Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4571-4583.doi: 10.3864/j.issn.0578-1752.2020.22.005

• PLANT PROTECTION • Previous Articles     Next Articles

Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens

LÜ ChuYang1,DENG PingChuan2,ZHANG XiaoLi1,SUN YuChao1,LIANG WuSheng1,HU DongWei1()   

  1. 1 Institute of Biotechnology, Zhejiang University/State Key Laboratory of Rice Biology, Hangzhou 310058
    2 Institute of Crop Science, Zhejiang University, Hangzhou 310058
  • Received:2020-03-23 Accepted:2020-04-25 Online:2020-11-16 Published:2020-11-28
  • Contact: DongWei HU E-mail:hudw@zju.edu.cn

Abstract:

【Objective】In the past 40 years, the occurrence scale and severity of rice false smut have been increasing in all major rice cultivation areas in the world, and it has gradually developed into a major rice disease. The previous study found that there were a lot of internal growth sclerotia induced by low temperature at the initial stage. The objective of this study is to screen out the potential regulatory genes involved in sclerotia development induced by low temperature through high-throughput sequencing, explain the molecular mechanism of sclerotia formation, and to lay a foundation for revealing the occurrence rule of rice false smut and preventing its epidemic more effectively.【Method】The high-throughput sequencing was used to analyze the transcriptome data of rice false smut balls by low-temperature induction (Control group: TL911_1, TL911_2, TL911_3. Low-temperature treatment group: FH1016_1, FH1016_2, FH1016_3). The genome of Villosiclava virens (UV-8b) was used as a reference to align the sequences. The gene expression level was calculated in the term of Fragments per Kilobase of transcript per Million fragments (FPKM). Compared with the database, the differentially expressed genes (DEGs) were screened by parameters (|log2 fold change|≥1 and q-value≤0.05). Combined with gene differential expression analysis, gene family analysis and function annotation (Gene Ontology/KEGG Pathway), the key genes of sclerotia formation in V. virens were identified. qRT-PCR was performed to validate the expression of screened genes associated with sclerotia development.【Result】A total of 59.78 G high-quality data were obtained by transcriptome sequencing, of which nearly 93.2% of the data could be mapped to the genome of V. virens. Data analysis showed that 8 426 genes were expressed in different degrees, accounting for 97.13% of the total genes. Compared with the control, 793 genes were significantly differentially expressed by low-temperature treatment, 398 and 395 genes were up- and down-regulated, respectively. The 6 genes were randomly selected and verified by qRT-PCR. The result was consistent with the transcriptome analysis. Among the DEGs, 180 gene families (22.7%) were annotated, among which 61.67% were up-regulated, including MFS transporter, sugar transporter, zinc finger TF, etc. GO enrichment analysis showed that the DEGs were significantly enriched in carbohydrate metabolism process, oxidation-reduction process, oxidoreductase activity, etc. KEGG analysis showed that the DEGs were significantly enriched in biosynthesis of secondary metabolites, starch and sucrose metabolism, glycolysis/gluconeogenesis and other metabolic pathways, suggesting that the expression of genes related to nutrient metabolism and energy metabolism pathway is essential for the formation of sclerotia induced by low temperature.【Conclusion】Low-temperature stress can induce the formation of sclerotia, which makes the fungi in an oxidative stress state. Through the amplification of signal transduction pathway, the whole process involves multiple genes and regulates multiple gene family members, which ultimately promotes the up-regulated expression of genes such as transmembrane transport, cell morphology and biosynthesis, so that protein expression is active in the process of forming sclerotia, reaching the peak of synthetic cells and substances, and then promoting the formation of sclerotia.

Key words: Villosiclava virens, sclerotia, transcriptome, low-temperature stress, oxidative stress response, differentially expressed gene (DEG)

Fig. 1

The rice false smut balls formed in late autumn in paddy field"

Table 1

Primers used in qRT-PCR"

序号No.蛋白名称
Protein name
蛋白ID
Protein ID
引物序列
Primer sequence (5′-3′)
扩增长度
Amplicon size (bp)
1Protein rds1KDB11131.1F: TCCAACGTGCGGGAATACA164
R: CCAAACTGGCGGAAAATC
2Biotrophy-associated secreted protein 2KDB17523.1F: GCCTCAGCAACACCGACT220
R: GCCTTTACCTCGTCCGCC
3Glycoside hydrolaseKDB17641.1F: TCCTCGCCACCATCTCGT178
R: CGCCTCATCGCCCTCAAC
4Cytosolic phospholipase A2 zetaKDB15918.1F: ATGGGCGTCTTTGGGAGCG165
R: GGGAATTGTGGCGGGATCT
5CRE-TRX-1 proteinKDB18233.1F: GCCAAATCCCGACAAAAG142
R: GGCGGCGTAGTCACCATA
6Methylenetetrahydrofolate reductase 1KDB13169.1F: TCCTCGCCACCATCTCGTC179
R: CCGCCTCATCGCCCTCAAC
7α-tubulinKDB12764.1F: GCTCTCGTGCTTGCTCTTGG144
R: ATCACTTCGTCCTTGCGTTT

Table 2

Sequencing data and alignment results of sequencing data with the reference genome"

样品
Sample
总数据
Total reads
比对数据
Mapped reads
比对率
Mapped ratio (%)
有效序列
Clean bases (G)
GC含量
GC content (%)
Q30
(%)
TL911_1593497365584667894.108.9057.1593.51
TL911_2597388025597605693.708.9656.9593.09
TL911_3726567946803343093.6410.9056.8593.01
FH1016_1593876845480982992.298.9157.0992.45
FH1016_2635427265889092792.689.5357.2593.53
FH1016_3838524427764653692.6012.5857.2293.53
总计Total398528184371203456-59.78--

Fig. 2

Overall characterization of sample relationship"

Fig. 3

The comparative analysis of DEGs in V. virens under low temperature"

Fig. 4

Identification and enrichment analysis of genes involved in low temperature response in V. virens at the initial stage"

Table 3

KEGG enrichment significant analysis of DEGs"

途径ID
Pathway ID
途径描述
Description of pathway
DEG数量
DEGs number
上调数量
Up-regulated
number
下调数量
Down-regulated number
P
P-value
fgr01110次生代谢产物生物合成Biosynthesis of secondary metabolites174119550.000456851
fgr00500淀粉和蔗糖代谢Starch and sucrose metabolism252050.001216228
fgr00010糖酵解/糖异生Glycolysis/Gluconeogenesis231760.002826092
fgr01200碳代谢Carbon metabolism6442220.003358729
fgr00680甲烷代谢Methane metabolism151050.004476103
fgr01130抗生素的生物合成Biosynthesis of antibiotics12886420.004815518
fgr00250丙氨酸、天冬氨酸和谷氨酸代谢Alanine, aspartate and glutamate metabolism191360.006041910
fgr00520氨基糖和核苷酸糖代谢Amino sugar and nucleotide sugar metabolism2715120.006396843

Fig. 5

Expression analysis of gene family involved in low temperature response in V. virens at the initial stage"

Fig. 6

Expression analysis of down-regulated gene family in V. virens under low temperature"

Fig. 7

Heatmap of DEGs in TL911 and FH1016"

Fig. 8

qRT-PCR analysis of 6 randomly selected DEGs1: Protein rds1; 2: Biotrophy-associated secreted protein 2; 3: Glycoside hydrolase; 4: Cytosolic phospholipase A2 zeta; 5: CRE-TRX-1 protein; 6: Methylenetetrahydrofolate reductase 1"

[1] FAN J, YANG J, WANG Y Q, LI G B, LI Y, HUANG F, WANG W M.Current understanding on Villosiclava virens, a unique flower- infecting fungus causing rice false smut disease. Molecular Plant Pathology, 2016, 17(9): 1321-1330.
doi: 10.1111/mpp.12362 pmid: 26720072
[2] TANAKA E, ASHIZAWA T, SONODA R, TANANKA C. Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon, 2008, 106: 491-501.
[3] YAMAMOTO S, YPSHINO J.Storage period of sclerotia of Ustilaginoidea virens. Annual Report of the Kanto-Tosan Plant Protection Society, 1955, 2: 10.
[4] YAEGASHI H, FUJITA Y, SONODA R.Severe outbreak of false smut of rice in 1988.Plant Protection Tokyo, 1989, 43(6): 311-314.
[5] FUJITA Y, SONODA R, YAEGASHI H.The fruiting body formation in the sclerotia of Ustilaginoidea viren and the effect by light. Annual Report of the Society of Plant Protection of North Japan, 1990, 41: 205.
[6] 缪巧明. 稻曲病菌核的研究. 云南农业大学学报, 1994, 9(2): 101-104.
MIAO Q M.Studies on the sclerotium ofUstilaginoidea viren (Cooke) Tak. Journal of Yunnan Agricultural University, 1994, 9(2): 101-104. (in Chinese)
[7] SINGH R A, DUBE K S.Occurrence of true sclerotia in Claviceps oryzae-sativae—The causal organism of false smut of rice. Current Science, 1976, 45(21): 772-773.
[8] 董珂, 傅淑云. 水稻稻曲病菌菌核萌发试验初报. 沈阳农业大学学报, 1989, 20(3): 359-362.
DONG K, FU S Y.Sprouting test on sclerotia of rice false smut.Journal of Shenyang Agricultural University, 1989, 20(3): 359-362. (in Chinese)
[9] 黎毓干, 康必鉴, 张宝棣, 蓝毓涛, 曾红蕾, 马慧坤, 谢考祥, 李廷芳. 稻曲病研究初报. 广东农业科学, 1986(4): 45-47.
LI Y G, KANG B J, ZHANG B D, LAN Y T, ZENG H L, MA H K, XIE K X, LI T F.Primary studies on rice false smut.Guangdong Agricultural Sciences, 1986(4): 45-47. (in Chinese)
[10] 金敏忠, 黎煜. 水稻稻曲病菌菌核田间发生情况调查. 浙江农业科学, 1987(5): 238-239.
JIN M Z, LI Y.Survey on the sclerotia ofUstilaginoidea virens in the paddy field. Journal of Zhejiang Agricultural Sciences, 1987(5): 238-239. (in Chinese)
[11] FAN L L, YONG M L, LI D Y, LIU Y J, LAI C H, CHEN H M, CHENG F M, HU D W.Effect of temperature on the development of sclerotia in Villosiclava virens. Journal of Integrative Agriculture, 2016, 15(11): 2550-2555.
doi: 10.1016/S2095-3119(16)61400-4
[12] 李丹阳, 邓启得, 雍明丽, 王华, 赖朝辉, 陈宏明, 何文苗, 胡东维. 稻曲病菌菌核降解微生物的筛选与作用机制分析. 中国生物防治学报, 2016, 32(2): 258-264.
LI D Y, DENG Q D, YONG M L, WANG H, LAI C H, CHEN H M, HE W M, HU D W.Screening of biocontrol fungi against sclerotia ofVillosiclava virens and their mechanisms. Chinese Journal of Biological Control, 2016, 32(2): 258-264. (in Chinese)
[13] YU J J, YU M N, NIE Y F, SUN W X, YIN X L, ZHAO J, WANG Y H, DING H, QI Z Q, DU Y, HUANG L, LIU Y F.Comparative transcriptome analysis of fruiting body and sporulating mycelia of Villosiclava virens reveals genes with putative functions in sexual reproduction. Current Genetics, 2016, 62(3): 575-584.
doi: 10.1007/s00294-015-0563-1 pmid: 26905382
[14] 韩彦卿, 韩渊怀, 张春来, 孙文献. 水稻幼穗与Ustilaginoidea virens互作早期的转录组分析. 植物病理学报, 2019, 49(3): 296-305.
HAN Y Q, HAN Y H, ZHANG C L, SUN W X.Transcriptomic analysis of early interaction between rice young spikelets andUstilaginoidea virens. Acta Phytopathologica Sinica, 2019, 49(3): 296-305. (in Chinese)
[15] PERTEA M, KIM D, PERTEA G M, LEEK J T, SALZBERG S L.Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.Nature Protocols, 2016, 11(9): 1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171
[16] TRAPNELL C, WILLAMS B A, PERTEA G, MORTAZAVI A, KWAN G, BAREN M J, SALZBERG S L, WOLD B J, PACHTER L.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nature Biotechnology, 2010, 28(5): 511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[17] LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method.Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[18] PAPAPOSTOLOU I, GEORGIOU C D.Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: Identification of a fungal xanthine oxidase. Fungal Biology, 2010, 114(5/6): 387-395.
doi: 10.1016/j.funbio.2010.01.010
[19] PAPAPOSTOLOU I, SIDERI M, GEORGIOU C D.Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum. Microbiological Research, 2014, 169(7/8): 527-532.
doi: 10.1016/j.micres.2013.12.002
[20] HARRIS S D.Cdc42/Rho GTPases in fungi: Variations on a common theme.Molecular Microbiology, 2011, 79(5): 1123-1127.
doi: 10.1111/j.1365-2958.2010.07525.x
[21] KOCH A, KUMAR N, WEBER L, KELLER H, IMANI J, KOGEL K H.Host-induced gene silencing of cytochrome P450 lanosterol C14 alpha-demethylase-encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48): 19324-19329.
doi: 10.1073/pnas.1306373110
[22] EOM T J, MOON H, YU J H, PARK H S.Characterization of the velvet regulators inAspergillus flavus. Journal of Microbiology, 2018, 56(12): 893-901.
doi: 10.1007/s12275-018-8417-4
[23] BAYRAM O, KRAPPMANN S, NI M, BOK J W, HELMSTAEDT K, VALERIUS O, BRAUS-STROMEYER S, KWON N J, KELLER N P, YU J H, BRAUS G H.VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism.Science, 2008, 320(5882): 1504-1506.
doi: 10.1126/science.1155888 pmid: 18556559
[24] GEORGIOU C D.Lipid peroxidation in Sclerotium rolfsii: A new look into the mechanism of sclerotial biogenesis in fungi. Mycological Research, 1997, 101(4): 460-464.
doi: 10.1017/S0953756296002882
[25] GEORGIOU C D, PATSOUKIS N, PAPAPOSTOLOU I, ZERVOUDAKIS G.Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress.Integrative and Comparative Biology, 2006, 46(6): 691-712.
doi: 10.1093/icb/icj034 pmid: 21672779
[26] PAPAPOSTOLOU I, GEORGIOU C D.Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi.Journal of Applied Microbiology, 2010, 109(6): 1929-1936.
doi: 10.1111/j.1365-2672.2010.04822.x pmid: 20681971
[27] KIM H J, CHEN C B, KABBAGE M, DICKMAN M B.Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Applied and Environmental Microbiology, 2011, 77(21): 7721-7729.
doi: 10.1128/AEM.05472-11
[28] SEGMULLER N, KOKKELINK L, GIESBERT S, ODINIUS D, VAN KAN J, TUDZYNSKI P.NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Molecular Plant-Microbe Interactions, 2008, 21(6): 808-819.
doi: 10.1094/MPMI-21-6-0808 pmid: 18624644
[29] ANGELOVA M B, PASHOVA S B, SPASOVA B K, VASSILEV S V, SLOKOSKA L S.Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat.Mycological Research, 2005, 109(2): 150-158.
doi: 10.1017/S0953756204001352
[30] GRINTZALIS K, VERNARDIS S I, KLAPA M I, GEORGIOU C D.Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Applied and Environmental Microbiology, 2014, 80(18): 5561-5571.
doi: 10.1128/AEM.01282-14
[31] YAP H Y Y, CHOOI Y H, FUNG S Y, NG S T, TAN C S, TAN N H. Transcriptome analysis revealed highly expressed genes encoding secondary metabolite pathways and small cysteine-rich proteins in the sclerotium of Lignosus rhinocerotis. PLoS ONE, 2015, 10(11): e0143549.
doi: 10.1371/journal.pone.0143549 pmid: 26606395
[32] KIM H R, CHAE K S, HAN K H, HAN D M.The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics, 2009, 182(3): 771-783.
doi: 10.1534/genetics.109.101667 pmid: 19416940
[33] DURAN R M, CARY J W, CALVO A M.Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavusis regulated by veA, a gene necessary for sclerotial formation. Applied Microbiology and Biotechnology, 2007, 73(5): 1158-1168.
doi: 10.1007/s00253-006-0581-5
[34] AMAIKE S, KELLER N P.Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryotic Cell, 2009, 8(7): 1051-1060.
doi: 10.1128/EC.00088-09 pmid: 19411623
[35] KIM H S, HAN K Y, KIM K J, HAN D M, JAHNY K Y, CHAE K S.TheveA gene activates sexual development in Aspergillus nidulans. Fungal Genetics and Biology, 2002, 37(1): 72-80.
doi: 10.1016/S1087-1845(02)00029-4
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[6] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[7] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[8] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[9] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[10] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[11] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
[12] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[13] CaiLing TENG,Xi ZHONG,HaoDi WU,Yan HU,ChangYong ZHOU,XueFeng WANG. Biologic and Transcriptomic Analysis of Citrus hystrix Responses to ‘Candidatus Liberibacter asiaticus’ at Different Infection Stages [J]. Scientia Agricultura Sinica, 2020, 53(7): 1368-1380.
[14] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[15] Dan HE,DongBo XIE,JiaoRui ZHANG,SongLin HE,ChaoMei LI,YunBing ZHENG,Zheng WANG,YiPing LIU,Yan LI,JiuXing LU. Selected Related Genes about Incompatibility of Distant Hybridization in Paeonia by iTRAQ Analysis and Transcriptome [J]. Scientia Agricultura Sinica, 2020, 53(6): 1234-1246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!