Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 549-558.doi: 10.3864/j.issn.0578-1752.2023.03.012

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells

TAO WenJing(), ZHANG ZiTing(), LIU Yuan, SONG Dan(), LI XiangChen   

  1. College of Animal Science and Technology/College of Veterinary Medicine, Zhejiang A&F University/Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300
  • Received:2021-11-11 Accepted:2022-05-12 Online:2023-02-01 Published:2023-02-14
  • Contact: SONG Dan E-mail:2822780147@qq.com;3106286165@qq.com;songdan2020@zafu.edu.cn

Abstract:

【Background】 Bisphenol A (BPA) is widely used in the industrial manufacturing of plastic materials, which seeps out from plastic products and exposes to various environmental media such as food, water, soil, and air, resulting in long-term exposure of animals. It is passed to offspring through the placenta and breast milk, interfering with animal growth and development and adversely affecting animal growth performance and production efficiency. N-acetylcysteine (NAC), as a recognized potent antioxidant, can regulate various pathophysiological processes, such as oxidative stress, apoptosis, and inflammation. However, the regulatory role of NAC on BPA-induced porcine kidney cell injury remains unclear. 【Objective】This study aimed to explore the potential role of the antioxidant NAC on BPA-induced apoptosis and inflammatory responses in PK15 cells.【Method】 PK15 cells were selected as experimental materials, and the activities of catalase (CAT), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) were measured by the corresponding antioxidant detection kits. PK15 cells were treated with different concentrations of NAC (0, 2, 5, 10 mmol·L-1) and then co-treated with BPA, and then the cell viability was detected by CCK-8 to select the optimal concentration of NAC. The expression of apoptosis-related genes (BAX, BCL-2 and Caspase3) and inflammatory genes (IL-8, IL-6, IL-1β and TNF-α) as well as protein expression were detected by real-time quantitative PCR (qRT-PCR) and western blotting. The number of apoptotic cells and nuclear factor kappa B (NF-κB) nuclear translocation were detected by immunofluorescence staining. 【Result】 The results showed that BPA significantly reduced the activities of CAT, T-SOD and GSH-Px in PK15 cells, compared with the control group (P<0.05). CCK-8 results showed that BPA significantly decreased PK15 cell viability in contrast to control group, whereas the different concentrations of NAC significantly promoted cell viability, and 5, 10 mmol·L-1 NAC pretreatment significantly promoted cell viability when compared with BPA alone. qRT-PCR and western blotting showed that BPA treatment significantly increased BAX and Caspase3 mRNA and protein expression, and decreased the BCL-2 mRNA and protein expression, whereas NAC pretreatment could reduce the increased BAX and Caspase3 expression and increase the decreased BCL-2 expression induced by BPA. Hoechst33258 fluorescence staining indicated that the cells treated with BPA showed strong blue fluorescence staining and obvious nuclear shrinkage, whereas NAC pretreated cell showed weak blue fluorescence. BPA treatment significantly increased the relative mRNA expression of inflammation-related factors (IL-8 and IL-6) (P<0.05), whereas NAC pretreatment inhibited BPA-induced increased inflammation-related factors (IL-8, IL-6 and IL-1β mRNA) relative expression. Immunofluorescence analysis of NF-κB nuclear translocation showed that NF-κB was mainly distributed in cytoplasm in the control group, whereas NF-κB was mainly distributed in the nucleus after BPA treatment and NAC pretreatment reduced nuclear NF-κB expression. 【Conclusion】 NAC significantly increased PK15 cell viability and inhibited PK15 cell apoptosis and inflammatory response induced by BPA.

Key words: Bisphenol A, N-acetylcysteine, apoptosis, inflammatory response, PK15 cell, oxidative stress

Table 1

Real-time quantitative PCR primer"

引物名称 Primer name 引物序列
Primer sequence (5′-3′)
产物大小
Size (bp)
BAX F: TTTGCTTCAGGGTTTCATCC
R: GACACTCGCTCAACTTCTTGG
113
BCL-2 F: GCGACTTTGCCGAGATGT
R: CACAATCCTCCCCCAGTTC
116
Caspase3 F: TTGGACTGTGGGATTGAGAC
R: TTCGCCAGGAATAGTAACCAG
121
IL-6 F: CCCTGAGGCAAAAGGGAAAGA
R: AGGAAATCCTCAAGGCTGCG
148
IL-8 F: AGAGTGGACCCCACTGTGAA
R: TTGTTGTTGCTTCTCAGTTCTCT
137
IL-1β F: GGAAGTGATGGCTAACTACGG
R: CTGGATGCTCCCATTTCTCA
124
TNF-α F: GCCCAAGGACTCAGATCATCG
R: ATTGGCATACCCACTCTGCC
104
GAPDH F: ACCCAGAAGACTGTGGATGG
R: TTGAGCTCAGGGATGACCTT
207

Fig. 1

Effects of BPA on the activity of antioxidant enzymes in PK15 cells"

Fig. 2

Cell viability was detected by CCK-8 assay A: Effects of different concentrations of NAC on the viability of PK15 cells; B: Effects of NAC on PK15 cells cell viability induced by BPA"

Fig. 3

Effects of NAC on BPA-induced apoptosis gene expression in PK15 cells"

Fig. 4

Effects of NAC on BPA-induced apoptosis protein expression in PK15 cells A: Western blotting results of BAX, BCL-2 and cleaved-Caspase3 proteins; B: Statistical results of BAX, BCL-2 and cleaved-Caspase 3 protein expression"

Fig. 5

Cell apoptosis detection by using Hoechst33258 fluorescent staining(40×)"

Fig. 6

Effects of NAC on BPA-induced inflammation related gene expression in PK15 cells"

Fig. 7

Effects of NAC on BPA-induced nuclear translocation of NF-κB in PK15 cells (60×)"

[1] FAN X T, HOU T T, JIA J, TANG K, WEI X F, WANG Z Z. Discrepant dose responses of bisphenol A on oxidative stress and DNA methylation in grass carp ovary cells. Chemosphere, 2020, 248: 126110. doi:10.1016/j.chemosphere.2020.126110.
doi: 10.1016/j.chemosphere.2020.126110
[2] SZYMANSKA K, MAKOWSKA K, GONKOWSKI S. The influence of high and low doses of bisphenol A (BPA) on the enteric nervous system of the porcine ileum. International Journal of Molecular Sciences, 2018, 19(3): 917. doi:10.3390/ijms19030917.
doi: 10.3390/ijms19030917
[3] XIAO S, DIAO H L, SMITH M A, SONG X, YE X Q. Preimplantation exposure to bisphenol A (BPA) affects embryo transport, preimplantation embryo development, and uterine receptivity in mice. Reproductive Toxicology, 2011, 32(4): 434-441. doi:10.1016/j.reprotox.2011.08.010.
doi: 10.1016/j.reprotox.2011.08.010 pmid: 21907787
[4] RANCIÈRE F, LYONS J G, LOH V H Y, BOTTON J, GALLOWAY T, WANG T G, SHAW J E, MAGLIANO D J. Bisphenol A and the risk of cardiometabolic disorders: A systematic review with meta- analysis of the epidemiological evidence. Environmental Health: A Global Access Science Source, 2015, 14: 46. doi:10.1186/s12940-015-0036-5.
doi: 10.1186/s12940-015-0036-5
[5] THOENE M, RYTEL L, DZIKA E, WŁODARCZYK A, KRUMINIS- KASZKIEL E, KONRAD P, WOJTKIEWICZ J. Bisphenol A causes liver damage and selectively alters the neurochemical coding of intrahepatic parasympathetic nerves in juvenile porcine models under physiological conditions. International Journal of Molecular Sciences, 2017, 18(12): 2726. doi:10.3390/ijms18122726.
doi: 10.3390/ijms18122726
[6] CARCHIA E, PORRECA I, ALMEIDA P J, D'ANGELO F, CUOMO D, CECCARELLI M, DE FELICE M, MALLARDO M, AMBROSINO C. Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity. Cell Death & Disease, 2015, 6(10): e1959. doi:10.1038/cddis.2015.319.
doi: 10.1038/cddis.2015.319
[7] GONZÁLEZ-PARRA E, HERRERO J A, ELEWA U, BOSCH R J, ARDUÁN A O, EGIDO J. Bisphenol A in chronic kidney disease. International Journal of Nephrology, 2013, 2013: 437857. doi:10. 1155/2013/437857.
doi: 10. 1155/2013/437857
[8] WANG K, QIU L, ZHU J J, SUN Q, QU W, YU Y F, ZHAO Z G, YU Y F, SHAO G Y. Environmental contaminant BPA causes intestinal damage by disrupting cellular repair and injury homeostasis in vivo and in vitro. Biomedicine & Pharmacotherapy, 2021, 137: 111270. doi:10.1016/j.biopha.2021.111270.
doi: 10.1016/j.biopha.2021.111270
[9] 周羽, 刘媛, 汪序忠, 周晓龙, 杨松柏, 段星, 宋丹, 李向臣. 双酚A对猪肾细胞炎性因子表达及凋亡的影响. 中国畜牧杂志, 2021, 57(12): 223-227, 233. doi:10.19556/j.0258-7033.20210311-03.
doi: 10.19556/j.0258-7033.20210311-03
ZHOU Y, LIU Y, WANG X Z, ZHOU X L, YANG S B, DUAN X, SONG D, LI X C. The effect of bisphenol A on the expression and apoptosis of porcine kidney cells. Chinese Journal of Animal Science, 2021, 57(12): 223-227, 233. doi:10.19556/j.0258-7033.20210311-03. (in Chinese)
doi: 10.19556/j.0258-7033.20210311-03
[10] CUSUMANO G, ROMAGNOLI J, LIUZZO G, CIAVARELLA L P, SEVERINO A, COPPONI G, MANCHI M, GIUBILATO S, ZANNONI G F, STIGLIANO E, CARISTO M E, CREA F, CITTERIO F. N-acetylcysteine and high-dose atorvastatin reduce oxidative stress in an ischemia-reperfusion model in the rat kidney.. Transplantation Proceedings, 2015, 47(9): 2757-2762. doi:10.1016/j.transproceed.2015.09.035.
doi: 10.1016/j.transproceed.2015.09.035 pmid: 26680088
[11] ZHAO S J, LIU Y, WANG F, XU D X, XIE P. N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. Chemosphere, 2018, 204: 463-473. doi:10.1016/j.chemosphere.2018.04.020.
doi: S0045-6535(18)30658-1 pmid: 29679867
[12] MOIST L, SONTROP J M, GALLO K, MAINRA R, CUTLER M, FREEMAN D, HOUSE A A. Effect of N-acetylcysteine on serum creatinine and kidney function: Results of a randomized controlled trial. American Journal of Kidney Diseases, 2010, 56(4): 643-650. doi:10.1053/j.ajkd.2010.03.028.
doi: 10.1053/j.ajkd.2010.03.028 pmid: 20541301
[13] MERCANTEPE T, TOPCU A, RAKICI S, TUMKAYA L, YILMAZ A, MERCANTEPE F. The radioprotective effect of N-acetylcysteine against x-radiation-induced renal injury in rats. Environmental Science and Pollution Research International, 2019, 26(28): 29085-29094. doi:10.1007/s11356-019-06110-0.
doi: 10.1007/s11356-019-06110-0 pmid: 31392607
[14] PEERAPANYASUT W, KOBROOB A, PALEE S, CHATTIPAKORN N, WONGMEKIAT O. N-acetylcysteine attenuates the increasing severity of distant organ liver dysfunction after acute kidney injury in rats exposed to bisphenol A. Antioxidants (Basel, Switzerland), 2019, 8(10): 497. doi:10.3390/antiox8100497.
doi: 10.3390/antiox8100497
[15] JAIN S, MAHENDRA KUMAR C H, SURANAGI U D, MEDIRATTA P K. Protective effect of N-acetylcysteine on bisphenol A-induced cognitive dysfunction and oxidative stress in rats. Food and Chemical Toxicology, 2011, 49(6): 1404-1409. doi:10.1016/j.fct.2011.03.032.
doi: 10.1016/j.fct.2011.03.032 pmid: 21440025
[16] YUAN C, WANG L H, ZHU L, RAN B H, XUE X, WANG Z Z. N-acetylcysteine alleviated bisphenol A-induced testicular DNA hypermethylation of rare minnow (Gobiocypris rarus) by increasing cysteine contents. Ecotoxicology and Environmental Safety, 2019, 173: 243-250. doi:10.1016/j.ecoenv.2019.02.035.
doi: S0147-6513(19)30185-X pmid: 30772714
[17] 朱芷葳, 侯淑宁, 郝庆玲, 景炅婕, 吕丽华, 李鹏飞. 牛卵泡AGTR2序列结构及表达特性分析. 中国农业科学, 2020, 53(7): 1482-1490. doi:10.3864/j.issn.0578-1752.2020.07.016.
doi: 10.3864/j.issn.0578-1752.2020.07.016
ZHU Z W, HOU S N, HAO Q L, JING J J, LÜ L H, LI P F. Sequence structure and expression characteristics analysis of AGTR2 in bovine follicle. Scientia Agricultura Sinica, 2020, 53(7): 1482-1490. doi:10.3864/j.issn.0578-1752.2020.07.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.07.016
[18] REZG R, EL-FAZAA S, GHARBI N, MORNAGUI B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environment International, 2014, 64: 83-90. doi:10.1016/j.envint.2013.12.007.
doi: 10.1016/j.envint.2013.12.007 pmid: 24382480
[19] CHEN H J, CHEN J Q, SHI X, LI L, XU S W. Naringenin protects swine testis cells from bisphenol A-induced apoptosis via Keap1/Nrf2 signaling pathway. BioFactors, 2022, 48(1): 190-203. doi:10.1002/biof.1814.
doi: 10.1002/biof.1814
[20] MUTHUVEL R, VENKATARAMAN P, KRISHNAMOORTHY G, GUNADHARINI D N, KANAGARAJ P, STANLEY A J, SRINIVASAN N, BALASUBRAMANIAN K, ARULDHAS M M, ARUNAKARAN J. Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of albino rats. Clinica Chimica Acta, 2006, 365(1/2): 297-303. doi:10.1016/j.cca.2005.09.006.
doi: 10.1016/j.cca.2005.09.006
[21] PARI L, MURUGAVEL P. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology, 2007, 234(1/2): 44-50. doi:10.1016/j.tox.2007.01.021.
doi: 10.1016/j.tox.2007.01.021
[22] MAZIÈRE C, CONTE M A, DEGONVILLE J, ALI D, MAZIÈRE J C. Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFκB. Biochemical and Biophysical Research Communications, 1999, 265(1): 116-122. doi:10.1006/bbrc.1999.1644.
doi: 10.1006/bbrc.1999.1644
[23] 路浩, 达剑森, 梅莉, 张英, 刘宗平. 母鼠妊娠期铅镉联合暴露对新生鼠大脑bcl-2, Bax和c-fos mRNA表达的影响及NAC保护效应. 中国农业科学, 2010, 43(2): 417-423. doi:10.3864/j.issn.0578-1752.2010.02.024.
doi: 10.3864/j.issn.0578-1752.2010.02.024
LU H, DA J S, MEI L, ZHANG Y, LIU Z P. Influence of combined exposure to lead and cadmium on bcl-2, Bax and c-fos mRNA expression in neonatal brain and the protective effects of N- acetylcysteine on pregnant rats. Scientia Agricultura Sinica, 2010, 43(2): 417-423. doi:10.3864/j.issn.0578-1752.2010.02.024. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2010.02.024
[24] ZENG X F, LI Q, LI J, WONG N, LI Z, HUANG J, YANG G M, SHAM P C, LI S B, LU G. HIV-1 Tat and methamphetamine co-induced oxidative cellular injury is mitigated by N-acetylcysteine amide (NACA) through rectifying mTOR signaling. Toxicology Letters, 2018, 299: 159-171. doi:10.1016/j.toxlet.2018.09.009.
doi: 10.1016/j.toxlet.2018.09.009
[25] ZHANG W, ZHANG S H, ZHANG M L, YANG L G, CHENG B J, LI J P, SHAN A S. Individual and combined effects of Fusarium toxins on apoptosis in PK15 cells and the protective role of N- acetylcysteine. Food and Chemical Toxicology, 2018, 111: 27-43. doi:10.1016/j.fct.2017.10.057.
doi: 10.1016/j.fct.2017.10.057
[26] PELICANO H, CARNEY D, HUANG P. ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates, 2004, 7(2): 97-110. doi:10.1016/j.drup.2004.01.004.
doi: 10.1016/j.drup.2004.01.004 pmid: 15158766
[27] CHRISTIAN F, SMITH E, CARMODY R. The regulation of NF-κB subunits by phosphorylation. Cells, 2016, 5(1): 12. doi:10.3390/cells5010012.
doi: 10.3390/cells5010012
[28] 毕崇亮, 刘俊俊, 王亨, 王娟, 韩照清, 关立增. 硒对S.aureus诱导的奶牛乳腺上皮细胞Nod2/MAPK/mTORs信号通路关键蛋白表达的影响. 中国农业科学, 2019, 52(16): 2891-2898. doi:10.3864/j.issn.0578-1752.2019.16.014.
doi: 10.3864/j.issn.0578-1752.2019.16.014
BI C L, LIU J J, WANG H, WANG J, HAN Z Q, GUAN L Z. Effects of selenium on the key factors in Nod2/MAPK/mTORs signaling pathways in the bMECs infected S.aureus. Scientia Agricultura Sinica, 2019, 52(16): 2891-2898. doi:10.3864/j.issn.0578-1752.2019.16.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.16.014
[29] HUANG S, PETTAWAY C A, UEHARA H, BUCANA C D, FIDLER I J. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 2001, 20(31): 4188-4197. doi:10.1038/sj.onc.1204535.
doi: 10.1038/sj.onc.1204535 pmid: 11464285
[30] MA L J, CHEN X J, WANG R X, DUAN H T, WANG L B, LIANG L, NAN Y D, LIU X Y, LIU A, JIN F G. 3, 5, 4'-Tri-O- acetylresveratrol decreases seawater inhalation-induced acute lung injury by interfering with the NF-κB and i-NOS pathways. International Journal of Molecular Medicine, 2016, 37(1): 165-172. doi:10.3892/ijmm.2015.2403.
doi: 10.3892/ijmm.2015.2403
[31] MAJANO P L, MEDINA J, ZUBı́A I, SUNYER L, LARA-PEZZI E, MALDONADO-RODRı́GUEZ A, LÓPEZ-CABRERA M, MORENO- OTERO R. N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. Journal of Hepatology, 2004, 40(4): 632-637. doi:10.1016/j.jhep.2003.12.009.
doi: 10.1016/j.jhep.2003.12.009 pmid: 15030979
[32] KELLY G S. Clinical applications of N-acetylcysteine. Alternative Medicine Review: A Journal of Clinical Therapeutic, 1998, 3(2): 114-127.
[1] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[2] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[3] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[4] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[5] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[6] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[7] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[8] JiaQi WANG,YuHong DONG,JuLing JIANG,JianNing QIAN,WenTao WEI,GuoLiang SONG,JinBo JIAO,XinXin GUAN,GuoBiao JI,YeXin ZHANG. Based on PK15 Cell Line for PCV2 Fully Suspension Culture Process [J]. Scientia Agricultura Sinica, 2021, 54(6): 1280-1287.
[9] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[10] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
[11] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[12] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[13] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[14] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
[15] PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!