Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3469-3481.doi: 10.3864/j.issn.0578-1752.2024.17.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Research Progress on Adsorption Properties of Solid Particles with Different Morphologies at the Interface of Pickering Emulsions

LU LiRong(), YAO XiaoLin(), LI Dan, WEI XiangYing, YUE Juan, YI GaoYang   

  1. College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021
  • Received:2024-04-08 Accepted:2024-06-24 Online:2024-09-01 Published:2024-09-04
  • Contact: YAO XiaoLin

Abstract:

Pickering emulsions represent a novel type of emulsion that employs solid particles as stabilizers. Solid particles can be tightly arranged at the oil-water interface by irreversible adsorption to form a monolayer or multilayer film, providing a spatial physical barrier for droplets. Compared with traditional emulsions, Pickering emulsions have attracted wide attention due to their advantages of high stability, low toxicity and low cost. The stability of Pickering emulsion is affected by many factors, such as solid particle properties, concentration, pH and preparation method, etc. Among them, the morphology of solid particles is one of the important factors that determines the interface adsorption behavior and the stabilization ability of emulsion. The different morphology of the solid particles leads to different ways of stabilizing the emulsion at the oil-water interface, mainly includes electrostatic interaction, capillary force, and mutual entanglement to form three-dimensional network structure. However, there is currently no systematic summary on the effects of solid particles with different morphologies on the interfacial adsorption characteristics of Pickering emulsions. Based on this, this review summarized the types of solid particles with different morphologies used to stabilize Pickering emulsions at home and abroad in recent years, including spherical, rod-like, thread-like, flaky, cubic, nanotube, dumbbell, ellipsoid and disc-like, etc. It focused on their interfacial adsorption properties for stabilizing Pickering emulsions, such as adsorption activity, arrangement and assembly behavior, inter-particle interactions and emulsion viscosity, etc. Based on the special interfacial adsorption properties of Pickering emulsions, the applications of Pickering emulsions in food fields such as active component encapsulation and delivery, lipid substitution, interfacial catalysis, antimicrobial and so on were reviewed. Furthermore, the study discussed the problems in the study of Pickering emulsions stabilized by non-spherical solid particles, and analyzed the development potential for active component encapsulation and delivery. The review provided the reference for the in-depth research and application of Pickering emulsions stabilized by solid particles with different morphologies.

Key words: solid particles, different morphologies, Pickering emulsions, interfacial adsorption properties, food field

Fig. 1

Mechanism diagram of Pickering emulsion stabilized by solid particles A: Steric hindrance; B: Electrostatic repulsion; C: The interaction between particles forms a three-dimensional network"

Fig. 2

Interfacial adsorption diagram of solid particles with different morphologies"

Table 1

Solid particles with different morphologies and their main action modes for stabilizing emulsions"

形貌
Morphology
固体颗粒
Solid particles
稳定乳液的主要作用方式
Main action modes for stabilizing emulsions
参考文献
Reference
球形
Spherical
SiO2、聚苯乙烯微球、球形纤维素纳米晶、TiO2、Fe2O3
SiO2, polystyrene particles, spherical cellulose nanocrystals, TiO2, Fe2O3
静电相互作用、范德华力、空间位阻
Electrostatic interaction, van der Waals force, steric hindrance
[10-11]
棒状
Rod-like
棒状纤维素纳米纤维、棒状二氧化硅
Cellulose nanofiber, rod-like silica colloids
毛细管力、静电相互作用、界面定向排列
Capillary force, electrostatic interaction, interface directional arrangement
[12-14]
线状
Thread-like
线状二氧化硅纳米颗粒、蛋白微纤维
Thread-like mesoporous silica nanoparticles, protein microfibers
相互缠结形成三维网络结构
Intertwined to form a three-dimensional network structure
[15-16]
片状
Flaky
蒙脱土、高岭土、锂皂石、片状双金属氢氧化物、氧化石墨烯薄片等
Montmorillonite, kaolin, laponite, layered double hydroxide compounds, graphene oxide
界面贴合吸附、降低界面张力
Interface adhesion adsorption, reduce the interfacial tension
[17-18]
立方体
Cubic
赤铁矿微粒、碳酸钙颗粒、笼形二氧化硅立方体纳米粒子
Hematite microparticles, calcium carbonate particles, cage-shaped silica cubic nanoparticle
界面不可逆吸附、单层形式组装
Interface irreversible adsorption, monolayer assembly
[19-20]
纳米管
Nanotube
碳纳米管、埃洛石纳米管
Carbon nanotubes, halloysite nanotubes
界面自组装、毛细管力
Interface self-assembly, capillary force
[21-22]
其他
Others
哑铃状、椭圆状、盘状等
Dumbbell, ellipsoid, disc-like, etc
静电相互作用、强粘附性等
Electrostatic interaction, strong adhesion, etc
[23-24]

Fig. 3

Contact angle diagram of spherical solid particles at the oil-water interface"

Fig. 4

Interfacial adsorption of Pickering emulsions stabilized by nanorods with different aspect ratios"

Fig. 5

Application of Pickering emulsion stabilized by solid particles with different morphologies in food field"

[1]
JAFARI S M, SEDAGHAT DOOST A, NIKBAKHT NASRABADI M, BOOSTANI S, VAN DER MEEREN P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends in Food Science & Technology, 2020, 98: 117-128.
[2]
BINKS B P. Particles as surfactants-similarities and differences. Current Opinion in Colloid & Interface Science, 2002, 7(1/2): 21-41.
[3]
LI Z, JIANG X X, LIU H N, YAO Z H, LIU A, MING L S. Evaluation of hydrophilic and hydrophobic silica particles on the release kinetics of essential oil Pickering emulsions. ACS Omega, 2022, 7(10): 8651-8664.

doi: 10.1021/acsomega.1c06666 pmid: 35309467
[4]
YUAN T Z, ZENG J S, WANG B, CHENG Z, CHEN K F. Pickering emulsion stabilized by cellulosic fibers: Morphological properties- interfacial stabilization-rheological behavior relationships. Carbohydrate Polymers, 2021, 269: 118339.
[5]
MING L S, WU H L, LIU A, NAEEM A, DONG Z S, FAN Q M, ZHANG G C, LIU H N, LI Z. Evolution and critical roles of particle properties in Pickering emulsion: A review. Journal of Molecular Liquids, 2023, 388: 122775.
[6]
GONZALEZ ORTIZ D, POCHAT-BOHATIER C, CAMBEDOUZOU J, BECHELANY M, MIELE P. Current trends in Pickering emulsions: Particle morphology and applications. Engineering, 2020, 6(4): 468-482.
[7]
SUN Z, YAN X X, XIAO Y, HU L J, EGGERSDORFER M, CHEN D, YANG Z Z, WEITZ D A. Pickering emulsions stabilized by colloidal surfactants: Role of solid particles. Particuology, 2022, 64: 153-163.
[8]
XU T, YANG J, HUA S X, HONG Y, GU Z B, CHENG L, LI Z F, LI C M. Characteristics of starch-based Pickering emulsions from the interface perspective. Trends in Food Science & Technology, 2020, 105: 334-346.
[9]
JORDENS S, RÜHS P A, SIEBER C, ISA L, FISCHER P, MEZZENGA R. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces. Langmuir, 2014, 30(33): 10090-10097.

doi: 10.1021/la5020658 pmid: 25100189
[10]
AVEYARD R, BEAKE B D, CLINT J H. Wettability of spherical particles at liquid surfaces. Journal of the Chemical Society, Faraday Transactions, 1996, 92(21): 4271-4277.
[11]
AVEYARD R, BINKS B P, CLINT J H. Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science, 2003, 100: 503-546.
[12]
彭院院, 张旭, 齐文慧, 淑英, 饶伟丽, 梁铁强, 杨天一, 张志胜. 纳米纤维素稳定Pickering乳液及其在食品中应用研究进展. 食品研究与开发, 2023, 44(2): 196-202.
PENG Y Y, ZHANG X, QI W H, SHU Y, RAO W L, LIANG T Q, YANG T Y, ZHANG Z S. Research progress of Pickering emulsion stabilized by nanocellulose and the application in food. Food Research and Development, 2023, 44(2): 196-202. (in Chinese)
[13]
LEHLE H, NORUZIFAR E, OETTEL M. Ellipsoidal particles at fluid interfaces. The European Physical Journal E, 2008, 26(1/2): 151-160.
[14]
SCHILLING T, JUNGBLUT S, MILLER M A. Depletion-induced percolation in networks of nanorods. Physical Review Letters, 2007, 98(10): 108303.
[15]
XIE D H, JIANG Y L, LI K L, YANG X Y, ZHANG Y J. Pickering emulsions stabilized by mesoporous nanoparticles with different morphologies in combination with DTAB. ACS Omega, 2022, 7(33): 29153-29160.

doi: 10.1021/acsomega.2c03215 pmid: 36033667
[16]
HUMBLET-HUA N P K, VAN DER LINDEN E, SAGIS L M C. Surface rheological properties of liquid-liquid interfaces stabilized by protein fibrillar aggregates and protein-polysaccharide complexes. Soft Matter, 2013, 9(7): 2154-2165.
[17]
杨飞. 片状无机纳米粒子在油/水界面的吸附及其稳定的Pickering乳液[D]. 济南: 山东大学, 2007.
YANG F. Adsorption of flake inorganic nanoparticles at oil/water interface and its stable Pickering emulsion[D]. Jinan: Shandong University, 2007. (in Chinese)
[18]
KHINE Y Y, REN X J, CHU D W, NISHINA Y, FOLLER T, JOSHI R. Surface functionalities of graphene oxide with varying flake size. Industrial & Engineering Chemistry Research, 2022, 61(19): 6531-6536.
[19]
DE FOLTER J W J, HUTTER E M, CASTILLO S I R, KLOP K E, PHILIPSE A P, KEGEL W K. Particle shape anisotropy in Pickering emulsions: Cubes and peanuts. Langmuir, 2014, 30(4): 955-964.

doi: 10.1021/la402427q pmid: 24020650
[20]
JENNI S, PICCI G, FORNASIER M, MAMUSA M, SCHMIDT J, TALMON Y, SOUR A, HEITZ V, MURGIA S, CALTAGIRONE C. Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochemical & Photobiological Sciences, 2020, 19(5): 674-680.
[21]
MENG H, DU D. Pickering emulsions stabilized by ultrashort nanotubes. Materials Today Chemistry, 2021, 20: 100436.
[22]
KPOGBEMABOU D, LECOMTE-NANA G, AIMABLE A, BIENIA M, NIKNAM V, CARRION C. Oil-in-water Pickering emulsions stabilized by phyllosilicates at high solid content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 463: 85-92.
[23]
YANG T Y, WEI L J, JING L Y, LIANG J F, ZHANG X M, TANG M, MONTEIRO M J, CHEN Y I, WANG Y, GU S, ZHAO D Y, YANG H Q, LIU J, MAX LU G Q. Dumbbell-shaped Bi-component mesoporous Janus solid nanoparticles for biphasic interface catalysis. Angewandte Chemie International Edition, 2017, 56(29): 8459-8463.
[24]
LI X, LI J, GONG J, KUANG Y S, MO L H, SONG T. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydrate Polymers, 2018, 183: 303-310.

doi: S0144-8617(17)31502-3 pmid: 29352889
[25]
TOOR A, FENG T, RUSSELL T P. Self-assembly of nanomaterials at fluid interfaces. The European Physical Journal E, 2016, 39(5): 57.
[26]
BORCHERT K B L, GERLACH N, STEINBACH C, REIS B, SCHWARZ S, SCHWARZ D. SiO2 nanospheres as surfactant and template in aqueous dispersion polymerizations yielding highly nanoporous resin particles. Journal of Colloid and Interface Science, 2023, 637: 372-388.
[27]
CHI C Y, LIN J H, LU X Y, ZHENG Y Y, LUO Y X, CHEN Q H. Anisotropic nucleation and compatibilization of SiO2@PS Janus particles on expandable polystyrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660: 130842.
[28]
BINKS B P, CLINT J H. Solid wettability from surface energy components: Relevance to Pickering emulsions. Langmuir, 2002, 18(4): 1270-1273.
[29]
ALSMAEIL A W, KOULOUMPIS A, POTSI G, HAMMAMI M A, KANJ M Y, GIANNELIS E P. Probing the interfacial properties of oil-water interfaces decorated with ionizable, pH responsive silica nanoparticles. Langmuir, 2023, 39(8): 3118-3130.

doi: 10.1021/acs.langmuir.2c03286 pmid: 36791471
[30]
BAI R X, XUE L H, DOU R K, MENG S X, XIE C Y, ZHANG Q, GUO T, MENG T. Light-triggered release from Pickering emulsions stabilized by TiO2 nanoparticles with tailored wettability. Langmuir, 2016, 32(36): 9254-9264.
[31]
WANG J, YU M Y, YANG C. Colloidal TiO2 nanoparticles with near-neutral wettability: An efficient Pickering emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570: 224-232.
[32]
AMAR FELDBAUM R, YAAKOV N, ANANTH MANI K, YOSSEF E, METBEEV S, ZELINGER E, BELAUSOV E, KOLTAI H, MENT D, MECHREZ G. Single cell encapsulation in a Pickering emulsion stabilized by TiO2 nanoparticles provides protection against UV radiation for a biopesticide. Colloids and Surfaces B, Biointerfaces, 2021, 206: 111958.
[33]
TENG X, DING X Y, SHE Z X, LI Y, XIONG X H. Preparation of functionalized magnetic polystyrene microspheres and their application in food safety detection. Polymers, 2022, 15(1): 77.
[34]
LU S S, XU W, CHEN Y Y, JIANG Y Q, YAO Q H, LUO F, WANG Y R, CHEN X. Soft template synthesis of honeycomb-like ratiometric oxygen sensitive polystyrene nanospheres and their application in anti-counterfeit authentication and food packaging dynamic indication. Sensors and Actuators B: Chemical, 2016, 232: 585-594.
[35]
GIANNAKAS A E, SALMAS C E, KARYDIS-MESSINIS A, MOSCHOVAS D, KOLLIA E, TSIGKOU V, PROESTOS C, AVGEROPOULOS A, ZAFEIROPOULOS N E. Nanoclay and polystyrene type efficiency on the development of polystyrene/ montmorillonite/oregano oil antioxidant active packaging nanocomposite films. Applied Sciences, 2021, 11(20): 9364.
[36]
DINSMORE A D, HSU M F, NIKOLAIDES M G, MARQUEZ M, BAUSCH A R, WEITZ D A. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science, 2002, 298(5595): 1006-1009.

pmid: 12411700
[37]
KIM D H, JEONG J H, WOO H C, KIM M H. Synthesis of highly porous polymer microspheres with interconnected open pores for catalytic microreactors. Chemical Engineering Journal, 2021, 420: 127628.
[38]
GÁLVEZ-VERGARA A, FRESCO-CALA B, CÁRDENAS S. Switchable Pickering emulsions stabilized by polystyrene-modified magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125462.
[39]
DONG H, DING Q J, JIANG Y F, LI X, HAN W J. Pickering emulsions stabilized by spherical cellulose nanocrystals. Carbohydrate Polymers, 2021, 265: 118101.
[40]
KASIRI N, FATHI M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 2018, 106: 1023-1031.

doi: S0141-8130(17)31240-0 pmid: 28842201
[41]
刘佩, 陈澄, 秦新光, 张海枝, 胡中泽, 吴琼, 姚人勇, 王学东, 刘刚. 乳清分离蛋白聚集体乳化性能及其Pickering乳液稳定性. 食品科学, 2021, 42(12): 24-30.
LIU P, CHEN C, QIN X G, ZHANG H Z, HU Z Z, WU Q, YAO R Y, WANG X D, LIU G. Emulsifying properties of different kinds of aggregates from whey protein isolate and stability of Pickering emulsions stabilized with them. Food Science, 2021, 42(12): 24-30. (in Chinese)

doi: 10.7506/spkx1002-6630-20200610-144
[42]
BASAVARAJ M G, FULLER G G, FRANSAER J, VERMANT J. Packing, flipping, and buckling transitions in compressed monolayers of ellipsoidal latex particles. Langmuir, 2006, 22(15): 6605-6612.

pmid: 16831003
[43]
KEDZIOR S A, GABRIEL V A, DUBÉ M A, CRANSTON E D. Nanocellulose in emulsions and heterogeneous water-based polymer systems: A review. Advanced Materials, 2021, 33(28): e2002404.
[44]
PANDEY A. Pharmaceutical and biomedical applications of cellulose nanofibers: A review. Environmental Chemistry Letters, 2021, 19(3): 2043-2055.
[45]
KALASHNIKOVA I, BIZOT H, BERTONCINI P, CATHALA B, CAPRON I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 2013, 9(3): 952-959.
[46]
NUGMANOVA A G, KALININA M A. Self-assembly of metal-organic frameworks in Pickering emulsions stabilized with graphene oxide. Colloid Journal, 2021, 83(5): 614-626.
[47]
CHEN Q H, ZHENG J, XU Y T, YIN S W, LIU F, TANG C H. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids, 2018, 75: 125-130.
[48]
KUIJK A, VAN BLAADEREN A, IMHOF A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. Journal of the American Chemical Society, 2011, 133(8): 2346-2349.

doi: 10.1021/ja109524h pmid: 21250633
[49]
DATSKOS P, POLIZOS G, BHANDARI M, CULLEN D A, SHARMA J. Colloidosome like structures: Self-assembly of silica microrods. RSC Advances, 2016, 6(32): 26734-26737.
[50]
LOU F L, YE L, KONG M Q, YANG Q, LI G X, HUANG Y J. Pickering emulsions stabilized by shape-controlled silica microrods. RSC Advances, 2016, 6(29): 24195-24202.
[51]
YAN H, ZHAO B, LONG Y, ZHENG L Q, TUNG C H, SONG K. New Pickering emulsions stabilized by silica nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482: 639-646.
[52]
LIU X C, HSIEH Y L. Amphiphilic protein microfibrils from ice-templated self-assembly and disassembly of Pickering emulsions. ACS Applied Bio Materials, 2020, 3(4): 2473-2481.

doi: 10.1021/acsabm.0c00188 pmid: 35025297
[53]
KIAEE G, DIMITRAKAKIS N, SHARIFZADEH S, KIM H J, AVERY R K, MOGHADDAM K M, HAGHNIAZ R, YALCINTAS E P, DE BARROS N R, KARAMIKAMKAR S, LIBANORI A, KHADEMHOSSEINI A, KHOSHAKHLAGH P. Laponite-based nanomaterials for drug delivery. Advanced Healthcare Materials, 2022, 11(7): e2102054.
[54]
LIU Y G, LI Z G, CHEN W Z, FENG X M. Fast determination of rutin on a biosensor made using a layered double hydroxide nanocomposite modified electrode. Biosensors, 2023, 14(1): 18.
[55]
ABEND S, BONNKE N, GUTSCHNER U, LAGALY G. Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides. Colloid and Polymer Science, 1998, 276(8): 730-737.
[56]
CREIGHTON M A, OHATA Y, MIYAWAKI J, BOSE A, HURT R H. Two-dimensional materials as emulsion stabilizers: Interfacial thermodynamics and molecular barrier properties. Langmuir, 2014, 30(13): 3687-3696.

doi: 10.1021/la500216n pmid: 24625132
[57]
HUANG F N, LIANG Y D, HE Y J. On the Pickering emulsions stabilized by calcium carbonate particles with various morphologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: 123722.
[58]
HOU H H, LI J, LI X M, FORTH J, YIN J, JIANG X S, HELMS B A, RUSSELL T P. Interfacial activity of amine-functionalized polyhedral oligomeric silsesquioxanes (POSS):A simple strategy to structure liquids. Angewandte Chemie International Edition, 2019, 58(30): 10142-10147.
[59]
IIJIMA S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
[60]
CHEN W B, LIU X Y, LIU Y S, KIM H I. Novel synthesis of self-assembled CNT microcapsules by O/W Pickering emulsions. Materials Letters, 2010, 64(23): 2589-2592.
[61]
BLACHA A W, MILOWSKA K Z, PAYNE M C, GREER H F, TERZYK A P, KORCZENIEWSKI E, CYGANIUK A, BONCEL S. The origin of amphipathic nature of short and thin pristine carbon nanotubes-fully recyclable 1D water-in-oil emulsion stabilizers. Advanced Materials Interfaces, 2023, 10(7): 2202407.
[62]
FUCIÑOS C, ESTÉVEZ N, PASTRANA L, TOVAR C A, RÚA M L. Biofunctionality assessment of α-lactalbumin nanotubes. Food Hydrocolloids, 2021, 117: 106665.
[63]
LISUZZO L, CAVALLARO G, MILIOTO S, LAZZARA G. Pickering emulsions stabilized by halloysite nanotubes: From general aspects to technological applications. Advanced Materials Interfaces, 2022, 9(10): 2102346.
[64]
PARK B J, LEE D. Equilibrium orientation of nonspherical Janus particles at fluid-fluid interfaces. ACS Nano, 2012, 6(1): 782-790.

doi: 10.1021/nn204261w pmid: 22185457
[65]
COOK A B, SCHLICH M, MANGHNANI P N, MOORE T L, DECUZZI P, PALANGE A L. Size effects of discoidal PLGA nanoconstructs in Pickering emulsion stabilization. Journal of Polymer Science, 2022, 60(9): 1480-1491.
[66]
YANG D, YAO X L, WANG L L, XU K, LI D, LIU N, MIDGLEY A, LIU D C, KATSUYOSHI N. Physicochemical stability of Pickering emulsion stabilized with spherical and fibrous iron ions loaded whey protein isolate/gum Arabic complexes. Food Hydrocolloids, 2023, 138: 108471.
[67]
ZHAO P C, JI Y, YANG H, MENG X H, LIU B J. Soy protein isolate-chitosan nanoparticle-stabilized Pickering emulsions: Stability and in vitro digestion for DHA. Marine Drugs, 2023, 21(10): 546.
[68]
WEI Y, LIU Z K, GUO A X, MACKIE A, ZHANG L, LIAO W Y, MAO L K, YUAN F, GAO Y X. Zein colloidal particles and cellulose nanocrystals synergistic stabilization of Pickering emulsions for delivery of β-carotene. Journal of Agricultural and Food Chemistry, 2021, 69(41): 12278-12294.
[69]
BADAR I H, WANG Z Y, LIU H T, CHEN Q, XIA X F, LIU Q, KONG B H. Future prospects of high internal phase Pickering emulsions stabilized by natural modified biopolymers as a potential fat substitute in meat products. Trends in Food Science & Technology, 2023, 140: 104176.
[70]
GAO Y, LIN D H, PENG H N, ZHANG R G, ZHANG B, YANG X B. Low oil Pickering emulsion gels stabilized by bacterial cellulose nanofiber/soybean protein isolate: An excellent fat replacer for ice cream. International Journal of Biological Macromolecules, 2023, 247: 125623.
[71]
DONG Z, LIU Z S, SHI J, TANG H, XIANG X, HUANG F H, ZHENG M M. Carbon nanoparticle-stabilized Pickering emulsion as a sustainable and high-performance interfacial catalysis platform for enzymatic esterification/transesterification. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7619-7629.
[72]
LI C P, HU J T, TANG C, LIU Z W, LI X, LIU S J, TAN R. Thermo-switchable Pickering emulsion stabilized by smart Janus nanosheets for controllable interfacial catalysis. ACS Sustainable Chemistry & Engineering, 2023, 11(38): 14144-14157.
[73]
LI C P, PI Y B, LIU S, FENG J W, ZHANG X, LI S Y, TAN R. Phosphotungstate-functionalized mesoporous Janus silica nanosheets for reaction-controlled Pickering interfacial catalysis. ACS Sustainable Chemistry & Engineering, 2021, 9(40): 13501-13513.
[74]
QUAN X J, LI Y G, GU H C, HU C Y, ZHANG Y M, LI Y, GAO W M, LI C P. Sulfonated polydivinylbenzene bamboo-like nanotube stabilized Pickering emulsion for effective oxidation of olefins to 1, 2-diol. Journal of Colloid and Interface Science, 2022, 606: 158-166.
[75]
LI Y, ZHAO G L, HONG B, ZHAO S L, HAN X, PERA-TITUS M. Unraveling particle size and roughness effects on the interfacial catalytic properties of Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599: 124800.
[76]
WU M, XUE Z, WANG C X, WANG T, ZOU D C, LU P, SONG X P. Smart antibacterial nanocellulose packaging film based on pH- stimulate responsive microcapsules synthesized by Pickering emulsion template. Carbohydrate Polymers, 2024, 323: 121409.
[77]
ZHOU Y, SUN S S, BEI W Y, ZAHI M R, YUAN Q P, LIANG H. Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals. International Journal of Biological Macromolecules, 2018, 112: 7-13.

doi: S0141-8130(17)32765-4 pmid: 29414733
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!