Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (16): 3300-3307.doi: 10.3864/j.issn.0578-1752.2014.16.015

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Effect of Momordica charantia Fruit Aqueous Extract on Serum Lipids Metabolic Disorder in Restraint Mice

TANG  Qin1, 2, DENG  Yuan-yuan1, ZHANG  Rui-fen1, ZHANG  Yan1, ZHANG  Ming-wei1, WEI  Zhen-cheng1, TANG  Xiao-jun1, LIU  Lei1, TI  Hui-hui1, MA  Yong-xuan1   

  1. 1、Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610;
    2、College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070
  • Received:2014-02-19 Online:2014-08-18 Published:2014-06-16

Abstract: 【Objective】The objective of this experiment is to study the effect of Momordica charantia fruit aqueous extract(MCFE) on lipids metabolism and oxidative situation in restraint mice and provide the theoretical basis for revealing the improving effect of M. charantia on lipids metabolism disorder.【Method】The 6 weeks old female mice were randomly divided into 5 groups including normal control group (NC) , stress control group (Mod), three MCFE groups (250 mg•kg-1, 500 mg•kg-1 and 750 mg•kg-1), which were administered samples once a day successively for 7 days. After intravenously injected 10% intralipids into the 20 h restrained mice, the content of serum lipid, lipase of mesenteric adipose tissue (MAT) and lipoprotein lipase (LPL) activity of different tissues were determined. The oxidative situation and the antioxidant capacity of the body were measured. 【Result】 The content of TG in Mod was 1.27 times of NC, but the content of low, medium and high MCFE groups were 0.63, 0.57, 0.55 times of NC. MCFE accelerated the elimination rate of TG(P<0.05)in a dose-dependent manner, and improved the fatty acid metabolism. Lipase activity in Mod was 0.77 times of NC, and low, medium and high MCFE groups were 0.77, 0.98, 1.06 times of NC. Lipase activity of medium and high MCFE groups basically reached normal level. MCFE improved lipase activity of mesenteric adipose tissue(MAT). Compared with the Mod, the LPL activity of serum and MAT in each MCFE group increased significantly with dose-dependent(P<0.05). But there was no significant effect on muscle LPL activity. The content of MDA and ORAC in Mod was 1.37 and 0.65 times of NC, respectively. The content of MDA of MCFE groups was lower than Mod significantly and the medium, high MCFE groups reached normal. The ORAC of MCFE groups was higher than Mod(P <0.05). MCFE increased the antioxidant capacity of serum(ORAC).【Conclusion】 MCFE improved the lipid metabolic dysfunction in restraint mice. The mechanism of M. charantia improves the lipid metabolic dysfunction in restraint mice may be the amelioration of oxidative situation in body and improving the LPL and LIPASE activities of related tissues.

Key words: Momordica charantia , aqueous extract , lipid metabolism , oxidative stress , mice

[1]Fang E F, Ng T B. Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties. Current Molecular Medicine, 2011, 11(5): 417-436.

[2]Fernandes N P, Lagishetty C V, Panda V S, Naik S R. An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Complementary and Alternative Medicine, 2007, 7(1): 29-37.

[3]Nerurkar P, Ray R B. Bitter melon: antagonist to cancer. Pharmaceutical Research, 2010, 27(6): 1049-1053.

[4]Padmashree A, Sharma G K, Semwal A D, Bawa A S. Studies on the antioxygenic activity of bitter gourd (Momordica charantia) and its fractions using various in vitro models. Journal of the Science of Food and Agriculture, 2011, 91(4): 776-782.

[5]Ahmed I, Lakhani M, Gillett M, John A, Raza H. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Research and Clinical Practice, 2001, 51(3): 155-161.

[6]Chen Q, Chan L L, Li E T. Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. The Journal of Nutrition, 2003, 133(4): 1088-1093.

[7]Nerurkar P V, Johns L M, Buesa L M, KipyakWai G, Volper E, Sato R, Shah P, Feher D, Williams P G, Nerurkar V R. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. Journal of Neuroinflammation, 2011, 8(1): 64-83.

[8]Senanayake G V, Fukuda N, Nshizono S, Wang Y-M, Nagao K, Yanagita T, Iwamoto M, Ohta H. Mechanisms underlying decreased hepatic triacylglycerol and cholesterol by dietary bitter melon extract in the rat. Lipids, 2012, 47(5): 495-503.

[9]Chan L L, Chen Q, Go A G, Lam e K, Li E T. Reduced adiposity in bitter melon (Momordica charantia)–fed rats is associated with increased lipid oxidative enzyme activities and uncoupling protein expression. The Journal of Nutrition, 2005, 135(11): 2517-2523.

[10]Huang H L, Hong Y W, Wong Y H, Chen Y N, Chyuan J H, Huang C J, Chao P M. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. British Journal of Nutrition, 2008, 99(02): 230-239.

[11]Shih C C, Shlau M T, Lin C H, Wu J B. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice. Phytotherapy Research, 2014, 28(3):363-371

[12]Wang Z Q, Zhang X H, Yu Y, Poulev A, Ribnicky D, Floyd Z E, Cefalu W T. Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet-fed mice. The Journal of Nutritional Biochemistry, 2011, 22(11): 1064-1073.

[13]Popovich D G, Li L, Zhang W. Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3T3-L1 cells. Food and Chemical Toxicology, 2010, 48(6): 1619-1626.

[14]Moles A, Bartolomucci A, Garbugino L, Conti R, Caprioli         A, Coccurello R, Rizzi R, Ciani B, D'amato F. Psychosocial stress affects energy balance in mice: modulation by social status. Psychoneuroendocrinology, 2006, 31(5): 623-633.

[15]Benavides A, Peinado-onsurbe J, Llobera M. Immobilization stress alters intermediate metabolism and circulating lipoproteins in the rat. Metabolism, 2002, 51(7): 925-931.

[16]Ricart-jané D, Cejudo-martin P, Peinado-onsurbe J, López-tejero M D, Llobera M. Changes in lipoprotein lipase modulate tissue energy supply during stress. Journal of Applied Physiology, 2005, 99(4): 1343-1351.

[17]Rodr Guez-sureda V, L Pez-tejero M D, Llobera M, Peinado-onsurbe J. Social stress profoundly affects lipid metabolism: Over-expression of SR-BI in liver and changes in lipids and lipases in plasma and tissues of stressed mice. Atherosclerosis, 2007, 195(1): 57-65.

[18]何蓉蓉, 栗原博, 宝丽, 姚新生. 王老吉凉茶对氧化应激负荷小鼠脂代谢的影响. 中国实验方剂学杂志, 2008, 14(10): 31-33.

He R R, Kurihara H, Bao L, Yao X S. The effect of Wang Laoji liangcha on plasma lipids metabolism in restraint mice. Chinese Journal of Experimental Traditional Medical Formulae, 2008, 14(10): 31-33. (in Chinese)

[19]徐斌, 董英, 林琳, 徐自明. 改良苯酚-硫酸法测定苦瓜多糖含量. 食品科技, 2005, 7: 79-82.

Xu B, Dong Y, Lin L, Xu Z M. Determination of Momordica Charantia L. polysaccharide by improved phenol-sulfuric acid method. Food Science and Technology, 2005, 7: 79-82. (in Chinese)

[20]张中伟, 谢明勇, 王远兴, 王文静. 比色法测定苦瓜总皂苷. 南昌大学学报: 理科版, 2005, 29(5): 447-449.

Zhang Z W, Xie M Y, Wang Y X, Wang W J. Determination of the content of total mormodicoside in Momordica charantia L. by colormetry. Journal of NanchangUniversity: Natural Science Edition, 2005, 29(5): 447-449. (in Chinese)

[21]Singleton V L, Orthofer R, Lamuela-raventos R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 1999, 299: 152-178.

[22]Ou B, Hampsch-woodill M, Prior R L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 2001, 49(10): 4619-4626.

[23]Nunes A F, Saraiva M J, Sousa M M. Transthyretin knockouts are a new mouse model for increased neuropeptide Y. The FASEB Journal, 2006, 20(1): 166-168.

[24]Yano M, Yamamoto T, Nishimura N, Gotoh T, Watanabe K, Ikeda K, Garan Y, Taguchi R, Node K, Okazaki T. Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice. PloS One, 2013, 8(4): e61380.

[25]何蓉蓉, 姚新生, 栗原博. 拘束应激动物模型的研究现状与应用. 中国实验方剂学杂志, 2008, 14(11): 80-83.

He R R, Yao X S,Kurihara H. The review on animal model of restraint stress. Chinese Journal of Experimental Traditional Medical Formulae, 2008, 14(11): 80-83. (in Chinese)

[26]何银, 何蓉蓉, 栗原博. 拘束应激动物模型研究进展. 医药与保健, 2008, 16(8): 29-33.

He Y, He R R, Kurihara H. The Review on Animal model of restraint stress. Medicine and Health Care, 2008, 16(8): 29-33. (in Chinese)

[27]Kurihara H, Koda H, Asami S, Kiso Y, Tanaka T. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life sciences, 2002, 70(21): 2509-2520.

[28]Zimmermann R, Strauss J G, Haemmerle G, Schoiswohl G, Birner-gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 2004, 306(5700): 1383-1386.

[29]Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T. Lipoprotein lipase: cellular origin and functional distribution. American Journal of Physiology-Cell Physiology, 1990, 258(4): C673-C681.

[30]Planche E, Boulange A, De Gasquet P, Tonnu N. Importance of muscle lipoprotein lipase in rats during suckling. American Journal of Physiology-Endocrinology and Metabolism, 1980, 238(6): E511-E517.

[31]Hamilton M T, Etienne J, Mcclure W C, Pavey B S, Holloway A K. Role of local contractile activity and muscle fiber type on LPL regulation during exercise. American Journal of Physiology- Endocrinology And Metabolism, 1998, 275(6): E1016-E1022.

[32]Ho E, Karimi Galougahi K, Liu C C, Bhindi R, Figtree G A. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biology, 2013, 1(1): 483-491.

[33]Spickett C M. The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biology, 2013, 1(1): 145-152.

[34]何蓉蓉, 姚新生, 栗原博. 广东凉茶的 “泻火” 作用与物质基础研究. 世界科学技术: 中医药现代化, 2009, 6: 834-839.

He R R, Yao X S, Kurihara H. The "Xiehuo"effect of Guangdong Herbal Tea and its composition. World Science and Technology/ Moderization of Traditional Chinese Medicine and Materia Medica, 2009, 6: 834-839. (in Chinese)

[35]Liu X, Chen T, Hu Y, Li K, Yan L. Catalytic synthesis and antioxidant activity of sulfated polysaccharide from Momordica charantia L. Biopolymers, 2014, 101(3): 201-205.

[36]Mahomoodally F M, Subratty A H, Gurib-fakim A, Choudhary M I. Antioxidant, antiglycation and cytotoxicity evaluation of selected medicinal plants of the Mascarene islands. BMC Complementary and Alternative Medicine, 2012, 12(1): 165-177.
[1] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[2] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[3] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
[4] CHENG YuDou,ZHANG YaGuang,GUAN JunFeng,FENG YunXiao,HE JinGang. Effects of 1-MCP and Delayed Cold-Storage on Quality and Expression of Softening Related Genes in ‘Doyenne du Comice’ Pear During Shelf-Life [J]. Scientia Agricultura Sinica, 2020, 53(22): 4658-4666.
[5] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[6] LI HanTong,JIA ChengLi,ZHANG ShuWen,LU Jing,PANG XiaoYang,LIU Lu,LÜ JiaPing. Chromium (III) Stress Alleviation by Sulfur Compounds During Chromium Bio-enrichment by Saccharomyces cerevisiae [J]. Scientia Agricultura Sinica, 2019, 52(6): 1078-1089.
[7] DU Jiao, WANG YaBo, LI XueHua, HUANG ZhiQiang, YANG YuHeng, BI ChaoWei, YU Yang. Function analysis ofγ-glutamyl phosphate reductase-encoded gene SsGPR1 in Sclerotinia sclerotiorum [J]. Scientia Agricultura Sinica, 2018, 51(19): 3694-3703.
[8] LU YaoYao, SU RuiJing, DONG Hui, WANG MengYao, YANG YuRong. Pathogenicity of ME 49 Strain Toxoplasma gondii Tachyzoites in Kunming Mice [J]. Scientia Agricultura Sinica, 2018, 51(19): 3800-3806.
[9] LIU YanLi, DANG YanNa, DUAN YuLan, YANG XiaoJun. Effect of Folic Acid on Lipid Metabolism Associated Gene Expression in Primarily Cultured Chickens Hepatocytes [J]. Scientia Agricultura Sinica, 2017, 50(21): 4205-4211.
[10] DENG YuanYuan, TANG Qin, ZHANG RuiFen, ZHANG Yan, WEI ZhenCheng, LIU Lei, MA YongXuan, ZHANG MingWei. Effects of Different Drying Methods on the Nutrition and Physical Properties of Momordica charantia [J]. Scientia Agricultura Sinica, 2017, 50(2): 362-371.
[11] LIU HuiJuan, ZHANG MingWei, ZHANG RuiFen, ZHANG Yan, WEI ZhenCheng, MA YongXuan, LIU Lei, DENG YuanYuan. Saponion Profiles and Antioxidant Activity, α-Glucosidase Inhibitory Activity of Momordica charantia of Different Varieties [J]. Scientia Agricultura Sinica, 2017, 50(17): 3413-3421.
[12] ZUO Qi-sheng, ZHANG Lei, LIAN Chao, XIAO Tian-rong, WANG Ying-jie, TANG Bei-bei, WANG Fei, JI Yan-qin, LU zhen-yu, ZHAO Rui-feng, ZHANG Wen-hui, ZHANG Ya-ni, LI Bi-chun. The Regulatory Mechanism of the Lipid Metabolism Pathways During Male Germ Cell Differentiation in Chickens [J]. Scientia Agricultura Sinica, 2015, 48(22): 4539-4550.
[13] DING Jie, GAO Yu-wei, SANG Xiao-yu, CHENG Kai-hui, YU Zhi-jun, ZHANG Kun, CHAI Hong-liang, WANG Tie-cheng, XIA Xian-zhu, HUA Yu-ping. The Adaptation of H9N2 Subtype AIV in Mouse and Analysis of Amino Acid Mutation [J]. Scientia Agricultura Sinica, 2015, 48(15): 3056-3063.
[14] XU Guang-chun, GU Zhong-yan, XU De-jin, XU Xiao-long. Characteristics of Rice Leaf Surface and Droplets Deposition Behavior on Rice Leaf Surface with Different Inclination Angles [J]. Scientia Agricultura Sinica, 2014, 47(21): 4280-4290.
[15] XU Guang-Chun, GU Zhong-Yan, XU De-Jin, XU Xiao-Long. Screening of Surfactants for Promoting the Efficiency of Pesticide Used in Paddy Field [J]. Scientia Agricultura Sinica, 2013, 46(7): 1370-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!