Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3482-3493.doi: 10.3864/j.issn.0578-1752.2024.17.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Sodium Selenite on the in vitro Maturation of Porcine Oocytes and Their Embryonic Development Potentials

ZHANG Bing(), YANG YanYan, FENG QianHui, SHI Wen, FANG YiZhen, HUANG JiaBao, SHI DeShun()   

  1. College of Animal Science and Technology, Guangxi University/Guangxi Key Laboratory for the Breeding and Disease Control of Livestock and Poultry, Nanning 530004
  • Received:2024-03-19 Accepted:2024-05-09 Online:2024-09-01 Published:2024-09-04
  • Contact: SHI DeShun

Abstract:

【Objective】The aim of this study was to investigate the effects of sodium selenite (SS) on the in vitro maturation of porcine oocytes and their embryonic developmental potential, and to conduct a preliminary analysis of its mechanism, so as to provide the theoretical references for the improvement of the in vitro maturation system of porcine oocytes.【Method】After culturing porcine cumulus-oocyte complexes (COCs) in maturation medium containing different concentrations of SS (0, 20, 40, 60, and 80 nmol·L-1) for 44 hours, observations were made, and cumulus cell expansion and oocyte maturation status were collected. Cumulus cell RNA was extracted, and oocytes were subjected to parthenogenetic activation (PA) treatment. The cleavage rate and blastocyst rate of parthenogenetic embryos were statistically analyzed at 48 and 168 hours of in vitro culture. Real-time fluorescence quantitative PCR and observation were used to detect cumulus cell expansion index (CEI), expression of cumulus expansion-related genes (Has2, Ptgs2), first polar body (PB1) extrusion rate, and cleavage rate and blastocyst rate of parthenogenetic embryos, to investigate the effects of different concentrations of SS on oocyte maturation, early embryo development, and cumulus cell expansion, and to determine the optimal concentration of SS. Total antioxidant capacity of COCs, glutathione (GSH) content, malondialdehyde (MDA) levels, and expression of antioxidant-related genes (CAT, PRDX2) in oocytes were detected by spectrophotometry and RT-qPCR to explore the effect of adding SS to the maturation medium on oocyte antioxidant capacity. Immunofluorescence technology was combined to detect the total number of cells in blastocysts and the expression of pluripotency genes (Nanog, Sox2) in blastocysts, to investigate the effect of SS on the developmental potential of parthenogenetic embryos.【Result】The RT-qPCR results showed that the addition of different concentrations of SS significantly promoted the expression of the PTGS2 gene (P<0.05), and at a concentration of 40 nmol·L-1, the expression of the HAS2 gene, CEI, PB1 extrusion rate of oocytes, and blastocyst rate of early embryos were all significantly promoted (P<0.05). SS at concentrations of 40, 60, and 80 nmol·L-1 promoted oocyte cleavage, with significant promotion observed at a concentration of 40 nmol·L-1 (P<0.05). Based on those results, the optimal concentration of SS adding to the in vitro maturation medium for porcine oocytes was determined to be 40 nmol·L-1. The results of antioxidant capacity testing showed that SS significantly increased the total antioxidant capacity of COCs, the level of GSH in oocytes, and the expression of antioxidant genes CAT and PRDX2, while significantly reducing MDA content (P<0.05). Immunofluorescence and PCR results showed that the number of inner cell mass in blastocysts and the expression of Nanog were increased in the SS group (P<0.05).【Conclusion】The addition of SS to the in vitro maturation medium of oocytes promoted cumulus cell expansion, enhanced oocyte maturation rates, and improved the developmental potential of matured oocytes. The beneficial effects of SS on the in vitro maturation of oocytes might be associated with its antioxidant properties.

Key words: sodium selenite (SS), porcine oocytes, in vitro maturation (IVM), oxidative stress, parthenogenetic activation

Table 1

Information of primers"

基因
Gene
引物序列
Primer sequence
长度
Length (bp)
GenBank登录号
Accession No.
GAPDH F: TATGATTCCACCCACGGCAAG
R: CCACAACATACGTAGCACCAG
145 NM_001206359.1
PTGS2 F: CAGGCTGATACTGATAGGAGAAA
R: CTGGTTGAAAAGCAGCTCTGG
112 NM_214321.1
HAS2 F: ATGACAGGCATCTAACGAAC
R: TTGTACAGCCACTCTCGGAA
157 NM_214053.1
CAT F: GCTGAGTCCGAAGTCGTCTA
R: GTCAGGATATCAGGTTTCTGCG
173 NM_214301.2
PRDX2 F: TTCGGGCCGAGCATAAAAGG
R: AGGCCATGACTGAAAGCTGC
119 NM_001244474.1
NANOG F: TCCACAAGCCCCAGAGTAAA
R: GCCTCTGAAATCTGTCGTTG
145 NM_001129971.2
SOX2 F: AAGAACAGCCCAGACCGAGT
R: CCGTCTCCGACAAAAGTTTCCAC
154 NM_001123197.1

Fig. 1

The effects of different concentrations of SS on the first polar body extrusion rate of porcine oocytes and early embryo development A: Blastocyst diagram with different concentrations of sodium selenite addition; B: Statistical diagram of the discharge of the first pole body by different concentrations of SS, different shoulder label letters in the same column indicate significant differences (P<0.05)"

Table 2

The effects of SS on the parthenogenetic embryo development capacity of porcine oocytes"

浓度
Concentration (nmol·L-1)
卵母细胞数
No. of oocytes
卵裂数
No. of cleavage
卵裂率
Rate of cleavage
囊胚数
No. of blastocyst
囊胚率
Rate of cleavage
0 369 295 79.47±1.44c 73 24.74±1.88b
20 362 307 82.03±1.94bc 86 28.22±1.34ab
40 406 365 87.7±1.59a 114 31.49±1.19a
60 372 320 84.49±1.00b 89 28.23±0.59ab
80 376 323 84.41±1.59b 82 26.27±2.81b

Fig. 2

The effect of SS on cumulus cell expansion A: The circle shows that COCs can be used as a representative plot of the expansion rating of cumulus cells with different degrees of expansion; B: Statistical analysis of cumulus expansion index rating; Scale = 100 µm; Different small letters in the same column indicate significant differences (P<0.05)"

Fig. 3

The effect of SS on the expression of cumulus expansion genes Different letters in the same column indicate significant differences (P<0.05)"

Fig. 4

The effect of SS on the total antioxidant capacity of cumulus- oocyte complexes (COCs) * indicate significant differences (P<0.05),**indicates highly significant difference (P<0.01). The same as below"

Fig. 5

The effect of SS on the GSH content"

Fig. 6

The effect of SS on the MDA content in porcine oocytes"

Fig. 7

The effect of SS treatment on the number of inner cell mass in porcine blastocysts A: Images of Hoechst 33342 fluorescence staining of parthenogenetically activated porcine blastocysts in the control group (Control) and the SS group (SS); B: Statistical analysis of Hoechst 33342 staining fluorescence intensity; scale bar = 200 μm; *: Significant differences (P<0.05)"

Fig. 8

The effects of SS on the expression of antioxidant genes in oocytes and early embryos, as well as pluripotency genes in early embryos A. The relative expression levels of antioxidant genes in oocytes between the Control group and the SS group (SS); B. The relative expression levels of pluripotency genes in embryos between the Control group and the SS group (SS)"

[1]
SOVERNIGO T C, ADONA P R, MONZANI P S, GUEMRA S, BARROS F, LOPES F G, LEAL C. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 2017, 52(4): 561-569.
[2]
RUDER E H, HARTMAN T J, GOLDMAN M B. Impact of oxidative stress on female fertility. Current Opinion in Obstetrics & Gynecology, 2009, 21(3): 219-222.
[3]
张通, 栗瑞兰, 范晓梅, 刘春洁, 海日汗, 霍敏, 张家新. p66Shc在绵羊卵母细胞中的表达及其与胞质氧化还原稳态的关系. 中国农业科学, 2019, 52(12): 2183-2192. doi: 10.3864/j.issn.0578-1752.2019.12.015.
ZHANG T, LI R L, FAN X M, LIU C J, HAI R H, HUO M, ZHANG J X. Expression of p66Shc and its relationship with cytoplasmic redox homeostasis in sheep oocytes. Scientia Agricultura Sinica, 2019, 52(12): 2183-2192. doi: 10.3864/j.issn.0578-1752.2019.12.015. (in Chinese)
[4]
CASTEL T, LÉON K, GANDUBERT C, GUEGUEN B, AMÉRAND A, GUERNEC A, THÉRON M, PICHAVANT-RAFINI K. Comparison of sodium selenite and selenium-enriched Spirulina supplementation effects after selenium deficiency on growth, tissue selenium concentrations, antioxidant activities, and selenoprotein expression in rats. Biological Trace Element Research, 2024, 202(2): 685-700.
[5]
GUARDADO-FÉLIX D, SERNA-SALDIVAR S O, CUEVAS- RODRÍGUEZ E O, JACOBO-VELÁZQUEZ D A, GUTIÉRREZ-URIBE J A. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food Chemistry, 2017, 226: 69-74.
[6]
MEHDI Y, HORNICK J L, ISTASSE L, DUFRASNE I. Selenium in the environment, metabolism and involvement in body functions. Molecules, 2013, 18(3): 3292-3311.

doi: 10.3390/molecules18033292 pmid: 23486107
[7]
CÓRDOVA B, MORATÓ R, IZQUIERDO D, PARAMIO T, MOGAS T. Effect of the addition of insulin-transferrin-selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development. Theriogenology, 2010, 74(8): 1341-1348.
[8]
MEHDI Y, DUFRASNE I. Selenium in cattle: A review. Molecules, 2016, 21(4): 545.
[9]
KOMMISRUD E, ØSTERÅS O, VATN T. Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Veterinaria Scandinavica, 2005, 46(4): 229.
[10]
LIZARRAGA R M, ANCHORDOQUY J M, GALARZA E M, FARNETANO N A, CARRANZA-MARTIN A, FURNUS C C, MATTIOLI G A, ANCHORDOQUY J P. Sodium selenite improves in vitro maturation of Bos primigenius Taurus oocytes. Biological Trace Element Research, 2020, 197(1): 149-158.
[11]
MALEKZADEH KEBRIA M, SALEHNIA M, ZAVAREH S, MOAZZENI S S. The effect of sodium selenite on apoptotic gene expression and development of in vitro cultured mouse oocytes in comparison with in vivo obtained oocytes. Veterinary Research Forum: an International Quarterly Journal, 2020, 11(4): 377-383.
[12]
KHALIL W A, YANG C Y, EL-MOGHAZY M M, EL-RAIS M S, SHANG J H, EL-SAYED A. Effect of zinc chloride and sodium selenite supplementation on in vitro maturation, oxidative biomarkers, and gene expression in buffalo (Bubalus bubalis) oocytes. Zygote, 2021, 29(5): 393-400.
[13]
RAGHU H M, REDDY S M, NANDI S. Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, semidefined media. Veterinary Record, 2002, 151(9): 260-265.
[14]
JEONG Y W, HOSSEIN M S, BHANDARI D P, KIM Y W, KIM J H, PARK S W, LEE E, PARK S M, JEONG Y I, LEE J Y, KIM S, HWANG W S. Effects of insulin-transferrin-selenium in defined and porcine follicular fluid supplemented IVM media on porcine IVF and SCNT embryo production. Animal Reproduction Science, 2008, 106(1/2): 13-24.
[15]
MAKKI M, SABOORI E, SABBAGHI M A, ARAM R, FALLAHIAN M H, PEYGHAMBARI F, ROUSTAEI H, AHMADI A. Effects of selenium, calcium and calcium ionophore on human oocytes in vitro maturation in a chemically defined medium. Iranian Journal of Reproductive Medicine, 2012, 10(4): 343-348.
[16]
张菁怡, 曾庆节, 殷超, 谢贤华, 魏庆, 梁海平, 阮记明, 黄建珍. 硒的生理功能及其在动物生产中的应用研究进展. 黑龙江畜牧兽医, 2024(4): 17-23, 28.
ZHANG J Y, ZENG Q J, YIN C, XIE X H, WEI Q, LIANG H P, RUAN J M, HUANG J Z. Research progress on the physiological function of selenium and its application in animal production. Heilongjiang Animal Science and Veterinary Medicine, 2024(4): 17-23, 28. (in Chinese)
[17]
CHECA J, ARAN J M. Reactive oxygen species: drivers of physiological and pathological processes. Journal of Inflammation Research, 2020, 13: 1057-1073.

doi: 10.2147/JIR.S275595 pmid: 33293849
[18]
KIRILLOVA A, SMITZ J E J, SUKHIKH G T, MAZUNIN I. The role of mitochondria in oocyte maturation. Cells, 2021, 10(9): 2484.
[19]
LI R, ALBERTINI D F. The road to maturation: Somatic cell interaction and self-organization of the mammalian oocyte. Nature Reviews Molecular Cell Biology, 2013, 14: 141-152.

doi: 10.1038/nrm3531 pmid: 23429793
[20]
ROBERT C. Nurturing the egg: The essential connection between cumulus cells and the oocyte. Reproduction, Fertility and Development, 2021, 34(2): 149-159.
[21]
RICHANI D, DUNNING K R, THOMPSON J G, GILCHRIST R B. Metabolic co-dependence of the oocyte and cumulus cells: Essential role in determining oocyte developmental competence. Human Reproduction Update, 2021, 27(1): 27-47.

doi: 10.1093/humupd/dmaa043 pmid: 33020823
[22]
IMANAKA S, SHIGETOMI H, KOBAYASHI H. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reproductive Sciences, 2022, 29(3): 653-667.
[23]
潘阳阳, 李秦, 崔燕, 樊江峰, 杨琨, 何俊峰, 余四九. EGF、EGFR在牦牛卵母细胞中的表达及对胚胎发育能力的作用. 中国农业科学, 2015, 48(12): 2439-2448. doi: 10.3864/j.issn.0578-1752.2015.12.017.
PAN Y Y, LI Q, CUI Y, FAN J F, YANG K, HE J F, YU S J. The expression of EGF and EGFR in yak oocyte and its function on development competence of embryo. Scientia Agricultura Sinica, 2015, 48(12): 2439-2448. doi: 10.3864/j.issn.0578-1752.2015.12.017. (in Chinese)
[24]
赵子墨, 王庆凯, 郑梓, 李宁, 李千军, 崔茂盛. 卵丘细胞对猪卵母细胞体外成熟发育及GPX3、GPX4基因表达的影响. 黑龙江畜牧兽医, 2020(12): 51-55, 59, 160.
ZHAO Z M, WANG Q K, ZHENG Z, LI N, LI Q J, CUI M S. Effects of cumulus cells on porcine oocyte maturation-development and the expression GPX3 and GPX4 genes in vitro. Heilongjiang Animal Science and Veterinary Medicine, 2020(12): 51-55, 59, 160. (in Chinese)
[25]
CHAUBEY G K, KUMAR S, KUMAR M, SARWALIA P, KUMARESAN A, DE S, KUMAR R, DATTA T K. Induced cumulus expansion of poor quality buffalo cumulus oocyte complexes by Interleukin-1beta improves their developmental ability. Journal of Cellular Biochemistry, 2018, 119(7): 5750-5760.

doi: 10.1002/jcb.26688 pmid: 29352731
[26]
LEE S, JIN J X, TAWEECHAIPAISANKUL A, KIM G A, AHN C, LEE B C. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. Journal of Pineal Research, 2017, 63(3). doi: 10.1111/jpi.12424.
[27]
LEE S, JIN J X, TAWEECHAIPAISANKUL A, KIM G A, AHN C, LEE B C. Sonic hedgehog signaling mediates resveratrol to improve maturation of pig oocytes in vitro and subsequent preimplantation embryo development. Journal of Cellular Physiology, 2018, 233(6): 5023-5033.
[28]
TRASORRAS V, GIULIANO S, MIRAGAYA M. In vitro production of embryos in South American camelids. Animal Reproduction Science, 2013, 136(3): 187-193.
[29]
李文慧, 贺依静, 姜瑶, 赵红宇, 彭磊, 李佳, 芮荣, 剧世强. 伏马毒素B1对猪体外成熟卵母细胞凋亡与自噬的影响. 中国农业科学, 2022, 55(6): 1241-1252. doi: 10.3864/j.issn.0578-1752.2022.06.015.
LI W H, HE Y J, JIANG Y, ZHAO H Y, PENG L, LI J, RUI R, JU S Q. Effects of FB1 on apoptosis and autophagy of porcine oocytes in vitro maturation. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252. doi: 10.3864/j.issn.0578-1752.2022.06.015. (in Chinese)
[30]
JIA H Q, JIA C Q, AN Q L, CHENG Y Y, JIANG X L, XU Y, ZHAO R L, PENG W, ZHANG Y, SU J M. Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice. Theriogenology, 2020, 148: 236-248.

doi: S0093-691X(19)30505-9 pmid: 31735432
[31]
SILVA A F B, LIMA L F, MORAIS A N P, LIENOU L L, WATANABE Y F, JOAQUIM D C, MORAIS S M, ALVES D R, PEREIRA A F, SANTOS A C, ALVES B G, PADILHA D M M, GASTAL E L, FIGUEIREDO J R. Oocyte in vitro maturation with eugenol improves the medium antioxidant capacity and total cell number per blastocyst. Theriogenology, 2022, 192: 109-115.
[32]
OKITA K, ICHISAKA T, YAMANAKA S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448: 313-317.
[33]
MITSUI K, TOKUZAWA Y, ITOH H, SEGAWA K, MURAKAMI M, TAKAHASHI K, MARUYAMA M, MAEDA M, YAMANAKA S. The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113(5): 631-642.

doi: 10.1016/s0092-8674(03)00393-3 pmid: 12787504
[34]
CHAMBERS I, COLBY D, ROBERTSON M, NICHOLS J, LEE S, TWEEDIE S, SMITH A. Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113(5): 643-655.

doi: 10.1016/s0092-8674(03)00392-1 pmid: 12787505
[35]
BOYER L A, LEE T I, COLE M F, JOHNSTONE S E, LEVINE S S, ZUCKER J P, GUENTHER M G, KUMAR R M, MURRAY H L, JENNER R G, GIFFORD D K, MELTON D A, JAENISCH R, YOUNG R A. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122(6): 947-956.

doi: 10.1016/j.cell.2005.08.020 pmid: 16153702
[36]
SUWINSKA A, CIEMERYCH M A. Factors regulating pluripotency and differentiation in early mammalian embryos and embryo-derived stem cells. Stem Cell Regulators. Amsterdam: Elsevier, 2011: 1-37.
[37]
ASSADOLLAHI V, MOHAMMADI E, FATHI F, HASSANZADEH K, ERFAN M B K, SOLEIMANI F, BANAFSHI O, YOUSEFI F, ALLAHVAISI O. Effects of cigarette smoke condensate on proliferation and pluripotency gene expression in mouse embryonic stem cells. Journal of Cellular Biochemistry, 2019, 120(3): 4071-4080.

doi: 10.1002/jcb.27692 pmid: 30269371
[38]
LEE M Y, OH J N, CHOE G C, CHOI K H, LEE D K, KIM S H, JEONG J, AHN Y, LEE C K. NANOG expression in parthenogenetic porcine blastocysts is required for intact lineage specification and pluripotency. Animal Bioscience, 2023, 36(12): 1905-1917.
[39]
ABEYDEERA L R, WANG W H, CANTLEY T C, PRATHER R S, DAY B N. Glutathione content and embryo development after in vitro fertilisation of pig oocytes matured in the presence of a thiol compound and various concentrations of cysteine. Zygote, 1999, 7(3): 203-210.
[40]
HIDAKA T, FUKUMOTO Y, YAMAMOTO S, OGATA Y, HORIUCHI T. Variations in bovine embryo production between individual donors for OPU-IVF are closely related to glutathione concentrations in oocytes during in vitro maturation. Theriogenology, 2018, 113: 176-182.
[41]
WANG Y B. Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of avian broiler. Biological Trace Element Research, 2009, 128(2): 184-190.

doi: 10.1007/s12011-008-8264-y pmid: 18972070
[42]
REN Z H, CHEN C H, FAN Y, CHEN C X, HE H Y, WANG X M, ZHANG Z, ZUO Z C, PENG G N, HU Y C, XU Z W, TAO S Y, MAO X R, DENG J L. Toxicity of DON on GPx1-overexpressed or knockdown porcine splenic lymphocytes in vitro and protective effects of sodium selenite. Oxidative Medicine and Cellular Longevity, 2019, 2019: 5769752.
[43]
GAO F, LI J J, CHEN Y X, ZULIYAER T, LIU B, GUO S, YANG D G, YU Y, YANG M L, DU L J. Sodium selenite promotes neurological function recovery after spinal cord injury by inhibiting ferroptosis. Neural Regeneration Research, 2022, 17(12): 2702.
[44]
YANG L, WANG Q K, CUI M S, LI Q J, MU S Q, ZHAO Z M. Effect of melatonin on the in vitro maturation of porcine oocytes, development of parthenogenetically activated embryos, and expression of genes related to the oocyte developmental capability. Animals, 2020, 10(2): 209.
[45]
LIU M J, SUN A G, ZHAO S G, LIU H, MA S Y, LI M, HUAI Y X, ZHAO H, LIU H B. Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertility and Sterility, 2018, 109(5): 900-907.
[46]
HUANG Z Q, PANG Y W, HAO H S, DU W H, ZHAO X M, ZHU H B. Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro. Asian-Australasian Journal of Animal Sciences, 2018, 31(9): 1420-1430.
[1] CUI HongJie, LU ChunTing, PAN LiQin, HU Hui, ZHONG PeiYun, ZHU JieYing, ZHANG KaiZhao, HUANG XiaoHong. Curcumin Alleviates Zearalenone-Induced Oxidative Damage in Porcine Renal Epithelial Cells via SIRT1/FOXO1 Pathway [J]. Scientia Agricultura Sinica, 2023, 56(5): 1007-1018.
[2] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[3] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[4] ZHANG Nan, HAN GuangJie, LIU Qin, LI ChuanMing, QI JianHang, LU YuRong, XIA Yang, XU Jian. Response and Function of the Transcription Factor CncC in Cnaphalocrocis medinalis Infected with Baculovirus CnmeGV [J]. Scientia Agricultura Sinica, 2023, 56(13): 2491-2503.
[5] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[6] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[7] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[8] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[9] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
[10] LI HanTong,JIA ChengLi,ZHANG ShuWen,LU Jing,PANG XiaoYang,LIU Lu,LÜ JiaPing. Chromium (III) Stress Alleviation by Sulfur Compounds During Chromium Bio-enrichment by Saccharomyces cerevisiae [J]. Scientia Agricultura Sinica, 2019, 52(6): 1078-1089.
[11] DU Jiao, WANG YaBo, LI XueHua, HUANG ZhiQiang, YANG YuHeng, BI ChaoWei, YU Yang. Function analysis ofγ-glutamyl phosphate reductase-encoded gene SsGPR1 in Sclerotinia sclerotiorum [J]. Scientia Agricultura Sinica, 2018, 51(19): 3694-3703.
[12] TANG Qin, DENG Yuan-yuan, ZHANG Rui-fen, ZHANG Yan, ZHANG Ming-wei, WEI Zhen-cheng, TANG Xiao-jun, LIU Lei, TI Hui-hui, MA Yong-xuan. Effect of Momordica charantia Fruit Aqueous Extract on Serum Lipids Metabolic Disorder in Restraint Mice [J]. Scientia Agricultura Sinica, 2014, 47(16): 3300-3307.
[13] ZHAO Jiao, ZHOU Zhao-Hong, LIANG Xiao-Fang, MAO Xiang-Bing, CHEN Dai-Wen, YU Bing. Effects of GSPs and VE on Growth Performance, Serum Redox Status and Hepatic Oxidative Damage in Piglets Under Oxidative Stress [J]. Scientia Agricultura Sinica, 2013, 46(19): 4157-4164.
[14] SONG Gui-Fang-., FAN Wei-Li, WANG Jun-Juan, WANG De-Long, WANG Shuai, ZHOU Kai, YE Wu-Wei. Cloning and Characterization of Drought-stress Responsive Gene GhGR in Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2012, 45(8): 1644-1652.
[15] CUI Zhi-Wen, HUANG Qin, HUANG Yi, WU Hong-Zhao, WEN Jing, LI Wei-Fen. Antioxidative Function of Lacbacillus rhamnosus to Caco-2 Cells [J]. Scientia Agricultura Sinica, 2011, 44(23): 4926-4932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!