Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2491-2503.doi: 10.3864/j.issn.0578-1752.2023.13.005

• PLANT PROTECTION • Previous Articles     Next Articles

Response and Function of the Transcription Factor CncC in Cnaphalocrocis medinalis Infected with Baculovirus CnmeGV

ZHANG Nan(), HAN GuangJie(), LIU Qin, LI ChuanMing, QI JianHang, LU YuRong, XIA Yang, XU Jian   

  1. Lixiahe District Institute of Agricultural Sciences in Jiangsu/National Agricultural Experimental Station for Agricultural Microbiology in Yangzhou, Yangzhou 225007, Jiangsu
  • Received:2023-03-21 Accepted:2023-05-13 Online:2023-07-01 Published:2023-07-06
  • Contact: XU Jian

Abstract:

【Objective】The objective of this study is to research the role of transcription factor CncC (Cap ‘n’ Collar Isoform C) of Cnaphalocrocis medinalis and its regulation of antioxidant enzyme genes in the infection of Cnaphalocrocis medinalis granulovirus (CnmeGV), and to further enrich the study of immune regulation mechanism of insects against baculovirus.【Method】The full-length cDNA sequence of CncC in C. medinalis (CmCncC) was cloned by RT-PCR, and its protein structure was analyzed. Third instar larvae of C. medinalis were fed with 106 OB/mL concentration of CnmeGV or a mixture of the same concentration of CnmeGV and 1 mmol·L-1 CncC inhibitor ML385. Samples were taken 6-48 h after infection to analyze the effect of ML385 on the change of malondialdehyde (MDA) content induced by CnmeGV, and viral DNA replication levels, the expression levels of CmCncC, glutathione peroxidase-3 (GPx-3), manganese superoxide dismutase (Mn-SOD), and thioredoxin peroxidase (TPx) were analyzed by RT-qPCR. The number of larval deaths was counted every 24 hours, and the Kaplan-Meier survival analysis of the larvae within 10 d was conducted. Infected larvae were fed with 1 mmol·L-1 ML385 or a mixture of 1 mmol·L-1 ML385 and 200 μg·mL-1 antioxidant N-acetyl-L-cysteine (NAC), and viral DNA replication levels at different times were analyzed using RT-qPCR.【Result】The full length cDNA of CmCncC was 3 404 bp, including a 321 bp 5-UTR, an 847 bp 3-UTR, and a 2 211 bp ORF that encoded a protein of 736 amino acids. The predicted molecular weight of the protein was 75.8 kDa. The MDA content in C. medinalis significantly increased within the first 12 h of CnmeGV infection and returned to normal levels at 24 h, but was lower than the control group at 48 h. The expression of CmCncC was significantly up-regulated at 12, 24, and 48 h after viral infection, by 1.56, 2.16, and 2.63 folds of the control group, respectively. NAC treatment significantly reduced the fold increase of CmCncC expression induced by CnmeGV, to 48.12%, 59.83%, and 56.32% of the control group, respectively. Treatment with the ML385 caused an increase in viral gene copy number to 1.79 and 1.76 folds of the control group at 12 and 24 h, respectively, and significantly increased the mortality rate of C. medinalis infected with CnmeGV 10 d after treatment, from 73.33% to 94.14%. NAC treatment partially alleviated the up-regulation of viral gene copy number caused by CncC inhibition. CnmeGV infection led to a 3.68-fold increase in GPx-3 expression level at 48 h after infection, and 1.73-, 2.62-, and 2.77-folds increase in Mn-SOD expression level at 12, 24, and 48 h after infection, respectively. The expression level of TPx increased by 1.76 and 2.10 folds at 12 and 24 h after infection, respectively, but returned to the control group level at 48 h, and treatment with NAC or the CncC inhibitor significantly weakened the responses of GPx-3, Mn-SOD, and TPx to CnmeGV infection.【Conclusion】CmCncC mediates the CnmeGV infection-induced up-regulation of GPx-3, Mn-SOD and TPx mRNA levels and reduces oxidative stress caused by CnmeGV infection, thereby limiting virus replication, and reducing oxidative damage.

Key words: Cnaphalocrocis medinalis, Cnaphalocrocis medinalis granulovirus (CnmeGV), CncC transcription factor, oxidative stress, antioxidant gene, baculovirus

Table 1

The primer sequences for RT-PCR, RT-qPCR and RACE"

引物名称
Primer name
序列
Sequence (5′ to 3′)
作用
Function
CncC1F TTCCGAGGTTGCTCGAAGAC CmCncC cDNA中间片段扩增
Amplification of intermediate fragments of CmCncC cDNA
CncC1R GTGGTGGTTCGTCGGGTAG
CncC2F TGTCACTTTTCAAACCACACCA
CncC2R TGGTGTGGTTTGAAAAGTGACA
CncC5RACE1R TGCACCGGGTCCTCGAGGGAGAAGCC CmCncC cDNA 5端第一轮扩增 The first round PCR of CmCncC cDNA 5 end
CncC5RACE2R CGTGGCCTGAGGACCCTCCATCTGCACC CmCncC cDNA 5端第二轮扩增 The second round PCR of CmCncC cDNA 5 end
CncC3RACE1F CGCATCAGCCGCACGCGCATCCGCAT CmCncC cDNA 3端第一轮扩增 The first round PCR of CmCncC cDNA 3 end
CncC3RACE2F CGCATCCGCATCCGCACACCCATCCG CmCncC cDNA 3端第二轮扩增The second round PCR of CmCncC cDNA 3 end
CncCqF CAGAACTGTCGCAAACGCAA CmCncC mRNA定量分析
Quantitative analysis of CmCncC mRNA
CncCqR TGGAACACGTGTCTGTAGAGC
GPxqF ATCCGTGTCTCCAACCACAC GPx-3 mRNA定量分析
Quantitative analysis of GPx-3 mRNA
GPxqR GCCTGGCAGTACACAGAACT
Mn-SODqF GGTGACGTTCAGGTTGTTCAC Mn-SOD mRNA定量分析
Quantitative analysis of Mn-SOD mRNA
Mn-SODqR CCCAGAATCTGTCCCACTCCC
TPxqF AGGCTTTCGATCCCTTCTGC TPx mRNA定量分析
Quantitative analysis of TPx mRNA
TPxqR GGTGGGGGTCACTGATGAAG
β-actinF ATGGTCGGCATGGGACAG 内参基因
Internal reference gene
β-actinR GAGTTCATTGTAGAAGGTGT
granulin qF GACCCGACAACATTGCACAC granulin的定量分析
Quantitative analysis of granulin
granulin qR ACGTACACGAGAGGACGGTA

Fig. 1

Amino acid sequence alignments of CmCncC with P. xylostella CncC, H. armigera Nrf2, C. suppressalis CncC and S. frugiperda CncC The six conserved functional domains of CncC, denoted by Neh1-6 in red boxes, are shown, as well as the CNC-bZIP DNA binding domain denoted by blue boxes, and the Keap1 binding motifs (DMG and ETGE) denoted by green boxes"

Fig. 2

Effects of CmCncC inhibitor treatment on changes in MDA content of C. medinalis after infection with CnmeGV"

Fig. 3

NAC treatment attenuates CmCncC mRNA level in response to CnmeGV infection"

Fig. 4

Inhibition of CmCncC promoted CnmeGV infection"

Fig. 5

mRNA level of related antioxidant genes after CnmeGV infection"

Fig. 6

The effects of NAC or ML385 treatment on CnmeGV-induced changes in antioxidant gene expression"

[1]
王凤英, 张孝羲, 翟保平. 稻纵卷叶螟的飞行和再迁飞能力. 昆虫学报, 2010, 53(11): 1265-1272.
WANG F Y, ZHANG X X, ZHAI B P. Flight and re-migration capacity of the rice leaffolder moth, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae). Acta Entomologica Sinica, 2010, 53(11): 1265-1272. (in Chinese)
[2]
ZHANG S K, REN X B, WANG Y C, SU J. Resistance in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to new chemistry insecticides. Journal of Economic Entomology, 2014, 107(2): 815-820.

doi: 10.1603/EC13506
[3]
JEHLE J A, BLISSARD G W, BONNING B C, CORY J S, HERNIOU E A, ROHRMANN G F, THEILMANN D A, THIEM S M, VLAK J M. On the classification and nomenclature of baculoviruses: A proposal for revision. Archives of Virology, 2006, 151(7): 1257-1266.

pmid: 16648963
[4]
类承凤, 胡葭, 何峰, 沈蜜, 孙修炼. 杆状病毒新的分类地位和书写方式. 中国生物防治学报, 2021, 37(4): 646-650.

doi: 10.16409/j.cnki.2095-039x.2021.07.007
LEI C F, HU J, HE F, SHEN M, SUN X L. New taxonomic status and name writing of the baculoviruses. Chinese Journal of Biological Control, 2021, 37(4): 646-650. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.07.007
[5]
MIELE S A, GARAVAGLIA M J, BELAICH M N, GHIRINGHELLI P D. Baculovirus: Molecular insights on their diversity and conservation. International Journal of Evolutionary Biology, 2011, 2011: 379424.
[6]
DESHAYES C, SIEGWART M, PAURON D, FROGER J A, LAPIED B, APAIRE-MARCHAIS V. Microbial pest control agents: Are they a specific and safe tool for insect pest management? Current Medicinal Chemistry, 2017, 24(27): 2959-2973.
[7]
庞义, 赖涌流, 刘炬, 叶育昌. 稻纵卷叶螟幼虫颗粒体病毒. 微生物学通报, 1981(3): 103-104.
PANG Y, LAI Y L, LIU J, YE Y C. A new granulovirus from naturally-infected Asiatic rice leafroller, Cnaphalocrocis medinalis, Microbiology China, 1981(3): 103-104. (in Chinese)
[8]
XU J, LIU Q, LI C M, HAN G J. Field effect of Cnaphalocrocis medinalis granulovirus (CnmeGV) on the pest of rice leaffolder. Journal of Integrative Agriculture, 2019, 18(9): 2115-2122.

doi: 10.1016/S2095-3119(18)62097-0
[9]
徐健, 李传明, 韩光杰, 徐彬, 祁建杭, 孙俊, 刘琴. 颗粒体病毒(CnmeGV)对稻纵卷叶螟的感染及害虫种群增长的影响. 江苏农业学报, 2018, 34(1): 29-33.
XU J, LI C M, HAN G J, XU B, QI J H, SUN J, LIU Q. The effect of Cnaphalocrocis medinalis granulovirus (CnmeGV) on larva infection and population regulation of rice leaffolder. Jiangsu Journal of Agricultural Sciences, 2018, 34(1): 29-33. (in Chinese)
[10]
HOSAKOTE Y M, JANTZI P D, ESHAM D L, SPRATT H, KUROSKY A, CASOLA A, GAROFALO R P. Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. American Journal of Respiratory and Critical Care Medicine, 2011, 183(11): 1550-1560.

doi: 10.1164/rccm.201010-1755OC pmid: 21471094
[11]
LIU M, CHEN F, LIU T, CHEN F, LIU S, YANG J. The role of oxidative stress in influenza virus infection. Microbes and Infection, 2017, 19(12): 580-586.

doi: S1286-4579(17)30123-5 pmid: 28918004
[12]
WANG Y, OBERLEY L W, HOWE D, JARVIS D L, CHAUHAN G, MURHAMMER D W. Effect of expression of manganese superoxide dismutase in baculovirus-infected insect cells. Applied Biochemistry and Biotechnology, 2004, 119(2): 181-193.

pmid: 15531788
[13]
ZHANG S, SHEN Z, LI Z, WU F, ZHANG B, LIU Y, ZHANG Q, LIU X. Identification of a thioredoxin peroxidase gene involved in resistance to nucleopolyhedrovirus infection in Helicoverpa armigera with RNA interference. Journal of Insect Physiology, 2015, 82: 17-27.

doi: 10.1016/j.jinsphys.2015.07.017
[14]
TIAN Z, ZHA M, CAI L, MICHAUD J, CHENG J, SHEN Z, LIU X, LIU X. FoxO-promoted peroxiredoxin1 expression induced by Helicoverpa armigera single nucleopolyhedrovirus infection mediates host development and defensive responses. Ecotoxicology and Environmental Safety, 2022, 234: 113414.

doi: 10.1016/j.ecoenv.2022.113414
[15]
HAN G, LIU Q, LI C, XU B, XU J. Transcriptome sequencing reveals Cnaphalocrocis medinalis against baculovirus infection by oxidative stress. Molecular Immunology, 2021, 129: 63-69.

doi: 10.1016/j.molimm.2020.10.020
[16]
WILDING C S. Regulating resistance: CncC: Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Current Opinion in Insect Science, 2018, 27: 89-96.

doi: 10.1016/j.cois.2018.04.006
[17]
ZHANG D D, LO S C, CROSS J V, TEMPLETON D J, HANNINK M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 2004, 24(24): 10941-10953.

doi: 10.1128/MCB.24.24.10941-10953.2004 pmid: 15572695
[18]
THIMMULAPPA R K, MAI K H, SRISUMA S, KENSLER T W, YAMAMOTO M, BISWAL S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research, 2002, 62(18): 5196-5203.

pmid: 12234984
[19]
RANGASAMY T, CHO C Y, THIMMULAPPA R K, ZHEN L, SRISUMA S S, KENSLER T W, YAMAMOTO M, PETRACHE I, TUDER R M, BISWAL S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. The Journal of Clinical Investigation, 2004, 114(9): 1248-1259.

doi: 10.1172/JCI200421146
[20]
MOTOHASHI H, O’CONNOR T, KATSUOKA F, ENGEL J D, YAMAMOTO M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene, 2002, 294(1/2): 1-12.

doi: 10.1016/S0378-1119(02)00788-6
[21]
MAHER J, YAMAMOTO M. The rise of antioxidant signaling—The evolution and hormetic actions of Nrf2. Toxicology and Applied Pharmacology, 2010, 244(1): 4-15.

doi: 10.1016/j.taap.2010.01.011
[22]
SYKIOTIS G P, BOHMANN D. Keap1/Nrf 2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Developmental Cell, 2008, 14(1): 76-85.

doi: 10.1016/j.devcel.2007.12.002
[23]
HOCHMUTH C E, BITEAU B, BOHMANN D, JASPER H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell, 2011, 8(2): 188-199.

doi: 10.1016/j.stem.2010.12.006
[24]
BATTINO M, GIAMPIERI F, PISTOLLATO F, SUREDA A, DE OLIVEIRA M R, PITTALA V, FALLARINO F, NABAVI S F, ATANASOV A G, NABAVI S M. Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnology Advances, 2018, 36(2): 358-370.

doi: S0734-9750(17)30165-9 pmid: 29277308
[25]
KESIC M J, SIMMONS S O, BAUER R, JASPERS I. Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells. Free Radical Biology and Medicine, 2011, 51(2): 444-453.

doi: 10.1016/j.freeradbiomed.2011.04.027 pmid: 21549835
[26]
邵军辉. 靶向于Nrf2-ARE信号的抗鲤春病毒血症病毒研究[D]. 武汉: 华中农业大学, 2016.
SHAO J H. The antiviral research against spring viraemia of carp virus targeting Nrf2-ARE[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[27]
JIN R, XIAO Z, NAKAI M, HUANG G H. Insight into the regulation of the Nrf2 pathway in response to ascovirus infection in Spodoptera exigua. Pest Management Science, 2023, 79(3): 1123-1130.

doi: 10.1002/ps.v79.3
[28]
LO H R, CHAO Y C. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnology Progress, 2004, 20(1): 354-360.

doi: 10.1021/(ISSN)1520-6033
[29]
韩光杰, 刘琴, 李传明, 祁建杭, 徐彬, 陆玉荣, 徐健. 稻纵卷叶螟颗粒体病毒的持续感染及检测. 中国农业科学, 2020, 53(19): 3988-3995. doi: 10.3864/j.issn.0578-1752.2020.19.012.

doi: 10.3864/j.issn.0578-1752.2020.19.012
HAN G J, LIU Q, LI C M, QI J H, XU B, LU Y R, XU J. The persistent infection and detection of Cnaphalocrocis medinalis granulovirus in Cnaphalocrocis medinalis. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995. doi: 10.3864/j.issn.0578-1752.2020.19.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.19.012
[30]
胡景生. 家蚕CncC/keap1-ARE通路的关键基因克隆及其功能分析[D]. 苏州: 苏州大学, 2017.
HU J S. Cloning and functional analysis of key genes in CncC/keapl-ARE pathway,Bombyx mori[D]. Suzhou: Soochow University, 2017. (in Chinese)
[31]
VRAILAS-MORTIMER A, DEL RIVERO T, MUKHERJEE S, NAG S, GAITANIDIS A, KADAS D, CONSOULAS C, DUTTAROY A, SANYAL S. A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Developmental Cell, 2011, 21(4): 783-795.

doi: 10.1016/j.devcel.2011.09.002
[32]
WANG Z, HAN N, ZHAO K, LI Y, CHI Y, WANG B. Protective effects of pyrroloquinoline quinine against oxidative stress-induced cellular senescence and inflammation in human renal tubular epithelial cells via Keap1/Nrf2 signaling pathway. International Immunopharmacology, 2019, 72: 445-453.

doi: S1567-5769(19)30184-5 pmid: 31035086
[33]
LEE J M, JOHNSON J A. An important role of Nrf2-ARE pathway in the cellular defense mechanism. BMB Reports, 2004, 37(2): 139-143.

doi: 10.5483/BMBRep.2004.37.2.139
[34]
INNAMORATO N G, ROJO A I, GARCIA-YAGUE A J, YAMAMOTO M, DE CEBALLOS M L, CUADRADO A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. The Journal of Immunology, 2008, 181(1): 680-689.

doi: 10.4049/jimmunol.181.1.680
[35]
KANSANEN E, KUOSMANEN S M, LEINONEN H, LEVONEN A L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biology, 2013, 1(1): 45-49.

doi: 10.1016/j.redox.2012.10.001
[36]
KOBAYASHI A, KANG M I, OKAWA H, OHTSUJI M, ZENKE Y, CHIBA T, IGARASHI K, YAMAMOTO M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology, 2004, 24(16): 7130-7139.

doi: 10.1128/MCB.24.16.7130-7139.2004
[37]
ITOH K, WAKABAYASHI N, KATOH Y, ISHII T, IGARASHI K, ENGEL J D, YAMAMOTO M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes and Development, 1999, 13(1): 76-86.

doi: 10.1101/gad.13.1.76 pmid: 9887101
[38]
SUN Z, ZHANG S, CHAN J Y, ZHANG D D. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Molecular and Cellular Biology, 2007, 27(18): 6334-6349.

pmid: 17636022
[39]
APOPA P L, HE X, MA Q. Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. Journal of Biochemical and Molecular Toxicology, 2008, 22(1): 63-76.

doi: 10.1002/jbt.20212 pmid: 18273910
[40]
HE X, MA Q. NRF2 cysteine residues are critical for oxidant/ electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation. Molecular Pharmacology, 2009, 76(6): 1265-1278.

doi: 10.1124/mol.109.058453
[41]
LI Z Q, SONG X H, WANG M, WANG S, HUANG G H. Melanization induced by Heliothis virescens ascovirus 3h promotes viral replication. Insect Science, 2021, 28(2): 472-484.

doi: 10.1111/ins.v28.2
[42]
YANG C J, REN G H, DU X X, LI S W, QIAN Y R, HUANG G H, YU H. Comparisons of pathogenic course of two Heliothis virescens ascovirus isolates (HvAV-3i and HvAV-3j) in four noctuid (Lepidoptera) pest species. Journal of Invertebrate Pathology, 2022, 189: 107734.

doi: 10.1016/j.jip.2022.107734
[43]
SHI G, KANG Z, LIU H, REN F, ZHOU Y. The effects of quercetin combined with nucleopolyhedrovirus on the growth and immune response in the silkworm (Bombyx mori). Archives of Insect Biochemistry and Physiology, 2021, 108(2): e21839.
[44]
OLAGNIER D, PERI S, STEEL C, VAN MONTFOORT N, CHIANG C, BELJANSKI V, SLIFKER M, HE Z, NICHOLS C N, LIN R, BALACHANDRAN S, HISCOTT J. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathogens, 2014, 10(12): e1004566.

doi: 10.1371/journal.ppat.1004566
[45]
BOTTINO-ROJAS V, TALYULI O A C, CARRARA L, MARTINS A J, JAMES A A, OLIVEIRA P L, PAIVA-SILVA G O. The redox-sensing gene Nrf2 affects intestinal homeostasis, insecticide resistance, and Zika virus susceptibility in the mosquito Aedes aegypti. The Journal of Biological Chemistry, 2018, 293(23): 9053-9063.

doi: 10.1074/jbc.RA117.001589
[46]
MISRA J R, LAM G, THUMMEL C S. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochemistry and Molecular Biology, 2013, 43(12): 1116-1124.

doi: 10.1016/j.ibmb.2013.09.005
[47]
ZHANG F, YAN Y, PENG W, WANG L, WANG T, XIE Z, LUO H, ZHANG J, DONG W. PARK7 promotes repair in early steroid- induced osteonecrosis of the femoral head by enhancing resistance to stress-induced apoptosis in bone marrow mesenchymal stem cells via regulation of the Nrf2 signaling pathway. Cell Death and Disease, 2021, 12(10): 940.

doi: 10.1038/s41419-021-04226-1
[48]
JIANG H, MENG X, ZHANG N, GE H, WEI J, QIAN K, ZHENG Y, PARK Y, REDDY PALLI S, WANG J. The pleiotropic AMPK-CncC signaling pathway regulates the trade-off between detoxification and reproduction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(10): e2214038120.
[1] CUI HongJie, LU ChunTing, PAN LiQin, HU Hui, ZHONG PeiYun, ZHU JieYing, ZHANG KaiZhao, HUANG XiaoHong. Curcumin Alleviates Zearalenone-Induced Oxidative Damage in Porcine Renal Epithelial Cells via SIRT1/FOXO1 Pathway [J]. Scientia Agricultura Sinica, 2023, 56(5): 1007-1018.
[2] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[3] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[4] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[5] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[6] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
[7] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[8] LI HanTong,JIA ChengLi,ZHANG ShuWen,LU Jing,PANG XiaoYang,LIU Lu,LÜ JiaPing. Chromium (III) Stress Alleviation by Sulfur Compounds During Chromium Bio-enrichment by Saccharomyces cerevisiae [J]. Scientia Agricultura Sinica, 2019, 52(6): 1078-1089.
[9] ZHENG XuSong,TIAN JunCe,HOU JianJun,LÜ ZhongXian. Effects of Colorful Rice on the Degree of Occurrence and Damage by Cnaphalocrocis medinalis and Parasitic Behavior of Its Egg Parasitoids [J]. Scientia Agricultura Sinica, 2018, 51(22): 4288-4296.
[10] DU Jiao, WANG YaBo, LI XueHua, HUANG ZhiQiang, YANG YuHeng, BI ChaoWei, YU Yang. Function analysis ofγ-glutamyl phosphate reductase-encoded gene SsGPR1 in Sclerotinia sclerotiorum [J]. Scientia Agricultura Sinica, 2018, 51(19): 3694-3703.
[11] HE Ting, YIN Quan, WANG Wei, HUANG Ya-xi, WU Xiao-yan, XIA Qing-you, LIU Shi-ping. Bac-to-Bac Baculovirus System Facilitates Overexpression of let-7 Cluster MicroRNAs of Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(3): 581-592.
[12] TANG Qin, DENG Yuan-yuan, ZHANG Rui-fen, ZHANG Yan, ZHANG Ming-wei, WEI Zhen-cheng, TANG Xiao-jun, LIU Lei, TI Hui-hui, MA Yong-xuan. Effect of Momordica charantia Fruit Aqueous Extract on Serum Lipids Metabolic Disorder in Restraint Mice [J]. Scientia Agricultura Sinica, 2014, 47(16): 3300-3307.
[13] ZHAO Jiao, ZHOU Zhao-Hong, LIANG Xiao-Fang, MAO Xiang-Bing, CHEN Dai-Wen, YU Bing. Effects of GSPs and VE on Growth Performance, Serum Redox Status and Hepatic Oxidative Damage in Piglets Under Oxidative Stress [J]. Scientia Agricultura Sinica, 2013, 46(19): 4157-4164.
[14] SONG Gui-Fang-., FAN Wei-Li, WANG Jun-Juan, WANG De-Long, WANG Shuai, ZHOU Kai, YE Wu-Wei. Cloning and Characterization of Drought-stress Responsive Gene GhGR in Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2012, 45(8): 1644-1652.
[15] WANG Yan-bin, SUN Xiang-li, WEI Zhan-yong, CHEN Hong-ying, YANG Ming-fan, CUI Bao-an. Co-Expression of Porcine Interferon-Alpha and Interferon-Gamma Using a Baculovirus and Its Inhibitant Activity on PRRSV [J]. Scientia Agricultura Sinica, 2011, 44(9): 1931-1938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!