Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 428-444.doi: 10.3864/j.issn.0578-1752.2019.03.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Coupling of Irrigation and Nitrogen Application as well as Planting Density on Photosynthesis and Dry Matter Accumulation Characteristics of Maize in Oasis Irrigated Areas

WEI TingBang1,CHAI Qiang2(),WANG WeiMin1,WANG JunQiang1   

  1. 1 Gansu Academy of Agri-engineering and Technology, Wuwei 733006, Gansu
    2 Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070
  • Received:2018-07-05 Accepted:2018-12-28 Online:2019-02-01 Published:2019-02-14

Abstract:

【Objective】 In oasis irrigation agricultural region, some problems has caused serious influenced of maize production, such as soil available water and nitrogen hunger, premature senescence and unreasonable planting density. To provide technical support for high and stable maize yield, the effects of different ratio of application irrigation and nitrogen and planting density on photosynthesis, dry matter accumulation characteristics and maize yield were studied. 【Method】 Photosynthetic ability, dry matter accumulation characteristics and yield were determined under two-years field experiment, which was carried out in Hexi Oasis irrigation region of Gansu province from 2016 to 2017. In this research, the cultivar “Xianyu335” was applied as research material. A split-split plot design was used as this experiment, with two irrigation application amount treatments (namely 4 050 m 3·hm -2 (W1) and 3 720 m 3·hm -2 (W2)) as the main plot, three nitrogen application amount treatments (namely 0 (N0), 300 kg·hm -2(N1) and 450 kg·hm -2 (N2)) as the split plot, and three plant densities (namely 7.5×10 4 plant/hm 2(D1), 9.75×10 4 plant/hm 2(D2) and 1.2×10 5 plant/hm 2(D3)) as the split-split plot. 【Result】 Nitrogen fertilizer application and planting density had significant influence on photosynthetic rate, maximum dry matter accumulation rate, emergence days of maximum dry matter accumulation rate, dry matter accumulation amount, grain yield, water use efficiency and nitrogen fertilizer use rate in growth stages of maize. The coupling of irrigation and nitrogen fertilizer management increased photosynthesis, the highest dry matter accumulation rate and advanced the days of emergence of the highest dry matter accumulation rate, and enhanced dry matter accumulation amount and grain yield in growth stages of maize. Under the reduced 20% irrigation and the level of higher nitrogen application in growth stages of maize, compared with the low planting density and high planting density treatments, the photosynthetic rate under the medium planting density treatment was increased by 17.31% and 11.43%, respectively. While, compared with the low planting density treatment, the maximum dry matter accumulation rate and days of emergence of the highest dry matter accumulation rate under the treatment with the high planting density and medium planting density was increased by 21.07% and 7.52%, respectively, and advanced by 6.7, 4.1 days, respectively, meanwhile, the dry matter accumulation of the high planting density treatment was increased by 4.27% and 10.59%, respectively; Compared with the low planting density treatment and the high planting density treatment, the grain yield, water use efficiency and nitrogen fertilizer use rate of maize with the medium planting density treatment was increased by 24.2%, 11.4%, 29.9% and 29.2%, 18.4%, 13.8%, respectively. Under the reduced 20% irrigation and same planting density treatment in growth stages of maize, compared with medium nitrogen application treatment and no nitrogen application treatment, the photosynthetic rate, the dry matter accumulation and grain yield of maize under the treatment with high nitrogen application treatment was increased by 7.34%, 11.63%, 14.63% and 49.54%, 44.53%, 69.03%, under the medium planting density treatment, respectively; Compared with medium nitrogen application treatment and no nitrogen application treatment, the maximum dry matter accumulation rate and days of emergence of the highest dry matter accumulation rate of maize with the high nitrogen application treatment was increased by 19.07% and 54.35% and advanced by 3.9 and 6.8 days under the high planting density treatment, respectively. Compared with no nitrogen application treatment, nitrogen fertilizer use rate of maize with the high nitrogen application treatment was increased by 24.50%. The facts showed that the coupling of reduced 20% irrigation and high nitrogen application had regulated dry matter accumulation, grain yield with the improvement of photosynthesis, dry matter accumulation rate, water use efficiency, nitrogen fertilizer use rate and extending the duration of dry matter accumulation. 【Conclusion】 The treatment with application coupling of irrigation and nitrogen (i.e. reduced 20% irrigation amount during growth 3 720 m 3·hm -2(W2) and N application with 450 kg·hm -2 at growth stage and medium density of 9.75×10 4 plant/hm 2 at growth stage of maize) could be considered as the best feasible cultivation pattern management, which could provide technical guidance for further exploring high yield and efficient cultivation of close planting maize in Oasis irrigation region.

Key words: coupling of irrigation and nitrogen application, planting density, oasis irrigation region, photosynthesis, dry matter accumulation characteristics

Fig. 1

Dynamics of precipitation and daily mean temperature in the experimental station from March to September in 2016-2017"

Fig. 2

The net photosynthetic rate dynamic of maize under different treatments"

Fig. 3

The dry matter accumulation dynamic of maize under different treatments"

Fig. 4

The dry matter accumulation rate dynamics of maize under different treatments"

Table 1

Dry matter accumulation stage characteristics of maize under different treatments"

年份
Year
处理
Treatment
渐增期Early stage 快增期Fast stage 缓增期Late stage
持续时间
Duration
(d)
平均积累速率
Average accumulate rate
(kg·hm-2·d-1)
持续时间
Duration
(d)
平均积累速率
Average accumulate rate
(kg·hm-2·d-1)
持续时间
Duration
(d)
平均积累速率
Average accumulate rate
(kg·hm-2·d-1)
2016 W1N0D1 66.50b 76.13c 32.12b 430.64q 46.37o 85.34o
W1N0D2 64.77c 88.41bc 33.76b 463.38p 46.45n 116.33c
W1N0D3 62.79d 92.21b 30.62b 516.46l 51.58f 95.32j
W1N1D1 65.81bc 100.75ab 35.12b 515.82m 44.06q 100.53g
W1N1D2 65.45bc 104.36a 32.12b 636.67f 47.43m 108.41e
W1N1D3 61.26de 111.59a 32.52b 677.32d 51.22g 121.62b
W1N2D1 64.07cd 102.04ab 30.98b 576.42i 49.94k 70.29r
W1N2D2 61.33de 109.84a 28.32b 649.74e 55.35c 86.39m
W1N2D3 60.35e 112.02a 24.16b 742.14b 60.48a 88.13l
W2N0D1 68.69a 76.62c 37.63b 382.14r 38.68r 70.88q
W2N0D2 68.79a 78.78c 30.98b 477.79o 45.22p 86.16n
W2N0D3 66.24bc 86.11bc 30.98b 502.83n 47.77l 100.07h
W2N1D1 64.33cd 91.13b 29.93b 535.09k 50.74i 81.52p
W2N1D2 62.26de 107.24a 32.52b 560.97j 50.22j 110.54d
W2N1D3 61.19d 110.04a 32.12b 624.83h 51.68e 130.56a
W2N2D1 65.97bc 102.18ab 28.94b 636.24g 50.08h 88.83k
W2N2D2 62.71d 112.37a 28.32b 679.77c 53.96d 99.16i
W2N2D3 61.44de 118.15ab 25.82a 768.09a 57.74b 105.34f
2017 W1N0D1 66.85a 97.26n 30.27b 586.77m 27.87o 29.41h
W1N0D2 82.73a 87.73o 37.09ab 534.56p 25.17q 42.23c
W1N0D3 73.48a 114.04h 41.15a 556.33n 30.36k 45.06b
W1N1D1 76.95a 107.41i 33.46ab 674.74i 34.58i 34.72f
W1N1D2 81.21a 106.13k 35.12ab 670.54j 28.66n 58.69a
W1N1D3 78.71a 115.14g 35.59ab 695.58h 30.71j 40.03d
W1N2D1 73.42a 121.35e 34.52ab 705.13e 37.05g 21.12l
W1N2D2 77.34a 133.04c 40.21a 699.08g 27.44p 5.75o
W1N2D3 75.55a 139.23a 39.31ab 731.05d 40.13d 13.03n
W2N0D1 74.97a 75.99q 35.59ab 437.31r 34.43i 27.87i
W2N0D2 76.51a 85.37p 33.64ab 530.42q 34.86h 33.83g
W2N0D3 71.01a 102.82l 36.58ab 545.18o 37.42f 23.93k
W2N1D1 80.54a 97.67m 35.21b 610.42l 29.24l 19.41m
W2N1D2 79.74a 106.59j 36.08ab 643.61k 29.18m 28.27i
W2N1D3 71.57a 123.82d 33.01ab 733.65c 40.42c 41.92c
W2N2D1 71.51a 120.96f 33.77ab 699.91f 39.72e 25.64j
W2N2D2 67.97a 139.22a 34.16ab 756.88b 42.86b 38.81e
W2N2D3 71.68b 134.41b 30.98b 849.51a 45.33a 44.42b

Table 2

Logistic equation analysis on dry matter accumulation of maize under different nitrogen treatments"

年份
Year
处理
Treatment
回归方程
Regression equation
R2 最大增长速率
出现天数
The days of MIR (d)
最大增长速率
Maximum increase rate
(kg·d-1·hm-2)
2016 W1N0D1 Y = 23959.28 / (1 + e6.77 - 0.082 t) 0.993 82.56c 491.16b
W1N0D2 Y = 27102.43 / (1 + e6.370 - 0.078 t) 0.998 81.66c 528.49b
W1N0D3 Y = 27397.08 / (1 + e6.717 - 0.086 t) 0.994 78.10gh 589.03ab
W1N1D1 Y = 31376.54 / (1 + e6.253 - 0.075 t) 0.996 83.37c 588.31ab
W1N1D2 Y = 35421.91 / (1 + e6.684 - 0.082 t) 0.991 81.51d 726.14ab
W1N1D3 Y = 38148.18 / (1 + e6.279 - 0.081 t) 0.995 77.51h 772.50ab
W1N2D1 Y = 30937.64 / (1 + e6.763 - 0.085 t) 0.989 79.56f 657.42ab
W1N2D2 Y = 31873.15 / (1 + e7.020 - 0.093 t) 0.987 75.48i 741.05a
W1N2D3 Y = 33991.32 / (1 + e7.895 - 0.109 t) 0.996 78.43g 926.26ab
W2N0D1 Y = 24905.35 / (1 + e6.125 - 0.07 t) 0.998 87.50a 435.84b
W2N0D2 Y = 25644.27 / (1 + e7.164 - 0.085 t) 0.989 84.28b 544.94ab
W2N0D3 Y = 26987.54 / (1 + e6.947 - 0.085 t) 0.994 81.72d 573.48ab
W2N1D1 Y = 27740.45 / (1 + e6.978 - 0.088 t) 0.992 79.29f 610.29ab
W2N1D2 Y = 31595.12 / (1 + e6.360 - 0.081 t) 0.996 78.52g 639.80ab
W2N1D3 Y = 34762.66 / (1 + e6.335 - 0.082 t) 0.998 77.25h 712.63ab
W2N2D1 Y = 31896.55 / (1 + e7.320 - 0.091 t) 0.983 80.44e 725.64ab
W2N2D2 Y = 33346.21 / (1 + e7.149 - 0.093 t) 0.987 76.87h 775.29a
W2N2D3 Y = 34354.051/ (1 + e7.584 - 0.102 t) 0.991 74.35j 876.02ab
2017 W1N0D1 Y = 30769.12 / (1 + e7.133 - 0.087 t) 0.906 81.98r 669.22m
W1N0D2 Y = 34348.66 / (1 + e7.191 - 0.071 t) 0.949 101.28a 609.68p
W1N0D3 Y = 39656.88 / (1 + e6.020 - 0.064 t) 0.967 94.06h 634.51n
W1N1D1 Y = 39113.70 / (1 + e7.373 - 0.079 t) 0.970 93.68i 769.56i
W1N1D2 Y = 40787.85 / (1 + e7.408 - 0.075 t) 0.968 98.77b 764.77j
W1N1D3 Y = 42882.84 / (1 + e7.141 - 0.074 t) 0.976 96.50f 793.33h
W1N2D1 Y = 42160.80 / (1 + e6.919 - 0.076 t) 0.959 90.68l 804.22e
W1N2D2 Y = 45691.69 / (1 + e6.383 - 0.066 t) 0.948 97.45e 797.32g
W1N2D3 Y = 47778.52 / (1 + e6.379 - 0.067 t) 0.954 95.21g 833.79d
W2N0D1 Y = 26960.35 / (1 + e6.865 - 0.074 t) 0.940 92.77k 498.76r
W2N0D2 Y = 30904.47 / (1 + e7.307 - 0.078 t) 0.971 93.32j 604.95q
W2N0D3 Y = 34544.28 / (1 + e6.429 - 0.072 t) 0.969 89.29m 621.79o
W2N1D1 Y = 37229.95 / (1 + e7.342 - 0.075 t) 0.964 98.15c 696.20l
W2N1D2 Y = 40222.45 / (1 + e7.138 - 0.073 t) 0.943 97.78d 734.06k
W2N1D3 Y = 41942.52 / (1 + e7.029 - 0.080 t) 0.948 88.08o 836.75c
W2N2D1 Y = 40936.35 / (1 + e6.895 - 0.078 t) 0.973 88.39n 798.25f
W2N2D2 Y = 44785.55 / (1 + e6.558 - 0.077 t) 0.950 85.05p 863.24b
W2N2D3 Y = 45594.61 / (1 + e7.410 - 0.085 t) 0.941 83.17q 968.88a
显著性(P值)Significance (P value)
灌水水平W * NS
施氮水平N * *
种植密度D * *
灌水水平×施氮水平W×N * *
灌水水平×种植密度W×D * *
施氮水平×种植密度N×D * NS
灌水水平×施氮水平×种植密度W×N×D * NS

Table 3

The grain yield and WUE and nitrogen utilization efficiency of maize under different treatments"

年份
Year
处理
Treatment
产量
Grain yield
水分利用效率
WUE
氮肥利用率
Nitrogen utilization efficiency
2016 W1N0D1 8015.63c 12.18d
W1N0D2 8599.57c 12.70d
W1N0D3 8406.93c 12.38d
W1N1D1 12211.91b 17.83b 13.10d
W1N1D2 10725.40b 19.81a 15.33c
W1N1D3 11008.27b 15.81bc 19.30a
W1N2D1 12037.13b 17.19bc 17.52f
W1N2D2 11273.53b 18.68ab 20.64e
W1N2D3 11403.40c 16.99bc 24.36bc
W2N0D1 8093.53c 12.66d
W2N0D2 8247.37c 12.69d
W2N0D3 7948.39b 12.19d
W2N1D1 10471.90b 15.55c 12.62c
W2N1D2 12170.47b 17.80b 13.92bc
W2N1D3 11161.16b 16.10bc 17.84b
W2N2D1 11238.43b 16.40bc 20.85f
W2N2D2 13871.22a 18.99ab 22.28ef
W2N2D3 11078.11b 15.69c 23.18d
2017 W1N0D1 7159.1c 11.42ef
W1N0D2 7605.8c 10.74f
W1N0D3 7674.9c 12.46ef
W1N1D1 9971.6cb 20.40b 19.29c
W1N1D2 11329.5ab 20.65a 27.55a
W1N1D3 11792.6ab 16.02d 23.47b
W1N2D1 10514.2b 17.26d 18.86c
W1N2D2 12297.8ab 19.63c 24.18a
W1N2D3 11930.0ab 16.10d 21.59bc
W2N0D1 7729.6c 12.14ef
W2N0D2 8063.5c 13.21e
W2N0D3 7708.6c 12.07ef
W2N1D1 9633.7cb 15.31d 16.62c
W2N1D2 11880.5ab 17.95cd 27.33a
W2N1D3 12154.3ab 16.09d 20.83bc
W2N2D1 10956.1b 17.08d 17.42c
W2N2D2 13699.3a 18.29cd 27.42a
W2N2D3 10271.2cb 15.80d 20.48bc
显著性(P值)Significance (P value)
灌水水平W NS * *
施氮水平N * * *
种植密度D * * *
灌水水平×施氮水平W×N * * *
灌水水平×种植密度W×D * NS *
施氮水平×种植密度N×D * * *
灌水水平×施氮水平×种植密度W×N×D * * *

Table 4

The correlation analysis of maize with different density under coupling of irrigation and nitrogen application"

指标
Item
光合速率
Pn
干物质积累量
Dry matter accumulation
干物质积累最大增长速率
Maximum increase rate
水分利用效率
WUE
籽粒产量
Grain yield
光合速率Pn 1 -0.5 0.647** 0.919** 0.855**
干物质积累量
Dry matter accumulation
1 -0.2208 -0.259 0.178*
干物质积累最大增长速率
Maximum increase rate
1 0.641** 0.669**
水分利用效率WUE 1 0.898**
籽粒产量Grain yield

Grain Yield
1
[1] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C . Food security: The challenge of feeding 9 billion people. Science, 2010,327(5967):812-818.
doi: 10.1126/science.1185383
[2] SHUKRI F, SALI A, IMER R N, FETAH E, KEMAJL B L, AVNI B L, QENDRIM S B . Variation of physiological growth indices, biomass and dry matter yield in some maize hybrids. Albanian Journal of Agricultural Sciences, 2014,2(25):69-73.
[3] 孙文涛, 孙占祥, 王聪翔, 宫亮, 张玉龙 . 滴灌施肥条件下玉米水肥耦合效应的研究. 中国农业科学, 2006,39(3):563-568.
SUN W T, SUN Z X, WANG C X, GONG L, ZHANG Y L . Coupling effect of water and fertilizer on corn yield under drip fertigation. Scientia Agricultura Sinica, 2006,39(3):563-568. (in Chinese)
[4] CHAI Q, GAN Y T, TURNER N C, ZHANG R Z, YANG C, NIU Y I ,KADAMBOT H M S . Chapter two: Water-saving innovations in Chinese agriculture. Advances in Agronomy, 2014,126:149-201.
doi: 10.1016/B978-0-12-800132-5.00002-X
[5] 徐祥玉, 张敏敏, 翟丙年, 李生秀 . 施氮对不同基因型夏玉米干物质累积转移的影响. 植物营养与肥料学报, 2009,15(4):786-792.
XU X Y, ZHANG M M, ZHAI B N, LI S X . Effects of nitrogen application on dry matter accumulation and translocation of different genotypes of summer maize. Plant Nutrition and Fertilizer Science, 2009,15(4):786-792. (in Chinese)
[6] 李青军, 张炎, 胡伟, 孟凤轩, 冯广平, 胡国智, 刘新兰 . 氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响. 植物营养与肥料学报, 2011,17(3):755-760.
LI Q J, ZHANG Y, HU W, MENG F X, FENG G P, HU G Z, LIU X L . Effects of nitrogen management on maize dry matter accumulation, nitrogen uptake and distribution and maize yield. Plant Nutrition and Fertilizer Science, 2011,17(3):755-760. (in Chinese)
[7] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞 . 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008,34(4):447-455.
LǙ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P . Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008,34(4):447-455. (in Chinese)
[8] 张旺锋, 勾玲, 王振林, 李少昆, 余松烈, 曹连莆 . 氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响. 中国农业科学, 2003,36(8):893-898.
ZHANG W F, GOU L, WANG Z L, LI S K, YU S L, CAO L P . Effect of nitrogen on chlorophyll fluorescence of leaves of high-yielding cotton in Xinjiang. Scientia Agricultura Sinica, 2003,36(8):893-898. (in Chinese)
[9] 李广浩, 赵斌, 董树亭, 刘鹏, 张吉旺, 何在菊 . 控释尿素水氮耦合对夏玉米产量和光合特性的影响. 作物学报, 2015,41(9):1406-1415.
LI G H, ZHAO B, DONG S T, LIU P, ZHANG J W, HE Z J . Effects of coupling controlled release urea with water on yield and photosynthetic characteristics in summer maize. Acta Agronomica Sinica, 2015,41(9):1406-1415. (in Chinese)
[10] 张秋英, 刘晓冰, 金剑, 王光华, 李艳华 , STEPHEN J H. 水肥耦合对大豆光合特性及产量品质的影响. 干旱地区农业研究, 2003,21(1):47-50.
ZHANG Q Y, LIU X B, JIN J, WANG G H, LI Y H, STEPHEN J H . Influence of water and fertilizer coupling on photosynthetic characters and yield /quality of soybean. Agricultural Research in the Arid Areas, 2003,21(1):47-50. (in Chinese)
[11] JIM G . Nitrogen study fertilizes fears of pollution. Nature, 2005,433(7028):791.
doi: 10.1038/433791a pmid: 15729306
[12] 王帅, 韩晓日, 战秀梅, 杨劲峰, 王月, 刘轶飞, 李娜 . 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014,20(2):280-289.
WANG S, HAN X R, ZHAN X M, YANG J F, WANG Y, LIU Y F, LI N . Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Plant Nutrition and Fertilizer Science, 2014,20(2):280-289. (in Chinese)
[13] TANG Y L, WEN X G, LU C M . Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiology and Biochemistry, 2005,43(2):69-75.
doi: 10.1016/j.plaphy.2004.12.009 pmid: 15820668
[14] 张建军, 樊廷录, 党翼, 赵刚, 王磊, 李尚中 . 密度与氮肥运筹对陇东旱塬全膜双垄沟播春玉米产量及生理指标的影响. 中国农业科学, 2015,48(22):4574-4584.
ZHANG J J, FAN T L, DANG Y, ZHAO G, WANG L, LI S Z . The Effects of density and nitrogen management on the yield and physiological indices of spring maize under plastic-covered ridge and furrow planting in Loess Plateau east of Gansu. Scientia Agricultura Sinica, 2015,48(22):4574-4584. (in Chinese)
[15] RAJA V . Effect of nitrogen and plant population on yield and quality of super sweet corn (Zea mays). Indian Journal of Agronomy, 2001,46(2):246-249.
[16] 李玉英, 宋玉伟, 程序, 孙建好, 刘吉利, 李隆 . 施氮对灌漠土春玉米干物质积累和氮素吸收利用动态的影响. 中国农业大学学报, 2009,14(1):61-65.
LI Y Y, SONG Y W, CHENG X, SUN J H, LIU J L, LI L . Impact of nitrogen application on the dynamics of dry matter accumulation and nitrogen absorption and utilization of spring maize. Journal of China Agricultural University, 2009,14(1):61-65. (in Chinese)
[17] 王宜伦, 刘天学, 赵鹏, 张许, 谭金芳, 李潮海 . 施氮量对超高产夏玉米产量与氮素吸收及土壤硝态氮的影响. 中国农业科学, 2013,46(12):2483-2491.
WANG Y L, LIU T X, ZHAO P, ZHANG X, TAN J F, LI C H . Effect of nitrogen fertilizer application on yield, nitrogen absorption and soil nitric N in super-high-yield summer maize. Scientia Agricultura Sinica, 2013,46(12):2483-2491. (in Chinese)
[18] 郭丽, 史建硕, 王丽英, 李若楠, 任燕利, 张彦才 . 滴灌水肥一体化条件下施氮量对夏玉米氮素吸收利用及土壤硝态氮含量的影响. 中国生态农业学报, 2018,26(5):668-676.
GUO L, SHI J S, WANG L Y, LI R N, REN Y L, ZHANG Y C . Effects of nitrogen application rate on nitrogen absorption and utilization in summer maize and soil NO -3-N content under drip fertigation . Chinese Journal of Eco-Agriculture, 2018,26(5):668-676. (in Chinese)
[19] 马国胜, 薛吉全, 路海东, 张仁和, 邰书静, 任建宏 . 密度与氮肥对关中灌区夏玉米 (Zea mays L.) 群体光合生理指标的影响. 生态学报, 2008,28(2):661-668.
MA G S, XUE J Q, LU H D, ZHANG R H, TAI S J, REN J H . Effects of planting density and nitrogen fertilization on population physiological indexes of summer maize (Zea mays L.) in Guanzhong irrigated zone. Acta Ecologica Sinica, 2008,28(2):661-668. (in Chinese)
[20] 张吉旺, 王空军, 胡昌浩, 董树亭, 刘鹏 . 施氮时期对夏玉米饲用营养价值的影响. 中国农业科学, 2002,35(11):1337-1342.
ZHANG J W, WANG K J, HU C H, DONG S T, LIU P . Effects of different nitrogen application stages on forage nutritive value of summer maize. Scientia Agricultura Sinica, 2002,35(11):1337-1342. (in Chinese)
[21] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生 . 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018,51(22):4264-4276.
XIAO J B, LIU Z, KONG F X, XIN Z X, WU H S . Effects of planting pattern and density on population structure and yield of sorghum. Scientia Agricultura Sinica, 2018,51(22):4264-4276. (in Chinese)
[22] 高素玲, 刘松涛, 杨青华, 常介田 . 氮肥减量后移对玉米冠层生理性状和产量的影响. 中国农学通报, 2013,29(24):114-118.
GAO S L, LIU S T, YANG Q H, CHANG J T . Effect of reducing and postponing nitrogen fertilization on the yield and canopy physiological properties of corn. Chinese Agricultural Science Bulletin, 2013,29(24):114-118. (in Chinese)
[23] 何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德 . 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 中国农业科学, 2016,49(2):305-318.
HE H B, YANG R, LIAO J, WU L Q, KONG L C, HUANG Y D . Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region. Scientia Agricultura Sinica, 2016,49(2):305-318. (in Chinese)
[24] 王云奇, 陶洪斌, 黄收兵, 徐丽娜, 杨利华, 祁利潘, 王璞 . 施氮模式对夏玉米氮肥利用和产量效益的影响. 核农学报, 2013,27(2):219-224.
WANG Y Q, TAO H B, HUANG S B, XU L N, YANG L H, QI L P, WANG P . Effects of nitreogen patterns on nitrogen use and yield benefit of summer maize. Journal of Nuclear Agricultural Science, 2013,27(2):219-224. (in Chinese)
[25] 魏廷邦, 胡发龙, 赵财, 冯福学, 于爱忠, 刘畅, 柴强 . 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 2017,50(15):2916-2927.
WEI T B, HU F L, ZHAO C, FENG F X, YU A Z, LIU C, CHAI Q . Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas. Scientia Agricultura Sinica, 2017,50(15):2916-2927. (in Chinese)
[26] 黄丽华, 沈根祥, 钱晓雍, 顾海蓉, 仇忠启 , MASSIMO P. 滴灌施肥对农田土壤氮素利和流失的影响. 农业工程学报, 2008,24(7):49-53.
HUANG L H, SHEN G X, QIAN X Y, GU H R, QIU Z Q, MASSIMO P . Impacts of drip fertilizer irrigation on nitrogen use efficiency and total nitrogen loss load. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(7):49-53. (in Chinese )
[27] 周宝元, 孙雪芳, 丁在松, 马玮, 赵明 . 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响. 中国农业科学, 2017,50(11):2129-2140.
ZHOU B Y, SUN X F, DING Z S, MA W, ZHAO M . Effect of tillage practice and fertilization on dry matter accumulation and grain yield of summer maize (Zea Mays L.). Scientia Agricultura Sinica, 2017,50(11):2129-2140. (in Chinese)
[28] 徐国伟, 陆大克, 王贺正, 陈明灿, 李友军 . 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017,23(5):1225-1237.
XU G W, LU D K, WANG H Z, CHEN M C, LI Y J . Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. Journal of Plant Nutrition and Fertilizer, 2017,23(5):1225-1237. (in Chinese)
[29] 吕丽华, 董志强, 张经廷, 张丽华, 梁双波, 贾秀领, 姚海坡 . 水氮对冬小麦-夏玉米产量及氮利用效应研究. 中国农业科学, 2014,47(19):3839-3849.
LǙ L H, DONG Z Q, ZHANG J T, ZHANG L H, LIANG S B, JIA X L, YAO H P . Effect of water and nitrogen on yield and nitrogen utilization of winter wheat and summer maize. Scientia Agricultura Sinica, 2014,47(19):3839-3849. (in Chinese)
[30] 曹倩, 贺明荣, 代兴龙, 门洪文, 王成雨 . 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养与肥料学报, 2011,17(4):815-822.
CAO Q, HE M R, DAI X L, MEN H W, WANG C Y . Effects of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat. Plant Nutrition and Fertilizer Science, 2011,17(4):815-822. (in Chinese)
[31] 张银锁, 宇振荣 , DRIESSEN P M. 环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究. 作物学报, 2002,28(l):104-109.
doi: 10.3321/j.issn:0496-3490.2002.01.021
ZHANG Y S, YU Z R, DRIESSEN P M . Experimental study of assimilate production, partitioning and translocation among plant organs in summer maize(Zea mays) under various environmental and management conditions. Acta Agronomica Sinica, 2002,28(1):104-109. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2002.01.021
[32] WANG Y L, LIU T X, TAN J F, ZHANG XU, LI C H . Effect of N fertilization on yield, N absorption and utilization of two species of super high yielding summer maize. Agricultural Science Technology, 2012,13(2):339-342, 374.
[33] BARTON L, COLMER T D . Irrigation and fertilizer strategies forminimizing nitrogen leaching from turfgrass. Agricultural Water Management, 2006,80:160-175.
doi: 10.1016/j.agwat.2005.07.011
[34] LLORENS L, PEUELAS J, ESTIARTE M . Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and globula riaalypum, to experimentally drier and warmer conditions. Plant Physiology, 2003,119(2):231-243.
[35] 王仁雷, 李霞, 陈国祥, 华春, 魏锦城 . 氮肥水平对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响. 作物学报, 2001,27(6):930-934.
WANG R L, LI X, CHEN G X, HUA C, WEI J C . Effect of N- fertilizer levels on photosynthetic rate and RuBP carboxylase activity in flag leaves of hybrid rice Shanyou 63. Acta Agronomica Sinica, 2001,27(6):930-934. (in Chinese)
[36] 王唯逍, 刘小军, 田永超, 姚霞, 曹卫星, 朱艳 . 不同土壤水分处理对水稻光合特性及产量的影响. 生态学报, 2012,32(22):7053-7060.
WANG W X, LIU X J, TIAN Y C, YAO X, CAO W X, ZHU Y . Effects of different soil water treatments on photosynthetic characteristics and grain yield in rice. Acta Ecologica Sinica, 2012,32(22):7053-7060. (in Chinese)
[37] 李潮海, 刘奎, 周苏玫, 栾丽敏 . 不同施肥条件下夏玉米光合对生理生态因子的响应. 作物学报, 2002,28(2):265-269.
LI C H, LIU K, ZHOU S M, LUAN L M . Response of photosynthesis to eco-physiological factors of summer maize on different fertilizer amounts. Acta Agronomica Sinica, 2002,28(2):265-269. (in Chinese)
[38] 黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜 . 产量15000 kg·ha -1以上夏玉米灌浆期间的光合特性 . 中国农业科学, 2007,40(9):1898-1906.
HUANG Z X, WANG Y J, WANG K J, LI D H, ZHAO M, LIU J G, DONG S T, WANG H J, WANG J H, YANG J S . Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15 000 kg·ha -1 . Scientia Agricultura Sinica, 2007,40(9):1898-1906. (in Chinese)
[39] 曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜 . 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012,18(6):1343-1353.
CAO S B, ZHANG J W, DONG S T, LIU P, ZHAO B, YANG J S . Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutrition and Fertilizer Science, 2012,18(6):1343-1353. (in Chinese)
[40] BAVEC F, BAVEC M . Effect of maize plant double row spacing on nutrient uptake, leaf area index and yield. Rost Vyroba, 2001,47(3):135-140.
[41] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆 . 密度对玉米产量(> 15000 kg·hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45(16):3437-3445.
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K . Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012,45(16):3437-3445. (in Chinese)
[42] BORRAS L, MADDONNI G A, OTEGUI M E . Leaf senescence in maize hybrids: Plant population, row spacing and kernel set effects. Field Crops Research, 2003,82(1):13-26.
doi: 10.1016/S0378-4290(03)00002-9
[43] 刘战东, 肖俊夫, 于景春, 刘祖贵, 南纪琴 . 春玉米品种和种植密度对植株性状和耗水特性的影响. 农业工程学报, 2012,28(11):125-132.
LIU Z D, XIAO J F, YU J C, LIU Z G, NAN J Q . Effects of varieties and planting density on plant traits and water consumption characteristics of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(11):125-132. (in Chinese)
[44] 王海茹, 张永清, 董文晓, 闫江艳, 冯晓敏, 李鹏 . 水氮耦合对黍稷幼苗形态和生理指标的影响. 中国生态农业学报, 2012,20(11):1420-1426.
WANG H R, ZHANG Y Q, DONG W X, YAN J Y, FENG X M, LI P . Effect of irrigation and nitrogen supply on physico-morphological indices of broomcorn millet at seedling stage. Chinese Journal of Eco-Agriculture, 2012,20(11):1420-1426. (in Chinese)
[45] 任中生, 屈忠义, 李哲, 刘安琪 . 水氮互作对河套灌区膜下滴灌玉米产量与水氮利用的影响. 水土保持学报, 2016,30(5):149-155.
REN Z S, QU Z Y, LI Z, LIU A Q . Interactive effects of nitrogen fertilization and irrigation on grain yield, water use efficiency and nitrogen use efficiency of mulched drip-irrigated maize in Hetao irrigation district, China. Journal of Soil and Water Conservation, 2016,30(5):149-155. (in Chinese)
[46] DING K J, WANG G M, JIANG D K, BISWAS H, XU L F, LI Y H . Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of Botany, 2005,96(3):925-930.
doi: 10.1093/aob/mci244 pmid: 16103036
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[4] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[5] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[6] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[7] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[8] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[9] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[10] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[11] ZHANG ZhanJun,YANG HongWei,FAN ZhiLong,YU AiZhong,HU FaLong,YIN Wen,FAN Hong,GUO Yao,CHAI Qiang,ZHAO Cai. Water-Carrying Potential of No-Tillage with Plastic Film Mulching for 2-Year Coupled with Maize High-Density Planting in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(16): 3406-3416.
[12] HOU JiaMin,LUO Ning,WANG Su,MENG QingFeng,WANG Pu. Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China [J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546.
[13] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[14] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[15] DING XiangPeng,BAI Jing,ZHANG ChunYu,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Line-Spacing Expansion and Row-Spacing Shrinkage on Population Structure and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(19): 3915-3927.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!