Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (2): 252-265.doi: 10.3864/j.issn.0578-1752.2025.02.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Inversion of Nitrogen Content in Chili Pepper Leaves Based on Hyperspectral Analysis

LIU Jing1(), WANG Hong1(), ZHANG Lei2, XIAO JiuJun3,4, WU JianGao1, GONG MingChong1   

  1. 1 Mining College of Guizhou University, Guiyang 550025
    2 Institute of Surveying and Mapping Guizhou Geology and Mineral Exploration Bureau, Guiyang 550025
    3 Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001
    4 Guizhou Province Land Green Improvement Engineering Research Center, Guiyang 550001
  • Received:2024-05-04 Accepted:2024-08-01 Online:2025-01-21 Published:2025-01-21
  • Contact: WANG Hong

Abstract:

【Objective】Nitrogen is one of the essential nutrients for plant growth and development, and it plays an important role in strengthening chlorophyll synthesis in crops, enhancing plant resistance, and improving yield and quality. This study harnessed hyperspectral technology to swiftly, precisely, and non-invasively monitor nitrogen levels in pepper foliage throughout its growth cycle, delving into the correlation between leaf nitrogen content (LNC) and spectral reflectance characteristics. 【Method】The study was based on the hyperspectral data of pepper leaves collected from Guanzhuang Demonstration Base in Pepper Research Institute of Guizhou Academy of Agricultural Sciences in 2021. The research encompassed four pepper varieties (Qianjiao No. 8, Hongla No. 18, Layan 101, and Hong Global) and five different nitrogen fertilizer application rates (0, 120, 240, 360, and 480 kg·hm-2). The pepper leaf spectral data were processed, involving Multiple Scatter Correction (MSC), Savitzky-Golay (SG) and First Derivative (FD), followed by the selection of sensitive bands using Pearson correlation coefficient, Successive Projections Algorithm (SPA) and Competitive Adaptive Reweighted Sampling (CARS). Subsequently, three machine learning algorithms, such as Partial Least Squares Regression (PLSR), Random Forest (RF) and Radial Basis Function Neural Network (RBFNN), were employed to construct models for monitoring nitrogen levels in pepper leaves, to achieve the goals of enhancing agricultural production efficiency and accuracy, and realizing intelligent management and precise fertilization. 【Result】After preprocessing, the original spectra improved correlation coefficients significantly. Among these, the spectral data's inversion performance was notably superior after SG processing, with the effectiveness ranking as SG>FD>MSC>original spectra. Contrasting various band selection methods, the employing Pearson correlation coefficient for band selection resulted in bands being overly concentrated, leading to either redundant information or incomplete information extraction. While CARS algorithm selected bands across a broad range and in large quantities, its effectiveness was inferior to SPA due to containing more redundant information and noise. SPA-selected nitrogen content characteristic bands effectively reduced collinearity and redundant information, yielding the optimal model with the highest R² and the smallest RMSE. The performance of different modeling methods for pepper LNC estimation was as follows: RBFNN performed the best, followed by PLSR, with RF exhibiting the poorest performance. Among these, the SG-SPA-RBFNN combined model demonstrated the best inversion accuracy, with modeling results of R² =0.98 and RMSE =0.62, and validation results of R² =0.98 and RMSE =1.21, with an RPD of 3.08. RBFNN model excelled in handling high-dimensional spectral data, surpassing traditional PLSR and RF models. 【Conclusion】The hyperspectral reflectance characteristics were utilized to establish nitrogen content prediction models, which could effectively monitor nitrogen levels in pepper leaves, thereby enhancing agricultural management efficiency and providing the technical support for precise management and variable fertilization in pepper cultivation.

Key words: hyperspectral, chili peppers, nitrogen, machine learning, SPA, RBFNN, spectrum analysis

Fig. 1

Location diagram of the test area"

Fig. 2

ASD FieldSpec4 ground object spectrometer"

Fig. 3

Photos of chili field test data collection"

Table 1

Results of statistical analysis of nitrogen content of chili peppers"

样本类型
Sample type
样本量
Sample size
最小值
Minimum
(g·kg-1)
最大值
Maximum
(g·kg-1)
平均值
Mean
(g·kg-1)
标准差
Standard deviation (g·kg-1)
变异系数
Coefficient of variation
总样本Total sample 60 18.18 43.06 30.07 5.33 17.71
建模集Calibration set 45 18.18 43.06 30.40 5.75 18.91
验证集Validation set 15 23.34 34.43 29.10 3.61 12.41

Fig. 4

Spectrum of pepper leaves with different nitrogen content"

Fig. 5

Correlation between spectral reflectance and LNC of chili pepper leaves"

Table 2

Sensitive feature wavelengths extracted for spectral samples"

预处理
Pretreatment
波段筛选方法
Band selection method
特征波段数
Characteristic bands number
特征波长
Characteristic wavelength (mm)
Original spectrum Pearson 10 651、652、653、654、655、656、657、658、659、660
SPA 12 358、391、405、444、492、533、595、700、724、778、991、1067
CARS 18 393、394、395、397、398、503、504、506、508、509、666、699、734、762、815、896、898、1097
MSC Pearson 10 618、619、620、621、622、623、624、625、626、627
SPA 10 455、517、609、674、735、762、920、933、954、1070
CARS 11 510、512、513、660、664、703、714、904、932、951、986
SG Pearson 10 659、660、661、662、663、664、665、666、667、668
SPA 10 350、422、550、607、678、696、722、760、937、1001
CARS 16 390、391、503、506、656、658、659、661、693、694、723、815、904、905、945、1085
FD Pearson 10 360、361、374、379、461、868、882、911、970、998
SPA 10 375、380、386、395、424、691、779、870、892、998
CARS 18 353、354、355、357、360、370、519、656、779、923、924、926、952、957、965、994、996、1013

Table 3

Analysis of the effect of PLSR on the estimation of LNC in chili peppers"

预处理
Pretreatment
特征选择
Feature selection
训练集 Calibration set 验证集 Validation set
决定系数
R2
均方根误差
RMSE (g·kg-1)
决定系数
R2
均方根误差
RMSE (g·kg-1)
相对分析误差
RPD
Original spectrum Pearson 0.22 5.08 0.21 3.21 1.16
SPA 0.22 5.09 0.27 3.09 1.21
CARS 0.53 3.94 0.51 2.54 1.47
MSC Pearson 0.22 5.07 0.18 3.27 1.15
SPA 0.40 4.46 0.38 2.85 1.31
CARS 0.39 4.50 0.28 3.06 1.22
SG Pearson 0.85 2.22 0.57 2.37 1.58
SPA 0.97 1.01 0.88 1.26 2.97
CARS 0.98 0.80 0.93 0.93 4.02
FD Pearson 0.59 3.69 0.40 2.81 1.33
SPA 0.82 2.41 0.75 1.81 2.07
CARS 0.91 1.77 0.74 1.84 2.04

Fig. 6

Validation of LNC estimation model for chili peppers based on PLSR algorithm a, b, c, and d represent the original spectrum and the spectrum after Multivariate scattering correction, Savitzky-Golay, and First derivative preprocessing, respectively. The same as below"

Table 4

Analysis of the effect of RF on LNC estimation of chili peppers"

预处理Pretreatment 特征选择
Feature selection
训练集 Calibration set 验证集 Validation set
决定系数
R2
均方根误差
RMSE (g·kg-1)
决定系数
R2
均方根误差
RMSE (g·kg-1)
相对分析误差
RPD
Original spectrum Pearson 0.32 4.74 0.18 3.28 1.14
SPA 0.65 3.39 0.35 2.91 1.29
CARS 0.67 3.30 0.34 2.94 1.27
MSC Pearson 0.40 4.45 0.37 2.86 1.31
SPA 0.58 3.72 0.37 2.87 1.31
CARS 0.54 3.90 0.32 2.98 1.26
SG Pearson 0.65 3.39 0.65 2.14 1.75
SPA 0.73 2.97 0.66 2.09 1.79
CARS 0.67 3.30 0.63 2.20 1.70
FD Pearson 0.74 2.93 0.52 2.50 1.49
SPA 0.77 2.74 0.75 1.82 2.05
CARS 0.89 1.93 0.73 1.88 1.99

Fig. 7

Model validation of LNC estimation for chili peppers based on RF algorithm"

Table 5

Analysis of the effect of RBFNN on LNC estimation of chili peppers"

预处理Pretreatment 特征选择
Feature selection
训练集 Calibration set 验证集 Validation set
决定系数
R2
均方根误差
RMSE (g·kg-1)
决定系数
R2
均方根误差
RMSE (g·kg-1)
相对分析误差
RPD
Original spectrum Pearson 0.34 4.67 0.37 3.52 1.06
SPA 0.73 2.97 0.56 3.26 1.15
CARS 0.58 3.74 0.43 2.86 1.31
MSC Pearson 0.31 4.76 0.52 2.66 1.41
SPA 0.44 4.30 0.44 2.88 1.30
CARS 0.37 4.57 0.40 2.88 1.29
SG Pearson 0.92 1.61 0.81 1.92 1.95
SPA 0.98 0.62 0.98 1.21 3.08
CARS 0.99 0.38 0.97 1.18 3.17
FD Pearson 0.59 3.66 0.48 3.01 1.24
SPA 0.83 2.37 0.89 2.08 1.80
CARS 0.95 1.33 0.88 1.91 1.96

Fig. 8

Validation of LNC estimation model for chili peppers based on RBFNN algorithm"

Fig. 9

Five-fold cross validation results of SG-SPA-RBFNN model"

[1]
LI F L, WANG L, LIU J, WANG Y N, CHANG Q R. Evaluation of leaf N concentration in winter wheat based on discrete wavelet transform analysis. Remote Sensing, 2019, 11(11): 1331.
[2]
WANG H G, GUO Z J, SHI Y, ZHANG Y L, YU Z W. Impact of tillage practices on nitrogen accumulation and translocation in wheat and soil nitrate-nitrogen leaching in drylands. Soil and Tillage Research, 2015, 153: 20-27.
[3]
董二伟, 王媛, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 施氮量对谷子产量、氮素利用及小米品质的影响. 中国农业科学, 2024, 57(2): 306-318. doi:10.3864/j.issn.0578-1752.2024.02.007.
DONG E W, WANG Y, WANG J S, LIU Q X, HUANG X L, JIAO X Y. Effects of nitrogen fertilization levels on grain yield, plant nitrogen utilization characteristics and grain quality of foxtail millet. Scientia Agricultura Sinica, 2024, 57(2): 306-318. doi:10.3864/j.issn.0578-1752.2024.02.007. (in Chinese)
[4]
谢雪果, 袁雷, 王世宁, 沈凌峰, 夏亚辉, 吉雪花. 不同施氮水平对色素辣椒光合效率的影响. 新疆农业科学, 2022, 59(10): 2502-2513.

doi: 10.6048/j.issn.1001-4330.2022.10.019
XIE X G, YUAN L, WANG S N, SHEN L F, XIA Y H, JI X H. Effects of different nitrogen application levels on photosynthetic efficiency of pigmented pepper. Xinjiang Agricultural Sciences, 2022, 59(10): 2502-2513. (in Chinese)
[5]
岳延滨, 黎瑞君, 冯恩英, 李莉婕, 彭顺正, 孙长青. 不同氮素水平下辣椒叶面积指数动态模型. 中国农业大学学报, 2022, 27(5): 157-168.
YUE Y B, LI R J, FENG E Y, LI L J, PENG S Z, SUN C Q. Dynamic simulation of leaf area index of pepper under different nitrogen levels. Journal of China Agricultural University, 2022, 27(5): 157-168. (in Chinese)
[6]
何志学. 氮素水平对辣椒生长生理和养分利用的影响[D]. 兰州: 甘肃农业大学, 2016.
HE Z X. Effect of nitrogenous fertilizer levels on growth physiology and nutrient utilization of pepper[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese)
[7]
WEI L F, YUAN Z R, YU M, HUANG C, CAO L Q. Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy. Sensors, 2019, 19(18): 3904.
[8]
彭晓伟, 张爱军, 王楠, 赵丽, 杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息, 2022, 37(1): 32-39.
PENG X W, ZHANG A J, WANG N, ZHAO L, YANG X N. Research progress of hyperspectral technology in soil and suitable crops. Remote Sensing Information, 2022, 37(1): 32-39. (in Chinese)
[9]
马怡茹, 吕新, 易翔, 马露露, 祁亚琴, 侯彤瑜, 张泽. 基于机器学习的棉花叶面积指数监测. 农业工程学报, 2021, 37(13): 152-162.
MA Y R, X, YI X, MA L L, QI Y Q, HOU T Y, ZHANG Z. Monitoring of cotton leaf area index using machine learning. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(13): 152-162. (in Chinese)
[10]
张潇元, 张立福, 张霞, 王树东, 田静国, 翟涌光. 不同光谱植被指数反演冬小麦叶氮含量的敏感性研究. 中国农业科学, 2017, 50(3): 474-485. doi:10.3864/j.issn.0578-1752.2017.03.006.
ZHANG X Y, ZHANG L F, ZHANG X, WANG S D, TIAN J G, ZHAI Y G. Sensitivity of different spectral vegetation index for estimating winter wheat leaf nitrogen. Scientia Agricultura Sinica, 2017, 50(3): 474-485. doi:10.3864/j.issn.0578-1752.2017.03.006. (in Chinese)
[11]
陈志超, 蒋贵印, 张正, 芦俊俊, 王新兵, 娄卫东, 刘昌华, 苗宇新, 郝成元. 基于无人机高光谱遥感的春玉米氮营养指数反演. 河南理工大学学报(自然科学版), 2022, 41(3): 81-89.
CHEN Z C, JIANG G Y, ZHANG Z, LU J J, WANG X B, LOU W D, LIU C H, MIAO Y X, HAO C Y. Inversion of nitrogen nutrition index of spring maize based on hyperspectral remote sensing of UAV. Journal of Henan Polytechnic University (Natural Science), 2022, 41(3): 81-89. (in Chinese)
[12]
第五鹏瑶, 卞希慧, 王姿方, 刘巍. 光谱预处理方法选择研究. 光谱学与光谱分析, 2019, 39(9): 2800-2806.
DIWU P Y, BIAN X H, WANG Z F, LIU W. Study on the selection of spectral preprocessing methods. Spectroscopy and Spectral Analysis, 2019, 39(9): 2800-2806. (in Chinese)
[13]
FAN L L, ZHAO J L, XU X G, LIANG D, YANG G J, FENG H K, YANG H, WANG Y L, CHEN G, WEI P F. Hyperspectral-based estimation of leaf nitrogen content in corn using optimal selection of multiple spectral variables. Sensors, 2019, 19(13): 2898.
[14]
秦立峰, 张熹, 张晓茜. 基于高光谱病害特征提取的温室黄瓜霜霉病早期检测. 农业机械学报, 2020, 51(11): 212-220.
QIN L F, ZHANG X, ZHANG X Q. Early detection of cucumber downy mildew in greenhouse by hyperspectral disease differential feature extraction. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 212-220. (in Chinese)
[15]
张永亮, 汪泓, 肖玖军, 李可相, 王宇, 邢丹. 基于高光谱的山区耕地土壤有机质含量估测. 江苏农业学报, 2024, 40(1): 112-120.
ZHANG Y L, WANG H, XIAO J J, LI K X, WANG Y, XING D. Estimation of soil organic matter content in mountain farmland based on hyperspectral data. Jiangsu Journal of Agricultural Sciences, 2024, 40(1): 112-120. (in Chinese)
[16]
张文旭, 佟炫梦, 周天航, 杨振康, 孙嘉祺, 王金刚, 崔静, 王海江. 基于高光谱成像的棉花叶片氮素含量遥感估测. 沈阳农业大学学报, 2021, 52(5): 586-596.
ZHANG W X, TONG X M, ZHOU T H, YANG Z K, SUN J Q, WANG J G, CUI J, WANG H J. Remote sensing estimation of cotton leaf nitrogen content based on hyperspectral imaging. Journal of Shenyang Agricultural University, 2021, 52(5): 586-596. (in Chinese)
[17]
王树文, 赵越, 王丽凤, 王润涛, 宋玉柱, 张长利, 苏中滨. 基于高光谱的寒地水稻叶片氮素含量预测. 农业工程学报, 2016, 32(20): 187-194.
WANG S W, ZHAO Y, WANG L F, WANG R T, SONG Y Z, ZHANG C L, SU Z B. Prediction for nitrogen content of rice leaves in cold region based on hyperspectrum. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 187-194. (in Chinese)
[18]
YANG J, CHENG Y J, DU L, GONG W, SHI S, SUN J, CHEN B W. Selection of the optimal bands of first-derivative fluorescence characteristics for leaf nitrogen concentration estimation. Applied Optics, 2019, 58(21): 5720-5727.
[19]
BENESTY J, CHEN J D, HUANG Y T. On the importance of the Pearson correlation coefficient in noise reduction. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(4): 757-765.
[20]
ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, YONEYAMA T, CHAME H C, VISANI V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 2001, 57(2): 65-73.
[21]
LI H D, LIANG Y Z, XU Q S, CAO D S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta, 2009, 648(1): 77-84.

doi: 10.1016/j.aca.2009.06.046 pmid: 19616692
[22]
毛博慧, 孙红, 刘豪杰, 张俊逸, 李民赞, 杨立伟. 基于正交变换与SPXY样本划分的冬小麦叶绿素诊断. 农业机械学报, 2017, 48(S1): 160-165.
MAO B H, SUN H, LIU H J, ZHANG J Y, LI M Z, YANG L W. Prediction of winter wheat chlorophyll content based on Gram- Schmidt and SPXY algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (S1): 160-165. (in Chinese)
[23]
王宇, 汪泓, 肖玖军, 李可相, 邢丹, 张永亮, 陈阳, 张蓝月. 基于优化植被指数组合的多品种辣椒叶片叶绿素数值估测. 浙江农业学报, 2023, 35(9): 2109-2120.

doi: 10.3969/j.issn.1004-1524.20221456
WANG Y, WANG H, XIAO J J, LI K X, XING D, ZHANG Y L, CHEN Y, ZHANG L Y. Numerical estimation of chlorophyll in pepper leaves based on optimized vegetation index combination. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2109-2120. (in Chinese)

doi: 10.3969/j.issn.1004-1524.20221456
[24]
王雪雅, 陆宽, 孙小静, 蓬桂华. 贵州不同辣椒品种的品质及挥发性成分分析. 食品科学, 2018, 39(4): 212-218.
WANG X Y, LU K, SUN X J, PENG G H. Quality and flavor analysis of different hot pepper varieties grown in Guizhou. Food Science, 2018, 39(4): 212-218. (in Chinese)

doi: 10.7506/spkx1002-6630-201804032
[25]
唐恒朋, 钱晓刚, 李莉婕, 岳延滨, 黎瑞君, 聂克艳, 赵泽英. 不同施氮水平辣椒单叶光谱特征及SPAD值与叶绿素含量的相关性. 西南农业学报, 2016, 29(10): 2324-2329.
TANG H P, QIAN X G, LI L J, YUE Y B, LI R J, NIE K Y, ZHAO Z Y. Correlations between single leaf spectral characteristics, SPAD value and chlorophyll content in pepper under different nitrogen levels. Southwest China Journal of Agricultural Sciences, 2016, 29(10): 2324-2329. (in Chinese)
[26]
GEISSER S. A predictive approach to the random effect model. Biometrika, 1974, 61(1): 101-107.
[27]
郭建彪, 马新明, 时雷, 张娟娟, 杜盼, 魏钦钦. 冬小麦叶面积指数的品种差异性与高光谱估算研究. 麦类作物学报, 2018, 38(3): 340-347.
GUO J B, MA X M, SHI L, ZHANG J J, DU P, WEI Q Q. Variety variation and hyperspectral estimate model of leaf area index of winter wheat. Journal of Triticeae Crops, 2018, 38(3): 340-347. (in Chinese)
[28]
李岚涛, 李静, 明金, 汪善勤, 任涛, 鲁剑巍. 冬油菜叶面积指数高光谱监测最佳波宽与有效波段研究. 农业机械学报, 2018, 49(2): 156-165.
LI L T, LI J, MING J, WANG S Q, REN T, LU J W. Selection optimization of hyperspectral bandwidth and effective wavelength for predicting leaf area index in winter oilseed rape. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 156-165. (in Chinese)
[29]
LI L T, LIN D, WANG J, YANG L, WANG Y L. Multivariate analysis models based on full spectra range and effective wavelengths using different transformation techniques for rapid estimation of leaf nitrogen concentration in winter wheat. Frontiers in Plant Science, 2020, 11: 755.

doi: 10.3389/fpls.2020.00755 pmid: 32676083
[30]
李粉粉, 王爱霞, 赵晨, 白涛, 毛岚, 张豹林, 李生栋, 宋朝鹏, 王涛. 基于高光谱成像技术的鲜烟叶叶位识别方法. 河南农业科学, 2024, 53(2): 144-151.
LI F F, WANG A X, ZHAO C, BAI T, MAO L, ZHANG B L, LI S D, SONG Z P, WANG T. Identification method of green tobacco leaf positions based on hyperspectral imaging technology. Journal of Henan Agricultural Sciences, 2024, 53(2): 144-151. (in Chinese)

doi: 10.15933/j.cnki.1004-3268.2024.02.016
[31]
易翔, 吕新, 张立福, 田敏, 张泽, 范向龙. 基于RF和SPA的无人机高光谱估算棉花叶片全氮含量. 作物杂志, 2023(2): 245-252.
YI X, LÜ X, ZHANG L F, TIAN M, ZHANG Z, FAN X L. Unmanned aerial vehicle hyperspectral estimation of nitrogen content in cotton leaves based on RF and SPA. Crops, 2023(2): 245-252. (in Chinese)
[32]
吴倩, 姜琦刚, 史鹏飞, 张莉莉. 基于高光谱的土壤碳酸钙含量估算模型研究. 国土资源遥感, 2021, 33(1): 138-144.
WU Q, JIANG Q G, SHI P F, ZHANG L L. The estimation of soil calcium carbonate content based on Hyperspectral data. Remote Sensing for Land & Resources, 2021, 33(1): 138-144. (in Chinese)
[1] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[2] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[3] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[4] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[5] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[6] ZHANG JunFeng, DING JianCheng, WENG YuWei, ZHANG Xiong. Study on the Matching Relationship Between Pattern of Grain Production and Arable Land Resources in Hubei Province Based on Geomorphological Divisions [J]. Scientia Agricultura Sinica, 2024, 57(9): 1748-1765.
[7] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] ZHANG SuXin, SHEN Ge, YU QiangYi, WU WenBin. Remote Sensing Detection of Cropping System and Its Spatial-Temporal Pattern in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1469-1489.
[10] FENG XiaoLin, ZHANG ChuTian, XU ChenYang, GENG ZengChao, HU FeiNan, DU Wei. Spatiotemporal Distribution Characteristics and Influencing Factors of Soil Inorganic Carbon in Shaanxi Province [J]. Scientia Agricultura Sinica, 2024, 57(8): 1517-1532.
[11] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[12] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[13] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[14] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[15] SUN ZhaoAn, ZHANG YiWen, JIANG LiHua, LI ZhaoJun, GUO Xin, CAO Hui, MENG FanQiao. Effects of Tomato Grafting and Nitrogen Fertilization on Fertilizer Nitrogen Fate and Nitrogen Balance [J]. Scientia Agricultura Sinica, 2024, 57(4): 755-764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!