变形菌门
Proteobacteria
酸杆菌门
Acidobacteria
绿弯菌门
Chloroflexi
拟杆菌门
Bacteroidetes
芽单胞菌门
Gemmatimonadete
Patescibacteria 疣微菌门
Verrucomicrobia
厚壁菌门
Frimicutes
浮霉菌门Planctomycetes
SN0 47.99 27.08 7.53 6.88 2.37 3.25 0.94 1.11 1.02 0.33
SN168 39.94 38.70 6.99 3.16 4.01 2.46 1.34 1.07 0.75 0.37
SN312 48.78 33.25 4.96 1.69 4.64 1.90 2.45 0.37 0.67 0.38
SN168-SN0 -8.05*** 11.62*** -0.54 -3.72** 1.64*** -0.79 0.39*** -0.04 -0.25** 0.04
SN312-SN0 0.79 6.17*** -2.57*** 5.19*** 2.23*** -1.35*** 1.51*** -0.74** -0.33** 0.05

Fig. 4

Network interaction analysis among soil microbes in black soil and sandy soil under different nitrogen application rates (a), (b), and (c) represent treatments BN0, BN168, and BN312, respectively; (d), (e), and (f) represent treatments SN0, SN168, and SN312, respectively. The number of nodes in the network represents the genus-level species within the community, with phylum-level classifications indicated by color. Node size is proportional to the absolute abundance of the corresponding species. Edges represent correlations between species, with red lines indicating positive correlations and green lines indicating negative correlations"

Table 3

Topological parameters of soil microbe network of black soil and sandy soil under different nitrogen application rates"

处理
Treatment
节点数
Node
边数
Edge
平均度
Average degree
平均加权度
Average weighted degree
图密度
Density
模块化
Modularity
正相关
Positive correlation (%)
负相关
Negative correlation (%)
BN0 62 136 3.198 3.152 0.038 0.905 50.74 49.26
BN168 35 123 2.964 2.939 0.036 0.896 61.79 38.21
BN312 58 106 2.437 2.391 0.028 0.894 50.94 49.06
SN0 67 129 2.835 2.777 0.034 0.895 54.26 45.74
SN168 60 117 2.819 2.774 0.032 0.867 51.28 48.72
SN312 60 105 2.386 2.358 0.027 0.867 53.33 46.67

Fig. 5

Topological role distribution of microbe networks under different soil types"

Fig. 6

MDA index results of random forest under each treatment"

Fig. 7

Heatmap of the abundance of functional genes related to nitrogen transformation in black soil"

Fig. 8

Heatmap of the abundance of functional genes related to nitrogen transformation in sandy soil"

[1]
张延慧, 刘宇, 韩莹, 董馨宇, 郭探文, 闫秋艳, 闫双堆. 不同比例硫酸铵替代尿素对玉米根际土壤环境及微生物群落的影响. 环境科学, 2023(1): 1-17.
ZHANG Y H, LIU Y, HAN Y, DONG X Y, GUO T W, YAN Q Y, YAN S D. Effects of different proportions of ammonium sulfate replacing urea on soil nutrients and rhizosphere microbial communities. Environmental Science, 2023(1): 1-17. (in Chinese)
[2]
张淼, 刘俊杰, 刘株秀, 顾海东, 李禄军, 金剑, 刘晓冰, 王光华. 黑土区农田土壤氮循环关键过程微生物基因丰度的分布特征. 土壤学报, 2022, 59(5): 1258-1269.
ZHANG M, LIU J J, LIU Z X, GU H D, LI L J, JIN J, LIU X B, WANG G H. Distribution characteristics of microbial gene abundance in key processes of soil nitrogen cycling in black soil zone. Acta Pedologica Sinica, 2022, 59(5): 1258-1269. (in Chinese)
[3]
李春玲, 李国山, 于亦忠, 毛文明, 马林山. 减氮施肥及氮肥添加脲酶抑制剂对凉州灌区春玉米产量和氮肥利用的影响. 干旱地区农业研究, 2021, 39(2): 31-36.
LI C L, LI G S, YU Y Z, MAO W M, MA L S. Effects of reduced nitrogen fertilization and urease inhibitor on the yield and nitrogen use efficiency of spring maize in irrigation areas of Liangzhou. Agricultural Research in the Arid Areas, 2021, 39(2): 31-36. (in Chinese)
[4]
PENG J J, OLADELE O, SONG X J, JU X T, JIA Z J, HU H W, LIU X J, BEI S K, GE A H, ZHANG L M, CUI Z L. Opportunities and approaches for manipulating soil-plant microbiomes for effective crop nitrogen use in agroecosystems. Frontiers of Agricultural Science and Engineering, 2022: 9(3): 333-343.

doi: 10.15302/J-FASE-2022450
[5]
GRIFFITH D R, KLADIVKO E J, MANNERING J V, WEST T D, PARSONS S D. Long-term tillage and rotation effects on corn growth and yield on high and low organic matter, poorly drained soils. Agronomy Journal, 1988, 80(4): 599-605.
[6]
尹昌. 农田土壤N2O产生和还原及相关功能微生物对温度及施肥的响应[D]. 北京: 中国农业科学院, 2017.
YIN C. Responses of N2O emission and reduction as well as associated microbes to temperature and different fertilization regimes in arable soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[7]
杨小东. 长期施肥对三种土壤类型酶活性及硝化微生物丰度的影响[D]. 北京: 中国农业科学院, 2020.
YANG X D. Changes of enzyme activities and abundance of nitrifying microorganism of three diffrent type soils under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[8]
刘杏兰, 高宗, 刘存寿, 司立征. 有机—无机肥配施的增产效应及对土壤肥力影响的定位研究. 土壤学报, 1996, 33(2): 138-147.
LIU X L, GAO Z, LIU C S, SI L Z. Study on the effect of combined application of organic and inorganic fertilizers on yield increase and its influence on soil fertility. Acta Pedologica Sinica, 1996, 33(2): 138-147. (in Chinese)
[9]
白震, 张旭东, 何红波, 闫颖, 侯松嵋, 陈盈, 解宏图. 长期氮肥施用对农田黑土NLFA与PLFA特性的影响. 土壤学报, 2007, 44(4): 709-716.
BAI Z, ZHANG X D, HE H B, YAN Y, HOU S M, CHEN Y, XIE H T. Effects of long-term nitrogen fertilizer application on NLFA and PLFA in mollisol farmland. Acta Pedologica Sinica, 2007, 44(4): 709-716. (in Chinese)
[10]
ROUSK J, BÅÅTH E, BROOKES P C, LAUBER C L, LOZUPONE C, CAPORASO J G, KNIGHT R, FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10): 1340-1351.
[11]
JONES R T, ROBESON M S, LAUBER C L, HAMADY M, KNIGHT R, FIERER N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 2009, 3(4): 442-453.
[12]
朱瑞芬, 刘杰淋, 王建丽, 韩微波, 申忠宝, 辛晓平. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应. 中国农业科学, 2020, 53(13): 2637-2646. doi: 10.3864/j.issn.0578-1752.2020.13.012.
ZHU R F, LIU J L, WANG J L, HAN W B, SHEN Z B, XIN X P. Molecular ecological network analyses revealing the effects of nitrogen application on soil microbial community in the degraded grasslands. Scientia Agricultura Sinica, 2020, 53(13): 2637-2646. doi: 10.3864/j.issn.0578-1752.2020.13.012. (in Chinese)
[13]
邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响. 中国农业科学, 2022, 55(3): 529-542. doi: 10.3864/j.issn.0578-1752.2022.03.009.
ZOU W X, SU W H, CHEN Y X, CHEN X P, LANG M. Effects of long-term nitrogen application on ammonia oxidizer communities for nitrification in acid purple soil. Scientia Agricultura Sinica, 2022, 55(3): 529-542. doi: 10.3864/j.issn.0578-1752.2022.03.009. (in Chinese)
[14]
李伊凡, 王俊伟, 陈永豪, 何柄枚, 拉琼. 西藏岗巴拉山土壤细菌多样性海拔分布格局及其驱动因子. 生态学报, 2024, 44(2): 712-722.
LI Y F, WANG J W, CHEN Y H, HE B M, LA Q. Elevation distribution pattern and driving factors of soil bacterial diversity on Mount Gangbala, Xizang, China. Acta Ecologica Sinica, 2024, 44(2): 712-722. (in Chinese)
[15]
OUYANG Y, EVANS S E, FRIESEN M L, TIEMANN L K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biology and Biochemistry, 2018, 127: 71-78.
[16]
徐瑞富, 刘起丽, 王一涵. 玉米不同生育期微生物群落研究. 河南科技学院学报(自然科学版), 2010, 38(2): 11-15.
XU R F, LIU Q L, WANG Y H. Studies on microbe population of the surface and in vivo of different period of maize. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2010, 38(2): 11-15. (in Chinese)
[17]
周元, 陈远学, 蒋帆, 胡月秋, 龙玲, 裴丽珍, 李建兵, 徐开未. 玉米地土壤微生物量碳、氮及微生物熵对不同物料还田的响应. 水土保持学报, 2020, 34(2): 173-180.
ZHOU Y, CHEN Y X, JIANG F, HU Y Q, LONG L, PEI L Z, LI J B, XU K W. Responses of soil microbial biomass carbon, nitrogen and microbial entropy to different materials returned to corn fields. Journal of Soil and Water Conservation, 2020, 34(2): 173-180. (in Chinese)
[18]
CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.
[19]
MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963.

doi: 10.1093/bioinformatics/btr507 pmid: 21903629
[20]
EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10: 996-998.

doi: 10.1038/nmeth.2604 pmid: 23955772
[21]
STACKEBRANDT E, GOEBEL B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4): 846-849.
[22]
LI S F, HUANG X B, SHEN J Y, XU F D, SU J R. Effects of plant diversity and soil properties on soil fungal community structure with secondary succession in the Pinus yunnanensis forest. Geoderma, 2020, 379: 114646.
[23]
MONTAGNA M, BERRUTI A, BIANCIOTTO V, CREMONESI P, GIANNICO R, GUSMEROLI F, LUMINI E, PIERCE S, PIZZI F, TURRI F, GANDINI G. Differential biodiversity responses between Kingdoms (plants, fungi, bacteria and Metazoa) along an Alpine succession gradient. Molecular Ecology, 2018, 27(18): 3671-3685.

doi: 10.1111/mec.14817 pmid: 30146795
[24]
张甜娜, 陈召莹, 张紫薇, 周石磊, 孟佳靖, 陈哲, 张一凡, 董宛佳, 崔建升. 白洋淀冬季沉积物好氧反硝化菌垂向分布特征及群落构建. 环境科学, 2022, 43(5): 2614-2623.
ZHANG T N, CHEN Z Y, ZHANG Z W, ZHOU S L, MENG J J, CHEN Z, ZHANG Y F, DONG W J, CUI J S. Vertical distribution characteristics and community construction of aerobic denitrification bacteria from the sediments of Baiyangdian Lake during the winter freezing period. Environmental Science, 2022, 43(5): 2614-2623. (in Chinese)
[25]
ZHANG J Y, LIU Y X, ZHANG N, HU B, JIN T, XU H R, QIN Y, YAN P X, ZHANG X N, GUO X X, HUI J, CAO S Y, WANG X, WANG C, WANG H, QU B Y, FAN G Y, YUAN L X, GARRIDO-OTER R, CHU C C, BAI Y. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37(6): 676-684.

doi: 10.1038/s41587-019-0104-4 pmid: 31036930
[26]
于海玲. 施氮量对土壤微生物群落组成特征的影响研究[D]. 长春: 吉林农业大学, 2017.
YU H L. Effect of nitrogen application on composition characters of soil microbial communities[D]. Changchun: Jilin Agricultural University, 2017. (in Chinese)
[27]
康巍巍, 王庆贵, 邢亚娟. 氮添加对土壤和根际微生物群落结构影响的研究进展. 世界生态学, 2022, 11(2): 180-193.
KANG W W, WANG Q G, XING Y J. Research progress on the effects of nitrogen addition on soil and rhizosphere microbial community structure. International Journal of Ecology, 2022, 11(2): 180-193. (in Chinese)
[28]
GEISSELER D, LAZICKI P A, SCOW K M. Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Applied Soil Ecology, 2016, 106: 1-10.
[29]
陈国峰, 姬强, 王亚麒, 王锐, 雷金银, 何进勤. 种植模式对宁南山区土壤团聚体和微生物多样性的影响. 中国土壤与肥料, 2023(9): 59-67.
CHEN G F, JI Q, WANG Y Q, WANG R, LEI J Y, HE J Q. Impact of planting mode on soil aggregates and the microbial diversity in Ningnan mountainous areas. Soil and Fertilizer Sciences in China, 2023(9): 59-67. (in Chinese)
[30]
WANG C, LU X K, MORI T, MAO Q G, ZHOU K J, ZHOU G Y, NIE Y X, MO J M. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology and Biochemistry, 2018, 121: 103-112.
[31]
ZHANG J Y, AI Z M, LIANG C T, WANG G L, XUE S. Response of soil microbial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau. Geoderma, 2017, 308: 112-119.
[32]
DJAJADI, ABBOTT L K, HINZ C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma, 2012, 183/184: 19-24.
[33]
DA SILVA K R A, SALLES J F, SELDIN L, VAN ELSAS J D. Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. Journal of Microbiological Methods, 2003, 54(2): 213-231.
[34]
ZHAO Z B, HE J Z, GEISEN S, HAN L L, WANG J T, SHEN J P, WEI W X, FANG Y T, LI P P, ZHANG L M. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7(1): 33.
[35]
PII Y, BORRUSO L, BRUSETTI L, CRECCHIO C, CESCO S, MIMMO T. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiology and Biochemistry, 2016, 99: 39-48.

doi: 10.1016/j.plaphy.2015.12.002 pmid: 26713550
[36]
REN N, WANG Y, YE Y L, ZHAO Y N, HUANG Y F, FU W, CHU X. Effects of continuous nitrogen fertilizer application on the diversity and composition of rhizosphere soil bacteria. Frontiers in Microbiology, 2020, 11: 1948.

doi: 10.3389/fmicb.2020.01948 pmid: 32973705
[37]
向君亮, 刘权, 申永瑞, 王佳琦, 张兴梅, 王鹏, 殷奎德. 松嫩草原盐碱土细菌多样性分析. 干旱地区农业研究, 2020, 38(2): 62-68.
XIANG J L, LIU Q, SHEN Y R, WANG J Q, ZHANG X M, WANG P, YIN K D. Variation of bacterial communities in the saline-alkaline soil of meadow on Songnen Plain. Agricultural Research in the Arid Areas, 2020, 38(2): 62-68. (in Chinese)
[38]
NING L, ZHU C Z, XUE C, CHEN H, DUAN Y, PENG C, GUO S W, SHEN Q. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology and Biochemistry, 2016, 99: 137-149.
[39]
BUCKLEY D H, SCHMIDT T M. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiology Ecology, 2001, 35(1): 105-112.

doi: 10.1111/j.1574-6941.2001.tb00793.x pmid: 11248395
[40]
KALAM S, BASU A, PODILE A R. Difficult-to-culture bacteria in the rhizosphere: the underexplored signature microbial groups. Pedosphere, 2022, 32(1): 75-89.
[41]
江其朋, 余佳敏, 王金峰, 刘东阳, 龚杰, 江连强, 张淑婷, 余祥文, 李石力, 杨亮, 刘晓姣, 王悦, 王勇, 丁伟. 土壤理化性质驱动烤烟根际细菌群落的组配及其共现性网络互作. 微生物学报, 2023, 63(3): 1168-1184.
JIANG Q P, YU J M, WANG J F, LIU D Y, GONG J, JIANG L Q, ZHANG S T, YU X W, LI S L, YANG L, LIU X J, WANG Y, WANG Y, DING W. Soil properties affect bacterial community assembly and co-occurrence network in tobacco rhizosphere. Acta Microbiologica Sinica, 2023, 63(3): 1168-1184. (in Chinese)
[42]
DE VRIES F T, GRIFFITHS R I, BAILEY M, CRAIG H, GIRLANDA M, GWEON H S, HALLIN S, KAISERMANN A, KEITH A M, KRETZSCHMAR M, LEMANCEAU P, LUMINI E, MASON K E, OLIVER A, OSTLE N, PROSSER J I, THION C, THOMSON B, BARDGETT R D. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9: 3033.

doi: 10.1038/s41467-018-05516-7 pmid: 30072764
[43]
张梅婷, 刘晋仙, 苏嘉贺, 柴宝峰. 苦草叶表附生和水体浮游细菌群落多样性格局及其影响因素. 环境科学, 2023, 44(1): 252-261.
ZHANG M T, LIU J X, SU J H, CHAI B F. Diversity patterns and influencing factors of epibiotic in Vallisneria natans and planktonic bacteria communities. Environmental Science, 2023, 44(1): 252-261. (in Chinese)
[44]
刘思博, 殷国梅, 冀超, 丁海君, 薛艳林, 孙林, 阿拉腾布拉格, 高博, 燕茹, 吴昊, 刘永录. 不同浓度氮肥对首年紫花苜蓿产量及其根际土壤真菌群落结构的影响. 中国土壤与肥料, 2023(1): 1-12.
LIU S B, YIN G M, JI C, DING H J, XUE Y L, SUN L, AALATENG BULAGE, GAO B, YAN R, WU H, LIU Y L. The influence of nitrogen fertilizer application rate on yield of Medicago sativa and the rhizosphere soil fungal diversity. Soil and Fertilizer Sciences in China, 2023(1): 1-12. (in Chinese)
[45]
丁露, 崔立星, 牛营超, 戴小华, 郭青云. 不同氮钾水平对菜豆叶际细菌群落组成的影响. 北方园艺, 2022(4): 76-84.
DING L, CUI L X, NIU Y C, DAI X H, GUO Q Y. Phyllosphere bacterial community composition on Phaseolus vulgaris Linn under different nitrogen and potassium levels. Northern Horticulture, 2022(4): 76-84. (in Chinese)
[46]
陈懿, 吴春, 李彩斌, 林叶春, 程建中, 潘文杰. 炭基肥对植烟黄壤细菌、真菌群落结构和多样性的影响. 微生物学报, 2020, 60(4): 653-666.
CHEN Y, WU C, LI C B, LIN Y C, CHENG J Z, PAN W J. Effect of biochar-based fertilizer on bacterial and fungal community composition, diversity in tobacco-planting yellow soil. Acta Microbiologica Sinica, 2020, 60(4): 653-666. (in Chinese)
[47]
LIAO J Y, HU A, ZHAO Z W, LIU X R, JIANG C, ZHANG Z H. Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission. Soil Biology and Biochemistry, 2021, 156: 108212.
[48]
侯雪燕. 土壤pH对硝化作用和氨氧化微生物群落结构的影响[D]. 重庆: 西南大学, 2014.
HOU X Y. Effects of soil pH on nitrification and community structure of ammonia-oxidizing microorganisms[D]. Chongqing: Southwest University, 2014. (in Chinese)
[49]
孙治强, 张楠, 赵卫星, 高玉红. 氮肥施用量对生菜产量、硝酸盐积累及土壤EC值、pH值的影响. 江西农业学报, 2007, 19(4): 44-45, 48.
SUN Z Q, ZHANG N, ZHAO W X, GAO Y H. Effects of N application rates on yield, nitrate accumulation of lettuce and EC, pH value of soil. Acta Agriculturae Jiangxi, 2007, 19(4): 44-45, 48. (in Chinese)
[50]
SONG Y, LI X N, YAO S, YANG X L, JIANG X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation. Science of the Total Environment, 2020, 728: 138439.
[51]
YUAN J, ZHAO J, WEN T, ZHAO M L, LI R, GOOSSENS P, HUANG Q W, BAI Y, VIVANCO J M, KOWALCHUK G A, BERENDSEN R L, SHEN Q R. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6(1): 156.

doi: 10.1186/s40168-018-0537-x pmid: 30208962
[52]
ISHII S, ASHIDA N, OHNO H, SEGAWA T, YABE S, OTSUKA S, YOKOTA A, SENOO K. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(6): 1841-1848.
[53]
SUNDARARAMAN A, SRINIVASAN S, LEE S S. Noviherbaspirillum humi sp. nov. isolated from soil. Antonie Van Leeuwenhoek, 2016, 109(5): 697-704.
[54]
王敬, 程谊, 蔡祖聪, 张金波. 长期施肥对农田土壤氮素关键转化过程的影响. 土壤学报, 2016, 53(2): 292-304.
WANG J, CHENG Y, CAI Z C, ZHANG J B. Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil: A review. Acta Pedologica Sinica, 2016, 53(2): 292-304. (in Chinese)
[55]
张博雅, 余珂. 微生物基因数据库在氮循环功能基因注释中的应用. 微生物学通报, 2020, 47(9): 3021-3038.
ZHANG B Y, YU K. Application of microbial gene databases in the annotation of nitrogen cycle functional genes. Microbiology China, 2020, 47(9): 3021-3038. (in Chinese)
[56]
HU X J, GU H D, LIU J J, WEI D, ZHU P, CUI X A, ZHOU B K, CHEN X L, JIN J, LIU X B, WANG G H. Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region. Geoderma, 2022, 418: 115846.
[57]
任栖永. 大豆产量与土壤硝化过程对不同农田管理方式的响应[D]. 杨凌: 西北农林科技大学, 2023.
REN X Y. Response of soybean yield and soil nitrification process to different farmland management practices[D]. Yangling: Northwest A&F University, 2023. (in Chinese)
[58]
ABDUL R N, PARKS D H, VANWONTERGHEM I, MORRISON M, TYSON G W, HUGENHOLTZ P. A phylogenomic analysis of the bacterial Phylum fibrobacteres. Frontiers in Microbiology, 2016, 6: 1469.
[1] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[2] DU JiaQi, ZHANG ZiWei, WANG RuoFei, LI Xing, GUO HongYan, YANG Shuo, FENG Cheng, HE TangQing, Giri Bhoopander, ZHANG XueLin. The Interactive Effects of Organic Fertilizer Substituting Chemical Fertilizers and Arbuscular Mycorrhizal Fungi on Soil Nitrous Oxide Emission in Shajiang Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2025, 58(1): 101-116.
[3] WANG QingHui, LI NaiHui, ZHANG YiPing, DI ChengQian, WU FengZhi. Effects of Wheat and Common Vetch Cover Crops on Chinese Cabbage Seedling Growth and Soil Microbial Community Structure [J]. Scientia Agricultura Sinica, 2024, 57(3): 555-569.
[4] SHEN WenYan, ZHANG NaiYu, LI TianJiao, SONG TianHao, ZHANG XiuZhi, PENG Chang, LIU HongFang, ZHANG ShuXiang, DUAN BiHua. Characteristics of phoD-Harboring Microbial Communities Under Long-Term Fertilization and Its Effects on Organic Phosphorus Fractions in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093.
[5] LI TianJiao, ZHANG NaiYu, SHEN WenYan, SONG TianHao, LIU HongFang, LIU XiaoYan, ZHANG XiuZhi, PENG Chang, YANG JinFeng, ZHANG ShuXiang. Effects of Long-Term Fertilization on Soil Aggregate Stability and Its Driving Factors in Black Soil and Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3835-3847.
[6] PENG ZhiXin, ZHANG XiFen, HAN XiaoBin, SI GuoDong, XU KangWen, ZHANG ChengSheng. Effect of Fatty Acid Natural Product 2E, 4E-Decadienoic Acid on Tobacco Rhizosphere Microbial Communities [J]. Scientia Agricultura Sinica, 2024, 57(18): 3601-3611.
[7] LIU YaJie, ZHANG TianJiao, ZHANG XiangQian, LU ZhanYuan, LIU ZhanYong, CHENG YuChen, WU Di, LI JinLong. Effects of Tillage Methods Under Straw Returning on the Labile Organic Carbon Fractions and Carbon Pool Management Index in Black Soil Farmland [J]. Scientia Agricultura Sinica, 2024, 57(17): 3408-3423.
[8] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[9] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[10] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[11] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[12] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[13] YU BoWei, ZHANG QingWen, HAO Zhuo, SHI YuLong, LI XueLiang, LI MengNi, JING XueKai. Interaction Between Transverse Ridge Tillage and Topography on Soil Erodibility Along the Long Gentle Slope in a Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(23): 4706-4716.
[14] ZHOU Ying, YANG Peng, WANG LiGang, LEI QiuLiang, ZHANG YaNan. Optimization Path of the Ecological Compensation Mechanism for Conservation Tillage in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2023, 56(22): 4478-4489.
[15] GUO HanYue, WANG DongSheng, RUAN Yang, QIAO YiZhu, ZHANG YunTao, LI Ling, HUANG QiWei, GUO ShiWei, LING Ning, SHEN QiRong. Characteristics and Succession of Rhizosphere Soil Microbial Communities in Continuous Cropping Watermelon [J]. Scientia Agricultura Sinica, 2023, 56(21): 4245-4258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!