Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1241-1252.doi: 10.3864/j.issn.0578-1752.2022.06.015
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
LI WenHui(),HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang(
)
[39] |
YIN S T, GUO X, LI J H, FAN L H, HU H B. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Archives of Toxicology, 2016,90(4):985-996. doi: 10.1007/s00204-015-1514-9.
doi: 10.1007/s00204-015-1514-9 |
[40] |
ZHANG H, DIAO X, LI N, LIU C L. FB1-induced programmed cell death in hemocytes of Ostrinia furnacalis. Toxicon, 2018,146:114-119. doi: 10.1016/j.toxicon.2018.02.052.
doi: 10.1016/j.toxicon.2018.02.052 |
[41] |
KHAN R B, PHULUKDAREE A, CHUTURGOON A A. Fumonisin B1 induces oxidative stress in oesophageal (SNO) cancer cells. Toxicon, 2018,141:104-111. doi: 10.1016/j.toxicon.2017.12.041.
doi: 10.1016/j.toxicon.2017.12.041 |
[42] |
CHEN J, YANG S H, HUANG S, YAN R, WANG M Y, CHEN S, CAI J, LONG M, LI P. Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway. Food and Chemical Toxicology, 2020,139:111274. doi: 10.1016/j.fct.2020.111274.
doi: 10.1016/j.fct.2020.111274 |
[43] |
D'ORSI B, MATEYKA J, PREHN J H M. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochemistry International, 2017,109:162-170. doi: 10.1016/j.neuint.2017.03.010.
doi: 10.1016/j.neuint.2017.03.010 |
[44] |
DENTON D, XU T Q, KUMAR S. Autophagy as a pro-death pathway. Immunology and Cell Biology, 2015,93(1):35-42. doi: 10.1038/icb.2014.85.
doi: 10.1038/icb.2014.85 |
[1] |
KAMLE M, MAHATO D K, DEVI S, LEE K E, KANG S G, KUMAR P. Fumonisins: impact on agriculture, food, and human health and their management strategies. Toxins, 2019,11(6):328. doi: 10.3390/toxins11060328.
doi: 10.3390/toxins11060328 |
[2] |
RHEEDER J P, MARASAS W F O, VISMER H F. Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 2002,68(5):2101-2105. doi: 10.1128/AEM.68.5.2101-2105.2002.
doi: 10.1128/AEM.68.5.2101-2105.2002 |
[3] |
ARUMUGAM T, GHAZI T, CHUTURGOON A. Fumonisin B1 epigenetically regulates PTEN expression and modulates DNA damage checkpoint regulation in HepG2 liver cells. Toxins, 2020,12(10):625. doi: 10.3390/toxins12100625.
doi: 10.3390/toxins12100625 |
[4] |
STOEV S D, GUNDASHEVA D, ZARKOV I, MIRCHEVA T, ZAPRYANOVA D, DENEV S, MITEV Y, DASKALOV H, DUTTON M, MWANZA M, SCHNEIDER Y J. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Experimental and Toxicologic Pathology, 2012,64(7/8):733-741. doi: 10.1016/j.etp.2011.01.008.
doi: 10.1016/j.etp.2011.01.008 |
[5] |
STOCKMANN-JUVALA H, ALENIUS H, SAVOLAINEN K. Effects of fumonisin B(1) on the expression of cytokines and chemokines in human dendritic cells. Food and Chemical Toxicology, 2008,46(5):1444-1451. doi: 10.1016/j.fct.2007.12.004.
doi: 10.1016/j.fct.2007.12.004 |
[6] |
DOMIJAN A M. Fumonisin B(1): a neurotoxic mycotoxin. Arhiv za higijenu rada i toksikologiju. 2012,63(4):531-544. doi: 10.2478/10004-1254-63-2012-2239.
doi: 10.2478/10004-1254-63-2012-2239 |
[45] |
FULDA S, KÖGEL D. Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene, 2015,34(40):5105-5113. doi: 10.1038/onc.2014.458.
doi: 10.1038/onc.2014.458 |
[7] |
GBORE F A. Brain and hypophyseal acetylcholinesterase activity of pubertal boars fed dietary fumonisin B1. Journal of Animal Physiology and Animal Nutrition, 2010,94(5):e123-e129. doi: 10.1111/j.1439-0396.2010.00992.x.
doi: 10.1111/j.1439-0396.2010.00992.x |
[8] |
LUMSANGKUL C, CHIANG H I, LO N W, FAN Y K, JU J C. Developmental toxicity of mycotoxin fumonisin B1 in animal embryogenesis: an overview. Toxins, 2019,11(2):114. doi: 10.3390/toxins11020114.
doi: 10.3390/toxins11020114 |
[9] |
SUN G J, WANG S K, HU X, SU J J, HUANG T R, YU J H, TANG L L, GAO W M, WANG J S. Fumonisin B1 contamination of home- grown corn in high-risk areas for esophageal and liver cancer in China. Food Additives & Contaminants, 2007,24(2):181-185. doi: 10.1080/02652030601013471.
doi: 10.1080/02652030601013471 |
[10] |
LIU X Y, FAN L H, YIN S T, CHEN H, HU H B. Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon, 2019,167:1-5. doi: 10.1016/j.toxicon.2019.06.009.
doi: 10.1016/j.toxicon.2019.06.009 |
[11] |
DESAI K N, SULLARDS M C, ALLEGOOD J, WANG E, SCHMELZ E M, HARTL M, HUMPF H U, LIOTTA D C, PENG Q, MERRILL A H Jr. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2002,1585(2/3):188-192. doi: 10.1016/S1388-1981(02)00340-2.
doi: 10.1016/S1388-1981(02)00340-2 |
[12] |
STOCKMANN-JUVALA H, MIKKOLA J, NAARALA J, LOIKKANEN J, ELOVAARA E, SAVOLAINEN K. Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radical Research, 2004,38(9):933-942. doi: 10.1080/10715760412331273205.
doi: 10.1080/10715760412331273205 |
[13] |
KIM S H, SINGH M P, SHARMA C, KANG S C. Fumonisin B1 actuates oxidative stress-associated colonic damage via apoptosis and autophagy activation in murine model. Journal of Biochemical and Molecular Toxicology, 2018,32(7):e22161. doi: 10.1002/jbt.22161.
doi: 10.1002/jbt.22161 |
[14] |
GBORE F A. Reproductive organ weights and semen quality of pubertal boars fed dietary fumonisin B1. Animal, 2009,3(8):1133-1137. doi: 10.1017/S1751731109004467.
doi: 10.1017/S1751731109004467 |
[15] |
HENRY M H, WYATT R D. The toxicity of fumonisin B1, B2, and B3, individually and in combination, in chicken embryos. Poultry Science, 2001,80(4):401-407. doi: 10.1093/ps/80.4.401.
doi: 10.1093/ps/80.4.401 |
[16] |
CORTINOVIS C, PIZZO F, SPICER L J, CALONI F. Fusarium mycotoxins: effects on reproductive function in domestic animals—A review. Theriogenology, 2013,80(6):557-564. doi: 10.1016/j.theriogenology.2013.06.018.
doi: 10.1016/j.theriogenology.2013.06.018 |
[17] | 郭隽, 张立实, 彭双清. 镰刀菌毒素生殖发育毒性研究进展. 中国食品卫生杂志, 2013(5):474-478. |
GUO J, ZHANG L S, PENG S Q. Review of reproductive and developmental toxicity studies of Fusarium toxins. Chinese Journal of Food Hygiene, 2013(5):474-478. (in Chinese) | |
[18] |
SOMOSKŐI B, KOVÁCS M, CSEH S. Effects of T-2 and Fumonisin B1 combined treatment on in vitro mouse embryo development and blastocyst quality. Toxicology and Industrial Health, 2018,34(5):353-360. doi: 10.1177/0748233718764039.
doi: 10.1177/0748233718764039 |
[19] |
CORTINOVIS C, CALONI F, SCHREIBER N B, SPICER L J. Effects of fumonisin B1 alone and combined with deoxynivalenol or Zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology, 2014,81(8):1042-1049. doi: 10.1016/j.theriogenology.2014.01.027.
doi: 10.1016/j.theriogenology.2014.01.027 |
[20] |
SHI F Y, LI W H, ZHAO H Y, HE Y J, JIANG Y, NI J, ABBASI B, RUI R, JU S Q. Microcystin-LR exposure results in aberrant spindles and induces apoptosis in porcine oocytes. Theriogenology, 2020,158:358-367. doi: 10.1016/j.theriogenology.2020.09.031.
doi: 10.1016/j.theriogenology.2020.09.031 |
[21] |
CUI P P, ABBASI B, LIN D F, RUI R, JU S Q. Aurora A inhibition disrupts chromosome condensation and spindle assembly during the first embryonic division in pigs. Reproduction in Domestic Animals, 2020,55(5):584-593. doi: 10.1111/rda.13655.
doi: 10.1111/rda.13655 |
[22] |
YANG C X, WANG P C, LIU S, MIAO J K, LIU X M, MIAO Y L, DU Z Q. Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes. Journal of Cellular Physiology, 2020,235(11):8304-8318. doi: 10.1002/jcp.29675.
doi: 10.1002/jcp.29675 |
[23] |
DING Z M, AHMAD M J, MENG F, CHEN F, WANG Y S, ZHAO X Z, ZHANG S X, MIAO Y L, XIONG J J, HUO L J. Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress. Environmental Pollution, 2020,262:114271. doi: 10.1016/j.envpol.2020.114271.
doi: 10.1016/j.envpol.2020.114271 |
[24] |
MAN W R, GU J, WANG B, ZHANG M M, HU J Q, LIN J, SUN D, XIONG Z Y, GU X M, HAO K K, GUO B L, WEI G L, ZHANG L, SONG R, LI C Y, WANG H C, SUN D D. SHANK3 co-ordinately regulates autophagy and apoptosis in myocardial infarction. Frontiers in Physiology, 2020,11:1082. doi: 10.3389/fphys.2020.01082.
doi: 10.3389/fphys.2020.01082 |
[25] |
REYES J M, ROSS P J. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdisciplinary Reviews: RNA, 2016,7(1):71-89. doi: 10.1002/wrna.1316.
doi: 10.1002/wrna.1316 |
[26] |
黄向月, 熊显荣, 韩杰, 杨显英, 王艳, 王斌, 李键. KDM1A在牦牛卵泡发育过程中的表达. 中国农业科学, 2019,52(24):4624-4631. doi: 10.3864/j.issn.0578-1752.2019.24.016.
doi: 10.3864/j.issn.0578-1752.2019.24.016 |
HUANG X Y, XIONG X R, HAN J, YANG X Y, WANG Y, WANG B, LI J. Expression pattern of KDM1A in the development of yak follicles. Scientia Agricultura Sinica, 2019,52(24):4624-4631. doi: 10.3864/j.issn.0578-1752.2019.24.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.24.016 |
|
[27] |
BRUNET S, MARO B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction (Cambridge, England), 2005,130(6):801-811. doi: 10.1530/rep.1.00364.
doi: 10.1530/rep.1.00364 |
[28] |
ZHANG H, ZHANG L Y, DIAO X, LI N, LIU C L. Toxicity of the mycotoxin fumonisin B1 on the insect Sf9 cell line. Toxicon, 2017,129:20-27. doi: 10.1016/j.toxicon.2017.01.018.
doi: 10.1016/j.toxicon.2017.01.018 |
[29] |
MARIN D E, GOUZE M E, TARANU I, OSWALD I P. Fumonisin B1 alters cell cycle progression and interleukin-2 synthesis in swine peripheral blood mononuclear cells. Molecular Nutrition & Food Research, 2007,51(11):1406-1412. doi: 10.1002/mnfr.200700131.
doi: 10.1002/mnfr.200700131 |
[30] | 秦伟森. 伏马菌素FB1对人脐静脉血管内皮细胞的毒性作用研究[D]. 广州: 华南农业大学, 2016. |
QIN W S. Cellular and relevant factors of toxicity of fumonisin B1 in human umbilical vein endothelial cells[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese) | |
[31] |
SUN S C, KIM N H. Molecular mechanisms of asymmetric division in oocytes. Microscopy and Microanalysis, 2013,19(4):883-897. doi: 10.1017/S1431927613001566.
doi: 10.1017/S1431927613001566 |
[32] |
ZHAO X, WANG Y, LIU J L, ZHANG J H, ZHANG S C, OUYANG Y, HUANG J T, PENG X Y, ZENG Z, HU Z Q. Fumonisin B1 affects the biophysical properties, migration and cytoskeletal structure of human umbilical vein endothelial cells. Cell Biochemistry and Biophysics, 2020,78(3):375-382. doi: 10.1007/s12013-020-00923-4.
doi: 10.1007/s12013-020-00923-4 |
[33] |
AL-ZUBAIDI U, LIU J, CINAR O, ROBKER R L, ADHIKARI D, CARROLL J. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Molecular Human Reproduction, 2019,25(11):695-705. doi: 10.1093/molehr/gaz055.
doi: 10.1093/molehr/gaz055 |
[34] |
BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology, 2020,21(2):85-100. doi: 10.1038/s41580-019-0173-8.
doi: 10.1038/s41580-019-0173-8 |
[35] |
TARAZONA A, RODRÍGUEZ J, RESTREPO L, OLIVERA-ANGEL M. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reproduction in Domestic Animals, 2006,41(1):5-11. doi: 10.1111/j.1439-0531.2006.00615.x.
doi: 10.1111/j.1439-0531.2006.00615.x |
[36] |
SHEIK ABDUL N, MARNEWICK J L. Fumonisin B1-induced mitochondrial toxicity and hepatoprotective potential of rooibos: an update. Journal of Applied Toxicology, 2020,40(12):1602-1613. doi: 10.1002/jat.4036.
doi: 10.1002/jat.4036 |
[37] |
ARUMUGAM T, PILLAY Y, GHAZI T, NAGIAH S, ABDUL N S, CHUTURGOON A A. Fumonisin B1-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2) cells. Mycotoxin Research, 2019,35(1):99-109. doi: 10.1007/s12550-018-0335-0.
doi: 10.1007/s12550-018-0335-0 |
[38] |
潘阳阳, 李秦, 崔燕, 樊江峰, 杨琨, 何俊峰, 余四九. EGF、EGFR在牦牛卵母细胞中的表达及对胚胎发育能力的作用. 中国农业科学, 2015,48(12):2439-2448. doi: 10.3864/j.issn.0578-1752.2015.12.017.
doi: 10.3864/j.issn.0578-1752.2015.12.017 |
PAN Y Y, LI Q, CUI Y, FAN J F, YANG K, HE J F, YU S J. The expression of EGF and EGFR in yak oocyte and its function on development competence of embryo. Scientia Agricultura Sinica, 2015,48(12):2439-2448. doi: 10.3864/j.issn.0578-1752.2015.12.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.12.017 |
[1] | LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876. |
[2] | WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675. |
[3] | MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663. |
[4] | YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449. |
[5] | FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143. |
[6] | MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007. |
[7] | LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444. |
[8] | HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202. |
[9] | Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912. |
[10] | PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296. |
[11] | ChanJing FENG,GuangZheng SUN,Yang WANG,Qing MA. Functional Analysis of Gene ShARPC5 Involved in Tomato Resistance to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 65-73. |
[12] | CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567. |
[13] | ShaoFeng DENG,ZuoDong YE,ShuangQi FAN,JinDing CHEN,JingYuan ZHANG,MengJiao ZHU,MingQiu ZHAO. Screen of MicroRNAs in Classical Swine Fever Virus-Infected PK-15 Cells and the Regulation of Virus Replication by miR-214 [J]. Scientia Agricultura Sinica, 2018, 51(21): 4157-4168. |
[14] | CHEN Lin-lin, HOU Ying, DING Sheng-li, SHI Yan, LI Hong-lian. Cloning and Expression Analysis of Apoptosis-Related Gene FpTatD in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2016, 49(12): 2301-2309. |
[15] | PAN Yang-yang, LI Qin, CUI Yan, FAN Jiang-feng, YANG Kun, HE Jun-feng, YU Si-jiu. The Expression of EGF and EGFR in Yak Oocyte and Its Function on Development Competence of Embryo [J]. Scientia Agricultura Sinica, 2015, 48(12): 2439-2448. |
|