Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1241-1252.doi: 10.3864/j.issn.0578-1752.2022.06.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation

LI WenHui(),HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang()   

  1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095
  • Received:2021-01-29 Accepted:2021-06-17 Online:2022-03-16 Published:2022-03-25
  • Contact: ShiQiang JU E-mail:1065167020@qq.com;jusq@njau.edu.cn

Abstract:

【Objective】The purpose of this study was to investigate the effects of fumonisin B1 (FB1) on porcine oocyte in vitro maturation and its potential mechanism, so as to provide the theoretical reference for effective prevention and treatment of reproductive toxicity injury caused by FB1 in the clinic.【Method】Porcine cumulus oocyte complexes (COCs) were collected and randomly divided into groups, and treated with different concentrations of FB1 (0, 10, 20 and 30 μg·mL-1) for 44 h during in vitro maturation, respectively. Then, the first polar body (PB1) extrusion and embryo development after activation of oocytes were analyzed, and the effects of FB1 on meiotic progression and cytoskeleton structure of oocytes were further detected by immunofluorescence staining and combined with confocal microscopy. In order to further explore the mechanism of FB1 on toxic injury of porcine oocytes, the JC-1, Annexin V-FITC and LC3A/B fluorescence staining were used to detect mitochondrial function, early apoptosis and autophagy levels in oocytes, respectively. On this basis, the expression of apoptosis/autophagy related to proteins were further analyzed by Western blotting.【Result】FB1 treatment had significant inhibitory effects on oocyte maturation, while PB1 extrusion rate decreased in a concentration-dependent manner. When the concentration of FB1 reached more than 20 μg·mL -1, the PB1 extrusion was significantly decreased (P<0.01), and the cleavage rate and blastocyst rate of the embryos after oocytes parthenogenetic activation were significantly decreased (P<0.01), damaging the development potential of oocytes to a certain extent. And the cell cycle analysis showed that FB1 treatment also disordered the meiotic cycle progression, resulting in a significant increase in the proportion of oocytes that arrested at germinal vesicle breakdown (GVBD) (P<0.01), and a significant decrease in the proportion of oocytes that successfully developed to the Metaphase II (MII) (P<0.01), with an increase in spindle abnormal rate (P<0.01) and a decrease in actin distribution at the plasma membrane (P<0.05). Further studies showed that, compared with control group, the mitochondrial membrane potential was significantly decreased (P<0.05), impairing mitochondrial function. At the same time, the rate of early apoptosis was obviously increased (P<0.01), and the level of autophagy was also significantly increased (P<0.01) in FB1-treated oocytes. Western blotting analysis showed that the expressions of pro-apoptotic protein BAX and autophagy protein LC3A/B II in FB1-treated oocytes were significantly up-regulated (P<0.05), and the expression of anti-apoptotic protein BCL2 was significantly down-regulated (P<0.05), indicating the occurrence of early apoptosis and autophagy.【Conclusion】FB1 had obvious toxic effects on porcine oocyte maturation in vitro and embryo development after activation, resulting in meiotic cycle arrest, spindle structure disorder, actin distribution reduction and mitochondrial injury, and its toxic mechanism might be related to the induction of apoptosis and autophagy in oocytes.

Key words: porcine oocytes, fumonisin B1, cytoskeleton, apoptosis, autophagy

Fig. 1

Effects of the different concentrations of FB1 on the first polar body extrusion rate of porcine oocytes A: The porcine oocyte morphologies after 44 h of culture in vitro (The black arrows point to the first polar body); B: The effects of different concentration of FB1 on PB1 extrusion rate"

Fig. 2

Effects of FB1 on embryo cleavage rate and blastocyst rate after oocytes activation A: Morphologies of 2-cell/4-cell embryo and blastocyst (The black arrows point to the cleaved embryos); B: Cleavage rate; C; Blastocyst rate"

Fig. 3

Representative images of dynamic distribution of chromosome and α-tubulin in porcine oocytes during meiotic progression Blue: chromosome; green: tubulin"

Fig. 4

Effects of FB1 on the cell cycle progression (44 h) of porcine oocytes during meiotic maturation GV: germinal vesicle; GVBD: germinal vesicle breakdown; MI: first metaphase of meiosis; ATI: first anaphase-telophase of meiosis; MII: second metaphase of meiosis"

Fig. 5

Effect of FB1 on spindle structure in porcine oocytes A: Representative images of spindle structure and chromosomes alignment (Blue: chromosome; green: tubulin); B: Percentage of spindle defects"

Fig. 6

Effects of FB1 on the expression and distribution of actin in porcine oocytes A: Representative images of actin distribution (Red: actin); B: Relative average fluorescence intensities of actin on the plasma membrane"

Fig. 7

Effect of FB1 on mitochondrial membrane potential of porcine oocytes A: Representative images of JC-1 staining (Green: JC-1 monomer; red: JC-1 aggregates; yellow: merge); B: Relative average fluorescence intensities of JC-1 red/green signals"

Fig. 8

Effects of FB1 on early apoptosis rate and expression of apoptosis-related proteins in porcine oocytes A: Representative images of Annexin V-FITC staining and the early apoptosis rate (Green: fluorescence signal of Annexin V); B: The protein expression of BAX and BCL2"

Fig. 9

Effect of FB1 on the expression of autophagy marker LC3A/B protein in porcine oocytes A: Representative images of LC3A/B staining and relative average fluorescence intensity of LC3A/B (Red: LC3 fluorescence signal); B: The protein expression of LC3A/B"

[39] YIN S T, GUO X, LI J H, FAN L H, HU H B. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Archives of Toxicology, 2016,90(4):985-996. doi: 10.1007/s00204-015-1514-9.
doi: 10.1007/s00204-015-1514-9
[40] ZHANG H, DIAO X, LI N, LIU C L. FB1-induced programmed cell death in hemocytes of Ostrinia furnacalis. Toxicon, 2018,146:114-119. doi: 10.1016/j.toxicon.2018.02.052.
doi: 10.1016/j.toxicon.2018.02.052
[41] KHAN R B, PHULUKDAREE A, CHUTURGOON A A. Fumonisin B1 induces oxidative stress in oesophageal (SNO) cancer cells. Toxicon, 2018,141:104-111. doi: 10.1016/j.toxicon.2017.12.041.
doi: 10.1016/j.toxicon.2017.12.041
[42] CHEN J, YANG S H, HUANG S, YAN R, WANG M Y, CHEN S, CAI J, LONG M, LI P. Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway. Food and Chemical Toxicology, 2020,139:111274. doi: 10.1016/j.fct.2020.111274.
doi: 10.1016/j.fct.2020.111274
[43] D'ORSI B, MATEYKA J, PREHN J H M. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochemistry International, 2017,109:162-170. doi: 10.1016/j.neuint.2017.03.010.
doi: 10.1016/j.neuint.2017.03.010
[44] DENTON D, XU T Q, KUMAR S. Autophagy as a pro-death pathway. Immunology and Cell Biology, 2015,93(1):35-42. doi: 10.1038/icb.2014.85.
doi: 10.1038/icb.2014.85
[1] KAMLE M, MAHATO D K, DEVI S, LEE K E, KANG S G, KUMAR P. Fumonisins: impact on agriculture, food, and human health and their management strategies. Toxins, 2019,11(6):328. doi: 10.3390/toxins11060328.
doi: 10.3390/toxins11060328
[2] RHEEDER J P, MARASAS W F O, VISMER H F. Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 2002,68(5):2101-2105. doi: 10.1128/AEM.68.5.2101-2105.2002.
doi: 10.1128/AEM.68.5.2101-2105.2002
[3] ARUMUGAM T, GHAZI T, CHUTURGOON A. Fumonisin B1 epigenetically regulates PTEN expression and modulates DNA damage checkpoint regulation in HepG2 liver cells. Toxins, 2020,12(10):625. doi: 10.3390/toxins12100625.
doi: 10.3390/toxins12100625
[4] STOEV S D, GUNDASHEVA D, ZARKOV I, MIRCHEVA T, ZAPRYANOVA D, DENEV S, MITEV Y, DASKALOV H, DUTTON M, MWANZA M, SCHNEIDER Y J. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Experimental and Toxicologic Pathology, 2012,64(7/8):733-741. doi: 10.1016/j.etp.2011.01.008.
doi: 10.1016/j.etp.2011.01.008
[5] STOCKMANN-JUVALA H, ALENIUS H, SAVOLAINEN K. Effects of fumonisin B(1) on the expression of cytokines and chemokines in human dendritic cells. Food and Chemical Toxicology, 2008,46(5):1444-1451. doi: 10.1016/j.fct.2007.12.004.
doi: 10.1016/j.fct.2007.12.004
[6] DOMIJAN A M. Fumonisin B(1): a neurotoxic mycotoxin. Arhiv za higijenu rada i toksikologiju. 2012,63(4):531-544. doi: 10.2478/10004-1254-63-2012-2239.
doi: 10.2478/10004-1254-63-2012-2239
[45] FULDA S, KÖGEL D. Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene, 2015,34(40):5105-5113. doi: 10.1038/onc.2014.458.
doi: 10.1038/onc.2014.458
[7] GBORE F A. Brain and hypophyseal acetylcholinesterase activity of pubertal boars fed dietary fumonisin B1. Journal of Animal Physiology and Animal Nutrition, 2010,94(5):e123-e129. doi: 10.1111/j.1439-0396.2010.00992.x.
doi: 10.1111/j.1439-0396.2010.00992.x
[8] LUMSANGKUL C, CHIANG H I, LO N W, FAN Y K, JU J C. Developmental toxicity of mycotoxin fumonisin B1 in animal embryogenesis: an overview. Toxins, 2019,11(2):114. doi: 10.3390/toxins11020114.
doi: 10.3390/toxins11020114
[9] SUN G J, WANG S K, HU X, SU J J, HUANG T R, YU J H, TANG L L, GAO W M, WANG J S. Fumonisin B1 contamination of home- grown corn in high-risk areas for esophageal and liver cancer in China. Food Additives & Contaminants, 2007,24(2):181-185. doi: 10.1080/02652030601013471.
doi: 10.1080/02652030601013471
[10] LIU X Y, FAN L H, YIN S T, CHEN H, HU H B. Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon, 2019,167:1-5. doi: 10.1016/j.toxicon.2019.06.009.
doi: 10.1016/j.toxicon.2019.06.009
[11] DESAI K N, SULLARDS M C, ALLEGOOD J, WANG E, SCHMELZ E M, HARTL M, HUMPF H U, LIOTTA D C, PENG Q, MERRILL A H Jr. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2002,1585(2/3):188-192. doi: 10.1016/S1388-1981(02)00340-2.
doi: 10.1016/S1388-1981(02)00340-2
[12] STOCKMANN-JUVALA H, MIKKOLA J, NAARALA J, LOIKKANEN J, ELOVAARA E, SAVOLAINEN K. Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radical Research, 2004,38(9):933-942. doi: 10.1080/10715760412331273205.
doi: 10.1080/10715760412331273205
[13] KIM S H, SINGH M P, SHARMA C, KANG S C. Fumonisin B1 actuates oxidative stress-associated colonic damage via apoptosis and autophagy activation in murine model. Journal of Biochemical and Molecular Toxicology, 2018,32(7):e22161. doi: 10.1002/jbt.22161.
doi: 10.1002/jbt.22161
[14] GBORE F A. Reproductive organ weights and semen quality of pubertal boars fed dietary fumonisin B1. Animal, 2009,3(8):1133-1137. doi: 10.1017/S1751731109004467.
doi: 10.1017/S1751731109004467
[15] HENRY M H, WYATT R D. The toxicity of fumonisin B1, B2, and B3, individually and in combination, in chicken embryos. Poultry Science, 2001,80(4):401-407. doi: 10.1093/ps/80.4.401.
doi: 10.1093/ps/80.4.401
[16] CORTINOVIS C, PIZZO F, SPICER L J, CALONI F. Fusarium mycotoxins: effects on reproductive function in domestic animals—A review. Theriogenology, 2013,80(6):557-564. doi: 10.1016/j.theriogenology.2013.06.018.
doi: 10.1016/j.theriogenology.2013.06.018
[17] 郭隽, 张立实, 彭双清. 镰刀菌毒素生殖发育毒性研究进展. 中国食品卫生杂志, 2013(5):474-478.
GUO J, ZHANG L S, PENG S Q. Review of reproductive and developmental toxicity studies of Fusarium toxins. Chinese Journal of Food Hygiene, 2013(5):474-478. (in Chinese)
[18] SOMOSKŐI B, KOVÁCS M, CSEH S. Effects of T-2 and Fumonisin B1 combined treatment on in vitro mouse embryo development and blastocyst quality. Toxicology and Industrial Health, 2018,34(5):353-360. doi: 10.1177/0748233718764039.
doi: 10.1177/0748233718764039
[19] CORTINOVIS C, CALONI F, SCHREIBER N B, SPICER L J. Effects of fumonisin B1 alone and combined with deoxynivalenol or Zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology, 2014,81(8):1042-1049. doi: 10.1016/j.theriogenology.2014.01.027.
doi: 10.1016/j.theriogenology.2014.01.027
[20] SHI F Y, LI W H, ZHAO H Y, HE Y J, JIANG Y, NI J, ABBASI B, RUI R, JU S Q. Microcystin-LR exposure results in aberrant spindles and induces apoptosis in porcine oocytes. Theriogenology, 2020,158:358-367. doi: 10.1016/j.theriogenology.2020.09.031.
doi: 10.1016/j.theriogenology.2020.09.031
[21] CUI P P, ABBASI B, LIN D F, RUI R, JU S Q. Aurora A inhibition disrupts chromosome condensation and spindle assembly during the first embryonic division in pigs. Reproduction in Domestic Animals, 2020,55(5):584-593. doi: 10.1111/rda.13655.
doi: 10.1111/rda.13655
[22] YANG C X, WANG P C, LIU S, MIAO J K, LIU X M, MIAO Y L, DU Z Q. Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes. Journal of Cellular Physiology, 2020,235(11):8304-8318. doi: 10.1002/jcp.29675.
doi: 10.1002/jcp.29675
[23] DING Z M, AHMAD M J, MENG F, CHEN F, WANG Y S, ZHAO X Z, ZHANG S X, MIAO Y L, XIONG J J, HUO L J. Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress. Environmental Pollution, 2020,262:114271. doi: 10.1016/j.envpol.2020.114271.
doi: 10.1016/j.envpol.2020.114271
[24] MAN W R, GU J, WANG B, ZHANG M M, HU J Q, LIN J, SUN D, XIONG Z Y, GU X M, HAO K K, GUO B L, WEI G L, ZHANG L, SONG R, LI C Y, WANG H C, SUN D D. SHANK3 co-ordinately regulates autophagy and apoptosis in myocardial infarction. Frontiers in Physiology, 2020,11:1082. doi: 10.3389/fphys.2020.01082.
doi: 10.3389/fphys.2020.01082
[25] REYES J M, ROSS P J. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdisciplinary Reviews: RNA, 2016,7(1):71-89. doi: 10.1002/wrna.1316.
doi: 10.1002/wrna.1316
[26] 黄向月, 熊显荣, 韩杰, 杨显英, 王艳, 王斌, 李键. KDM1A在牦牛卵泡发育过程中的表达. 中国农业科学, 2019,52(24):4624-4631. doi: 10.3864/j.issn.0578-1752.2019.24.016.
doi: 10.3864/j.issn.0578-1752.2019.24.016
HUANG X Y, XIONG X R, HAN J, YANG X Y, WANG Y, WANG B, LI J. Expression pattern of KDM1A in the development of yak follicles. Scientia Agricultura Sinica, 2019,52(24):4624-4631. doi: 10.3864/j.issn.0578-1752.2019.24.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.24.016
[27] BRUNET S, MARO B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction (Cambridge, England), 2005,130(6):801-811. doi: 10.1530/rep.1.00364.
doi: 10.1530/rep.1.00364
[28] ZHANG H, ZHANG L Y, DIAO X, LI N, LIU C L. Toxicity of the mycotoxin fumonisin B1 on the insect Sf9 cell line. Toxicon, 2017,129:20-27. doi: 10.1016/j.toxicon.2017.01.018.
doi: 10.1016/j.toxicon.2017.01.018
[29] MARIN D E, GOUZE M E, TARANU I, OSWALD I P. Fumonisin B1 alters cell cycle progression and interleukin-2 synthesis in swine peripheral blood mononuclear cells. Molecular Nutrition & Food Research, 2007,51(11):1406-1412. doi: 10.1002/mnfr.200700131.
doi: 10.1002/mnfr.200700131
[30] 秦伟森. 伏马菌素FB1对人脐静脉血管内皮细胞的毒性作用研究[D]. 广州: 华南农业大学, 2016.
QIN W S. Cellular and relevant factors of toxicity of fumonisin B1 in human umbilical vein endothelial cells[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
[31] SUN S C, KIM N H. Molecular mechanisms of asymmetric division in oocytes. Microscopy and Microanalysis, 2013,19(4):883-897. doi: 10.1017/S1431927613001566.
doi: 10.1017/S1431927613001566
[32] ZHAO X, WANG Y, LIU J L, ZHANG J H, ZHANG S C, OUYANG Y, HUANG J T, PENG X Y, ZENG Z, HU Z Q. Fumonisin B1 affects the biophysical properties, migration and cytoskeletal structure of human umbilical vein endothelial cells. Cell Biochemistry and Biophysics, 2020,78(3):375-382. doi: 10.1007/s12013-020-00923-4.
doi: 10.1007/s12013-020-00923-4
[33] AL-ZUBAIDI U, LIU J, CINAR O, ROBKER R L, ADHIKARI D, CARROLL J. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Molecular Human Reproduction, 2019,25(11):695-705. doi: 10.1093/molehr/gaz055.
doi: 10.1093/molehr/gaz055
[34] BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology, 2020,21(2):85-100. doi: 10.1038/s41580-019-0173-8.
doi: 10.1038/s41580-019-0173-8
[35] TARAZONA A, RODRÍGUEZ J, RESTREPO L, OLIVERA-ANGEL M. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reproduction in Domestic Animals, 2006,41(1):5-11. doi: 10.1111/j.1439-0531.2006.00615.x.
doi: 10.1111/j.1439-0531.2006.00615.x
[36] SHEIK ABDUL N, MARNEWICK J L. Fumonisin B1-induced mitochondrial toxicity and hepatoprotective potential of rooibos: an update. Journal of Applied Toxicology, 2020,40(12):1602-1613. doi: 10.1002/jat.4036.
doi: 10.1002/jat.4036
[37] ARUMUGAM T, PILLAY Y, GHAZI T, NAGIAH S, ABDUL N S, CHUTURGOON A A. Fumonisin B1-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2) cells. Mycotoxin Research, 2019,35(1):99-109. doi: 10.1007/s12550-018-0335-0.
doi: 10.1007/s12550-018-0335-0
[38] 潘阳阳, 李秦, 崔燕, 樊江峰, 杨琨, 何俊峰, 余四九. EGF、EGFR在牦牛卵母细胞中的表达及对胚胎发育能力的作用. 中国农业科学, 2015,48(12):2439-2448. doi: 10.3864/j.issn.0578-1752.2015.12.017.
doi: 10.3864/j.issn.0578-1752.2015.12.017
PAN Y Y, LI Q, CUI Y, FAN J F, YANG K, HE J F, YU S J. The expression of EGF and EGFR in yak oocyte and its function on development competence of embryo. Scientia Agricultura Sinica, 2015,48(12):2439-2448. doi: 10.3864/j.issn.0578-1752.2015.12.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.12.017
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[3] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[4] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[5] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[6] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
[7] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[8] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[9] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[10] PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296.
[11] ChanJing FENG,GuangZheng SUN,Yang WANG,Qing MA. Functional Analysis of Gene ShARPC5 Involved in Tomato Resistance to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 65-73.
[12] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[13] ShaoFeng DENG,ZuoDong YE,ShuangQi FAN,JinDing CHEN,JingYuan ZHANG,MengJiao ZHU,MingQiu ZHAO. Screen of MicroRNAs in Classical Swine Fever Virus-Infected PK-15 Cells and the Regulation of Virus Replication by miR-214 [J]. Scientia Agricultura Sinica, 2018, 51(21): 4157-4168.
[14] CHEN Lin-lin, HOU Ying, DING Sheng-li, SHI Yan, LI Hong-lian. Cloning and Expression Analysis of Apoptosis-Related Gene FpTatD in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2016, 49(12): 2301-2309.
[15] PAN Yang-yang, LI Qin, CUI Yan, FAN Jiang-feng, YANG Kun, HE Jun-feng, YU Si-jiu. The Expression of EGF and EGFR in Yak Oocyte and Its Function on Development Competence of Embryo [J]. Scientia Agricultura Sinica, 2015, 48(12): 2439-2448.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!