Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (5): 989-999.doi: 10.3864/j.issn.0578-1752.2024.05.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms

HUANG Hao(), WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng   

  1. College of Ecology, Lishui University, Lishui 323000, Zhejiang
  • Received:2023-09-18 Accepted:2024-01-16 Online:2024-03-01 Published:2024-03-06
  • Contact: HUANG Hao

Abstract:

【Background】Edible mushrooms with unique flavor are rich in protein, vitamins, and a variety of bioactive components, such as polysaccharides, phytosterol, etc. China is the major country in the cultivation and consumption of edible mushrooms, among which shiitake mushroom (Lentinula edodes) is the most widely cultivated. The current coolants exhibit low phase change temperature, which may result in chilling injury of shiitake mushrooms.【Objective】 Based on the freezing temperature of shiitake mushrooms, a novel phase change coolant specially for shiitake mushrooms was developed to maintain the postharvest quality.【Method】The main component of the coolant was screened by differential scanning calorimetry (DSC) based on the phase change latent heat and phase change temperature. Potassium sulfate, nano titanium dioxide, and superabsorbent resin were mixed to prepare the coolant. The effects of coolant on the qualities of shiitake mushrooms were studied by the weight loss rate, color, hardness and other indexes. The activities of enzymes related to glutamate metabolism and energy metabolism were also measured to explore the mechanism of preservation.【Result】 The aqueous solution of maltitol was selected as the main component by DSC. The optimal compositions of coolant were 1.85% of maltitol, 2.35% of potassium sulfate, 0.02% of nano titanium dioxide, and 0.80% of super absorbent resin, leading to the phase change latent heat and temperature at 405.26 J·g-1 and -1.8 ℃, respectively. Compared with the control group, under the low-temperature conditions provided by the refrigerant, the weight loss rate of shiitake mushrooms decreased by 51.92%, and the hardness and brightness increased by 66.67% and 41.94%, respectively. The shelf life of shiitake mushrooms was extended. The low temperature also regulated the activities of enzymes, which were related to glutamate metabolism and energy metabolism, the glutamic acid and energy charge level increased by 36.64% and 54.76%, respectively. Finally the freshness of shiitake mushroom was maintained.【Conclusion】The novel phase change coolant based on the freezing temperature of shiitake mushrooms could maintain the weight, color, hardness and other indexes, regulate the level of glutamic acid and energy, and delay the deterioration of shiitake mushrooms. Therefore, the coolant was effective for the cold-chain preservation of shiitake mushrooms.

Key words: shiitake mushrooms (Lentinula edodes), phase change coolant, quality, glutamate metabolism, energy metabolism, preservation

Fig. 1

Placement of phase change coolant/ice/water"

Fig. 2

Changes of temperature in the polystyrene box during the storage time"

Fig. 3

Changes in appearance of shiitake mushrooms during storage"

Fig. 4

The changes in weight loss (A), firmness (B), and L* value (C) of shiitake mushrooms during the storage for 5 d Different lowercase letters indicate significant difference (P<0.05). The same as below"

Table 1

Changes in free amino acid content of Shiitake mushroom during storage"

氨基酸
Amino acid (mg·g-1)
组别
Group
贮藏时间 Storage time (d)
0 1 2 3 4 5
天门冬氨酸
Aspartic acid (Asp)
对照组 Control 9.64±0.36a 12.51±0.62ab 15.63±1.33bcde 18.35±2.23cdef 20.61±3.72f 19.54±1.24ef
蓄冷剂组 Coolant 9.64±0.36a 12.27±1.25ab 15.27±0.55bcd 16.94±0.38cdef 19.88±2.73f 20.16±3.08f
冰组 Ice 9.64±0.36a 12.42±1.98ab 14.53±4.07bc 17.40±1.69cdef 19.12±0.98def 19.36±3.32def
苏氨酸
Threonine (Thr)
对照组 Control 8.58±1.08a 9.38±0.85ab 13.63±1.16cd 11.82±1.00bcd 14.40±2.60d 12.48±0.84cd
蓄冷剂组 Coolant 8.58±1.08a 9.42±0.65ab 11.30±0.94abc 12.56±2.10cd 12.33±0.59cd 11.83±1.41bcd
冰组 Ice 8.58±1.08a 9.31±2.01ab 12.52±2.98cd 13.16±0.92cd 12.65±1.10cd 12.59±0.59cd
丝氨酸
Serine (Ser)
对照组 Control 7.49±0.19a 11.98±2.74ab 16.28±1.42bc 21.89±0.99d 17.34±2.95c 18.47±4.97cd
蓄冷剂组 Coolant 7.49±0.19a 9.60±2.56b 11.97±1.34ab 15.81±2.71bc 16.93±3.79c 16.34±1.17bc
冰组 Ice 7.49±0.19a 9.87±0.64a 15.58±2.01bc 17.79±0.23cd 18.53±1.87cd 15.18±3.48bc
谷氨酸
Glutamate (Glu)
对照组 Control 39.07±1.13efg 30.41±0.89abcd 25.25±3.79a 29.79±3.03abc 31.40±0.57abcde 28.41±4.53ab
蓄冷剂组 Coolant 39.07±1.13efg 39.14±0.25efg 40.70±3.94fg 44.30±12.23g 37.43±3.64cdefg 38.82±6.61defg
冰组 Ice 39.07±1.13efg 33.58±2.12abcdef 35.20±1.94bcdef 31.40±4.75abcde 26.63±4.14ab 26.15±3.28a
甘氨酸
Glycine (Gly)
对照组 Control 5.02±0.37ab 4.60±0.46ab 6.39±1.75bcd 5.77±0.11abc 8.29±0.84def 15.01±2.27h
蓄冷剂组 Coolant 5.02±0.37ab 3.95±0.84a 5.30±0.15abc 7.52±0.73cde 9.69±1.13efg 14.47±0.79h
冰组 Ice 5.02±0.37ab 4.17±0.11ab 4.54±0.53ab 10.35±1.80fg 11.52±2.71g 14.32±1.32h
丙氨酸
Alanine (Ala)
对照组 Control 6.94±0.38a 9.19±1.33bcd 9.45±1.01bcde 9.49±1.88bcde 11.79±0.97g 10.25±0.15cdefg
蓄冷剂组 Coolant 6.94±0.38a 8.79±0.21bc 9.62±0.18bcdef 10.04±0.75bcdefg 9.71±1.80bcdef 9.50±0.22bcde
冰组 Ice 6.94±0.38a 8.30±0.55ab 11.09±1.49efg 10.79±0.76defg 11.41±0.53fg 10.04±0.31bcdefg
半胱氨酸
Cysteine (Cys)
对照组 Control 2.24±0.21h 1.99±0.07fg 1.56±0.04d 1.41±0.07cd 1.27±0.05bc 1.20±0.18ab
蓄冷剂组 Coolant 2.24±0.21h 2.06±0.06gh 1.82±0.05ef 1.77±0.21e 1.03±0.06a 0.99±0.04a
冰组 Ice 2.24±0.21h 2.01±0.08fg 1.86±0.13efg 1.58±0.12d 1.15±0.13ab 1.06±0.06ab
缬氨酸
Valine (Val)
对照组 Control 5.53±0.48b 8.31±0.25cde 10.30±0.37fg 9.37±0.10ef 12.95±1.44i 14.83±0.42j
蓄冷剂组 Coolant 5.53±0.48b 5.88±0.68b 8.48±0.30cde 8.66±0.41de 7.20±0.72c 3.91±1.67a
冰组 Ice 5.53±0.48b 7.86±0.93cd 8.64±0.23de 12.12±0.85hi 11.49±1.09gh 14.52±0.48j
蛋氨酸
Methionine (Met)
对照组 Control 1.52±0.42a 2.55±0.44abcd 4.59±0.18hi 3.37±1.14cdefg 2.80±0.19bcde 2.40±0.52abc
蓄冷剂组 Coolant 1.52±0.42a 2.30±0.25ab 4.19±0.70fghi 4.39±0.39ghi 4.08±0.17fghi 3.59±0.72defgh
冰组 Ice 1.52±0.42a 2.28±0.42ab 4.77±0.38i 3.80±0.24efghi 3.14±1.21bcdef 3.45±0.12cdefg
异亮氨酸
Isoleucine (Ile)
对照组 Control 6.24±0.15a 6.88±0.86a 8.94±0.44bc 12.79±0.47f 9.42±1.52bcd 11.36±1.35e
蓄冷剂组 Coolant 6.24±0.15a 8.61±0.82b 9.75±0.50bcd 10.38±0.58cde 10.10±0.72cde 9.74±0.42bcd
冰组 Ice 6.24±0.15a 6.43±0.66a 6.13±0.49a 10.39±0.67cde 10.27±1.06cde 10.55±0.23de
亮氨酸
Leucine (Leu)
对照组 Control 10.42±0.09d 15.97±0.35f 12.51±0.61e 16.37±0.38f 10.31±0.19d 11.88±0.58e
蓄冷剂组 Coolant 10.42±0.09d 6.14±0.20a 5.78±0.10a 6.14±0.71a 7.50±0.30b 7.64±0.25b
冰组 Ice 10.42±0.09d 12.02±0.30e 12.13±0.48e 11.03±0.62d 9.18±0.77c 12.69±0.43e
酪氨酸
Tyrosine (Tyr)
对照组 Control 4.34±0.33a 8.86±0.38bc 11.26±0.19e 9.49±0.65cd 8.83±0.26bc 7.82±1.42b
蓄冷剂组 Coolant 4.34±0.33a 7.66±0.67b 8.55±0.21bc 8.85±1.19bc 9.56±0.56cd 8.36±0.88bc
冰组 Ice 4.34±0.33a 7.53±0.62b 9.33±1.29cd 10.41±0.27de 8.90±0.51bc 8.14±0.60bc
苯丙氨酸
Phenylalanine (Phe)
对照组 Control 5.00±0.64a 5.48±0.07ab 7.17±1.97c 7.96±0.15cd 8.71±0.44def 9.99±0.25fgh
蓄冷剂组 Coolant 5.00±0.64a 5.49±0.77ab 7.54±1.39cd 8.34±0.40cde 9.55±0.52efg 11.06±0.72h
冰组 Ice 5.00±0.64a 6.84±1.16bc 6.83±0.45bc 7.92±0.36cd 9.69±0.70efgh 10.49±0.41gh
赖氨酸
Lysine (Lys)
对照组 Control 15.39±0.26g 12.30±1.34ef 11.61±2.52cdef 10.22±1.08abcde 8.18±0.22a 9.36±0.70ab
蓄冷剂组 Coolant 15.39±0.26g 13.33±0.39f 11.32±0.09bcdef 11.30±0.61bcdef 11.98±1.80def 9.80±0.27abcd
冰组 Ice 15.39±0.26g 11.56±0.56bcdef 10.16±2.19abcde 10.47±0.52bcde 9.93±0.71abcd 9.73±1.02abc
组氨酸
Histidine (His)
对照组 Control 5.23±0.25bcde 3.25±0.23a 4.30±1.49abcd 10.46±0.96h 11.02±1.06h 11.87±0.89h
蓄冷剂组 Coolant 5.23±0.25bcde 4.62±0.50abcde 4.04±0.28abc 5.52±0.44cde 6.07±1.60ef 7.09±0.10fg
冰组 Ice 5.23±0.25bcde 3.82±0.58ab 3.79±1.12ab 5.85±1.04def 7.93±0.80g 8.21±0.41g
精氨酸
Arginine (Arg)
对照组 Control 9.75±0.31a 14.21±0.35bcd 15.49±1.88de 14.85±0.01bcd 18.57±1.81ef 20.24±0.90f
蓄冷剂组 Coolant 9.75±0.31a 10.19±0.56a 10.45±0.51a 15.41±2.17cde 11.96±0.84ab 12.09±0.08abc
冰组 Ice 9.75±0.31a 14.89±1.22bcd 13.99±3.40bcd 15.23±1.11bcd 16.05±4.41de 16.35±1.28de
脯氨酸
Proline (Pro)
对照组 Control 16.53±0.40f 8.50±1.20cd 8.20±0.53cd 6.31±0.93bc 5.59±3.16ab 3.57±1.16a
蓄冷剂组 Coolant 16.53±0.40f 14.07±0.38e 13.65±0.85e 10.58±0.75d 10.24±1.29d 8.81±1.73cd
冰组 Ice 16.53±0.40f 10.75±1.06d 9.01±1.11cd 8.90±3.33cd 8.46±0.49cd 3.72±0.58a
总量
Total amino acid
对照组 Control 158.95±1.01a 166.39±1.68ab 182.55±7.44cde 199.70±8.41fg 201.48±8.58fg 208.69±9.79g
蓄冷剂组 Coolant 158.95±1.01a 163.54±3.25ab 179.72±6.90cd 198.50±13.16fg 195.24±3.89efg 194.21±12.29ef
冰组 Ice 158.95±1.01a 163.66±4.13a 180.10±2.42bc 198.58±8.23efg 196.03±5.72ef 196.56±9.28def

Fig. 5

The changes in protease activity (A), GOGAT activity (B), GDH activity (C) and Log(ΔGDH/ΔGOGAT)(D) of shiitake mushrooms during the storage for 5 d"

Fig. 6

The changes in ATP (A), ADP (B), AMP (C) and energy charge (D) of shiitake mushrooms during the storage for 5 d"

Fig. 7

The changes in SDH (A), CCO (B), H+-ATPase (C) and Ca2+-ATPase of shiitake mushrooms during the storage for 5 d"

[1]
CHUN S, GOPAL J, MUTHU M. Antioxidant activity of mushroom extracts/polysaccharides-their antiviral properties and plausible antiCOVID-19 properties. Antioxidants, 2021, 10(12): 1899.

doi: 10.3390/antiox10121899
[2]
鲍大鹏, 邹根, 裴晓东, 杨瑞恒, 李正鹏, 谭琦. 中国食用菌产业实现高质量现代化发展的路径探讨. 食用菌学报, 2022, 29(6): 103-110.
BAO D P, ZOU G, PEI X D, YANG R H, LI Z P, TAN Q. Discussion on the path toward high quality modernization of edible fungi industry in China. Acta Edulis Fungi, 2022, 29(6): 103-110. (in Chinese)
[3]
贺国强, 魏金康, 胡晓艳, 吴尚军, 赵海康. 我国食用菌产业发展现状及展望. 蔬菜, 2022(4): 40-46.
HE G Q, WEI J K, HU X Y, WU S J, ZHAO H K. Present situation and prospect of edible fungi industry development in China. Vegetables, 2022, 4: 40-46. (in Chinese)
[4]
中国食用菌协会. 2020年度全国食用菌统计调查结果分析. 中国食用菌, 2022, 41(1): 85-91.
China Edible Fungi Association. Analysis on the results of national edible fungi statistical survey in 2020. Edible Fungi of China, 2022, 41(1): 85-91. (in Chinese)
[5]
段应策, 胡姿仪, 杨帆, 李金涛, 邬向丽, 张瑞颖. pH和缓冲作用对香菇菌丝生长的影响. 中国农业科学, 2020, 53(22): 4683-4690. doi: 10.3864/j.issn.0578-1752.2020.22.014.
DUAN Y C, HU Z Y, YANG F, LI J T, WU X L, ZHANG R Y. Effects of pH and buffering on the growth of Lentinula edodes Mycelium. Scientia Agricultura Sinica, 2020, 53(22): 4683-4690. doi: 10.3864/j.issn.0578-1752.2020.22.014. (in Chinese)
[6]
KONNO N, NAKADE K, NISHITANI Y, MIZUNO M, SAKAMOTO Y. Lentinan degradation in the Lentinula edodes fruiting body during postharvest preservation is reduced by downregulation of the exo- β-1,3-glucanase EXG2. Journal of Agricultural and Food Chemistry, 2014, 62(32): 8153-8157.

doi: 10.1021/jf501578w
[7]
PACE B, CEFOLA M. Innovative preservation technology for the fresh fruit and vegetables. Foods, 2021, 10(4): 719.

doi: 10.3390/foods10040719
[8]
赵晓晓, 夏铭, 管维良, 茅林春. 蓄冷技术在生鲜果蔬贮藏和运输中的研究与应用. 保鲜与加工, 2020, 20(1): 217-225.
ZHAO X X, XIA M, GUAN W L, MAO L C. Research and application of cool storage technology in storage and transportation of fresh fruits and vegetables. Storage and Process, 2020, 20(1): 217-225. (in Chinese)
[9]
辛小荣, 倪纪洋, 李辉, 张慧, 王伟华. 冬枣保鲜蓄冷剂的研制. 中国食品添加剂, 2020, 31(11): 60-66.
XIN X R, NI J Y, LI H, ZHANG H, WANG W H. Development of cool storage agent for winter jujube fresh-keeping. China Food Additives, 2020, 31(11): 60-66. (in Chinese)
[10]
张鹏, 袁兴铃, 张鹤, 谈应勇, 赵紫君, 马丽红, 李江阔. 蓄冷剂在葡萄模拟物流中的应用. 包装工程, 2021, 42(13): 75-84.
ZHANG P, YUAN X L, ZHANG H, TAN Y Y, ZHAO Z J, MA L H, LI J K. Application of cool-storage agent in grape simulation logistics. Packaging Engineering, 2021, 42(13): 75-84. (in Chinese)
[11]
冉娅琳, 贾晓昱, 李喜宏, 陈晓彤, 李惠, 刘海东, 姜瑜倩, 范江明. 苹果新型高效蓄冷剂特性及应用效果研究. 食品科技, 2020, 45(5): 31-36.
RAN Y L, JIA X Y, LI X H, CHEN X T, LI H, LIU H D, JIANG Y Q, FAN J M. Study on characteristics and application effect of apple’s new high efficiency cold storage agent. Food Science and Technology, 2020, 45(5): 31-36. (in Chinese)
[12]
XU X F, ZHANG X L. Simulation and experimental investigation of a multi-temperature insulation box with phase change materials for cold storage. Journal of Food Engineering, 2021, 292: 110286.

doi: 10.1016/j.jfoodeng.2020.110286
[13]
TAS C E, UNAL H. Thermally buffering polyethylene/halloysite/ phase change material nanocomposite packaging films for cold storage of foods. Journal of Food Engineering, 2021, 292: 110351.

doi: 10.1016/j.jfoodeng.2020.110351
[14]
谢意通, 张飞, 石洁, 冯莉, 姜丽. 外源蔗糖对紫背天葵采后品质及叶绿体的影响. 中国农业科学, 2022, 55(8): 1642-1656. doi: 10.3864/j.issn.0578-1752.2022.08.014.
XIE Y T, ZHANG F, SHI J, FENG L, JIANG L. Effects of exogenous sucrose on the postharvest quality and chloroplast of Gynura bicolor D.C. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656. doi: 10.3864/j.issn.0578-1752.2022.08.014. (in Chinese)
[15]
VARALDO A, CHIABRANDO V, GIACALONE G. New approach for blueberry firmness grading to improve the shelf-life along the supply chain. Scientia Horticulturae, 2022, 304: 111273.

doi: 10.1016/j.scienta.2022.111273
[16]
马高兴, 陶天艺, 裴斐, 方东路, 赵立艳, 胡秋辉. 不同炒制条件对预制菜肴中双孢蘑菇风味的影响. 中国农业科学, 2022, 55(3): 575-588. doi: 10.3864/j.issn.0578-1752.2022.03.012.
MA G X, TAO T Y, PEI F, FANG D L, ZHAO L Y, HU Q H. Effects of different stir-fry conditions on the flavor of Agaricus bisporus in ready-to-eat dishes. Scientia Agricultura Sinica, 2022, 55(3): 575-588. doi: 10.3864/j.issn.0578-1752.2022.03.012. (in Chinese)
[17]
LI Y J, DING S D, WANG Y X. Shelf life predictive model for postharvest shiitake mushrooms. Journal of Food Engineering, 2022, 330: 111099.

doi: 10.1016/j.jfoodeng.2022.111099
[18]
ZOU J H, WANG L X, SUN G. Sustainable and reusable gelatin-based hydrogel “jelly ice cubes” as food coolant. I: Feasibilities and challenges. ACS Sustainable Chemistry & Engineering, 2021, 9(46): 15357-15364.
[19]
FARAH R I, ALTHUNAYYAN A A, AL-HAJ ALI S N, FARAH A I. Reduction of aerosols and splatter generated during ultrasonic scaling by adding food-grade thickeners to coolants: An in-vitro study. Clinical Oral Investigations, 2022, 26(3): 2863-2872.

doi: 10.1007/s00784-021-04265-0
[20]
金晓燕, 赵鑫淇, 张龙, 马海乐, 周存山. 脉冲强光预处理联合控湿干燥提升香菇的贮藏品质. 现代食品科技, 2023, 39(3): 174-185.
JIN X Y, ZHAO X Q, ZHANG L, MA H L, ZHOU C S. Improving the storage quality of shiitake mushroom by intense pulsed light pretreatment combined with humidity-controlled drying. Modern Food Science and Technology, 2023, 39(3): 174-185. (in Chinese)
[21]
SUBRAMANIAM S, JIAO S S, ZHANG Z T, JING P. Impact of post-harvest processing or thermal dehydration on physiochemical, nutritional and sensory quality of shiitake mushrooms. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(3): 2560-2595.

doi: 10.1111/crf3.v20.3
[22]
GAVAHIAN M, SHEU F H, TSAI M J, CHU Y H. The effects of dielectric barrier discharge plasma gas and plasma-activated water on texture, color, and bacterial characteristics of shiitake mushroom. Journal of Food Processing and Preservation, 2020, 44(1): e14316.
[23]
ZHANG S L, FANG X J, WU W J, TONG C, CHEN H J, YANG H L, GAO H Y. Effects of negative air ions treatment on the quality of fresh shiitake mushroom (Lentinus edodes) during storage. Food Chemistry, 2022, 371: 131200.

doi: 10.1016/j.foodchem.2021.131200
[24]
LIANG X W, ZHANG L, NATARAJAN S K, BECKER D F. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 2013, 19(9): 998-1011.
[25]
SHANG H T, CAO S F, YANG Z F, CAI Y T, ZHENG Y H. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. Journal of Agricultural and Food Chemistry, 2011, 59(4): 1264-1268.

doi: 10.1021/jf104424z
[26]
CHEN Z Q, GAO H Y, WU W J, CHEN H J, FANG X J, HAN Y C, MU H L. Effects of fermentation with different microbial species on the umami taste of Shiitake mushroom (Lentinus edodes). LWT-Food Science & Technolog, 2021, 141: 110889.
[27]
HOU F Y, YI F X, SONG L S, ZHAN S Q, ZHANG R F, HAN X B, SUN X, LIU Z L. Bacterial community dynamics and metabolic functions prediction in white button mushroom (Agaricus bisporus) during storage. Food Research International, 2023, 171: 113077.

doi: 10.1016/j.foodres.2023.113077
[28]
唐建新, 王佳莉, 英丽美, 张云鹤, 孙炳新. 果蔬采后生理代谢变化及调控机制研究进展. 包装工程, 2022, 43(5): 91-99.
TANG J X, WANG J L, YING L M, ZHANG Y H, SUN B X. Advances in physiological metabolism changes and regulation mechanism of harvested fruits and vegetables. Packaging Engineering, 2022, 43(5): 91-99. (in Chinese)
[29]
SCHENCK C A, MAEDA H A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry, 2018, 149: 82-102.

doi: S0031-9422(18)30034-7 pmid: 29477627
[30]
MIYASHITA Y, GOOD A G. Glutamate deamination by glutamate dehydrogenase plays a central role in amino acid catabolism in plants. Plant Signaling & Behavior, 2008, 3(10): 842-843.
[31]
FANG D L, WANG H T, DENG Z L, KIMATU B M, PEI F, HU Q H, MA N. Nanocomposite packaging regulates energy metabolism of mushrooms (Flammulina filiformis) during cold storage: A study on mitochondrial proteomics. Postharvest Biology and Technology, 2022, 193: 112046.

doi: 10.1016/j.postharvbio.2022.112046
[32]
LIU Q, HU S J, SONG Z B, CUI X, KONG W L, SONG K B, ZHANG Y T. Relationship between flavor and energy status in shiitake mushroom (Lentinula edodes) harvested at different developmental stages. Journal of Food Science, 2021, 86(10): 4288-4302.

doi: 10.1111/jfds.v86.10
[33]
JIN P, ZHANG Y, SHAN T M, HUANG Y P, XU J, ZHENG Y H. Low-temperature conditioning alleviates chilling injury in loquat fruit and regulates glycine betaine content and energy status. Journal of Agricultural and Food Chemistry, 2015, 63(14): 3654-3659.

doi: 10.1021/acs.jafc.5b00605 pmid: 25822129
[34]
XIE B, LING C, HU S Q, HOU Y Y, ZHENG Y H, JIN P. CaM enhances chilling tolerance of peach fruit by regulating energy and GABA metabolism. Postharvest Biology and Technology, 2021, 181: 111691.

doi: 10.1016/j.postharvbio.2021.111691
[1] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
[2] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[3] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[4] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[5] REN ZhiQiang, WANG ChenYang, KOU ZhongYun, CAI Rui, YANG GongShe, PANG WeiJun. In Vivo Estimation of Lean Percentage, Fat Percentage, and Intramuscular Fat Content of Boars by Computed Tomography [J]. Scientia Agricultura Sinica, 2023, 56(9): 1787-1799.
[6] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[7] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[8] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[9] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[10] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[11] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[12] WANG XiuJuan, GAO Han, LI HaiPeng, GAO Xue, SUN BaoZhong, CHENG Qiang, XU Lei, ZHANG YaPeng, LEI YuanHua, WEI Meng, LI SanLu, HU JunWei, ZHANG ChangQing, GAO HuiJiang, LI JunYa, ZHANG LuPei, CHEN Yan. Analysis of Growth Performance as well as Carcass and Meat Quality Traits in Pingliang Red Cattle [J]. Scientia Agricultura Sinica, 2023, 56(3): 559-571.
[13] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[14] CHEN YiYong, LI JianLong, ZHOU Bo, WU XiaoMin, CUI YingYing, FENG ShaoMao, HU HaiTao, TANG JinChi. Effects of Intercropping with Vulpia myuros in Tea Plantation on Soil and Tea Quality Components [J]. Scientia Agricultura Sinica, 2023, 56(24): 4916-4929.
[15] XU HAI, LI XIUKUN, LU JIAHAO, JIANG KAI, MA YUE, XU ZHENGJIN, XU QUAN. The Effect of indica/Xian Pedigree Introgression in japonica/Geng Rice Breeding in China [J]. Scientia Agricultura Sinica, 2023, 56(22): 4359-4370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!