Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3264-3282.doi: 10.3864/j.issn.0578-1752.2024.16.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Cell-to-Cell Contact Between Torulaspora delbrueckii and Saccharomyces cerevisiae on the Flavor and Quality of Cabernet Sauvignon Wine

ZHOU DeGang(), XU BinYan, WANG QingXia, ZHU Xia, YANG XueShan()   

  1. College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070
  • Received:2024-01-19 Accepted:2024-04-23 Online:2024-08-16 Published:2024-08-27
  • Contact: YANG XueShan

Abstract:

【Objective】The mixed fermentation of Saccharomyces cerevisiae and Non-Saccharomyces yeast could improve the complexity and richness of wine aroma. In order to accurately control the mixed fermentation, it is necessary to deeply elucidate the regulatory effects of the contact between yeast cells in the co-culture on alcohol fermentation and metabolites.【Method】Torulaspora delbrueckii (T. delbrueckii) and S. cerevisiae was inoculated in the sterilized Cabernet Sauvignon grape juice to conduct pure fermentation, mixed fermentation, and double-compartment fermentation, respectively, and the differences in fermentation kinetics and volatile aroma compounds were analyzed. In addition, the effects of mixed fermentation and double-compartment fermentation on the vinification parameters and flavor quality of Cabernet Sauvignon wine under different inoculation time modes were investigated.【Result】T. delbrueckii strain was unable to complete the alcoholic fermentation independently, resulting in a final reducing sugar content of 89.00 g∙L-1 in its fermented wine. S. cerevisiae maintained high growth activity in pure fermentation, mixed fermentation as well as double-compartment fermentation, and successfully completed alcohol fermentation. Cell-to-cell contact during mixed fermentation significantly reduced the viability of T. delbrueckii. Compared with the pure fermentation of S. cerevisiae, the mixed and the double-compartment fermentation were characterized by high content of the total acid and low level of ethanol and pH value. The content of volatile acid detected in each treated wine sample was between 0.2-0.7 g∙L-1. The content of volatile acid and anthocyanin in the mixed fermentation group was significantly lower than those in S. cerevisiae pure fermentation and double-compartment fermentation. The results of GC-MS showed that the content of aroma compounds in T. delbrueckii strain pure fermentation group was the lowest among all wine samples. Compared with the S. cerevisiae pure fermentation, the content of esters in the mixed fermentation and the double-compartment fermentation significantly increased, while the content of higher alcohols and C6 compounds significantly decreased. The content of ester compounds, such as isoamyl acetate, hexyl acetate, ethyl caproate and ethyl caprylate in the mixed fermentation group, showed a significant increase trend compared with those in the double-compartment fermentation group. Meanwhile, there was a significant decrease in the levels of higher alcohols and benzene derivatives. In addition, the inoculation time of S. cerevisiae also had a significant effect on the formation of isoamyl acetate and hexyl acetate during mixed fermentation. The results of sensory analysis showed that the simultaneous inoculation (0 h) strategy could significantly reduce the green flavor and enhance the fruity and floral aroma of wine samples compared with S. cerevisiae pure fermentation.【Conclusion】During the mixed alcoholic fermentation, the yeast cell-to-cell contact not only limited the growth of T. delbrueckii, but also significantly affected the aroma characteristics and sensory quality of Cabernet Sauvignon wine.

Key words: wine, Alcoholic fermentation, Non-Saccharomyces yeasts, Saccharomyces cerevisiae, cell-to-cell contact, volatile compounds, flavor quality

Fig. 1

Schematic diagram of double-compartment fermentation device 1: Fermenter; 2: 12-14 KD dialysis membrane"

Table 1

Yeast combination treatment with different fermentation strategies"

发酵方式
Fermentation method
酵母组合
Yeast combination
同时接种
Simultaneous inoculation
顺序接种
Sequential inoculation
0 h 0 h 48 h
纯种发酵 Pure fermentation ES488 *
Td *
混菌发酵 Mixed fermentation ES488/Td + x + x
双室发酵 Double-compartment fermentation Td(左 Left)/ES488(右 Right) + x + x

Fig. 2

Changes in reducing sugar and alcohol content in the left and right compartment during alcoholic fermentation (A) and isolation effect of yeast strains by a double-compartment fermentation device (B) a: Sequential inoculation with T. delbrueckii (left compartment); b: Not inoculated with S. cerevisiae (right compartment); c: T. delbrueckii in middle stage of fermentation (left compartment); d: S. cerevisiae in the middle stage of fermentation (right compartment)"

Fig. 3

Fermentation and growth kinetics of different inoculation strategies"

Fig. 4

Heat map of physicochemical indicators in Cabernet Sauvignon wine fermented with different inoculation strategies Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 5

The chromaticity and hue of wine samples fermented with different inoculation strategies"

Fig. 6

Distribution (A) and content (B) changes of volatile compounds in different fermentation groups of Cabernet Sauvignon wine Colored bar chart indicate the kind of volatile components in each wine sample; Different lowercase letters indicate significant difference (P<0.05); Green bar indicate the kind of volatile compounds in wine samples; Solid orange dot represent that this compound was detected in wines; Gray solid dot represent that this compound was not been detected"

Fig. 7

Cluster heat map of variety aroma compounds in wines fermented with different inoculation strategies"

Fig. 8

Cluster heat map of fermentative aroma compounds in wines fermented with different inoculation strategies A: Acetate esters; B: Ethyl esters; C: Other esters; D: Higher alcohols; E: Benzene derivatives; F: Fatty acids"

Table 2

The content of volatile compounds with OAV>0.1 in Cabernet Sauvignon wine fermented with different strategies"

化合物
Compound
阈值
Threshold (μg∙L-1)
气味活性值
Odor activity value
香气物质质量浓度Aroma concentration (g∙L-1) 气味描述
Odor description
P-Td P-Sc M0h-Td/Sc M48h-Td/Sc D0h-Td/Sc D48h-Td/Sc
乙酸酯Acetate ester
乙酸异戊酯
Isoamyl acetate
30[30] >1.0 240.67±11.63f 1841.62±49.65e 2379.82±16.75b 2056.2±17.14c 2622.37±32.56a 1924.82±22.58d 苹果、香蕉、水果
Apples, bananas, fruit
乙酸己酯
Hexyl acetate
670[30] >0.1 9.87±2.21d 235.91±44.94b 295.98±2.06a 273.99±11.62a 284.78±6.77a 130.12±6.8c 苹果、香蕉、草本
Apples, bananas, herbs
乙酸辛酯
Octyl acetate
50[29] >0.1 / 10.21±0.19a / 9.22±1.53b 6.7±1.02c / 柑橘、脂肪、木材
Citrus, fat, wood
脂肪酸乙酯Ethyl ester
己酸乙酯
Ethyl hexanoate
14[30] >1.0 80.58±11.86f 563.19±24.7e 867.89±14.19b 685.47±16.9d 950.76±11.91a 798.21±13.59c 茴香、香蕉、白兰地
Fennel, banana, brandy
辛酸乙酯
Ethyl caprylate
5[30] >1.0 125.37±13.6d 3068.89±79.64c 5322.07±511.95a 3213.94±180.79c 3913.51±3.49b 4050.86±212.1b 杏、香蕉、白兰地
Apricots, bananas, brandy
癸酸乙酯
Ethyl caprate
200[30] >1.0 461±4.9e 1176.4±128.15d 1550.75±2.27b 1311.93±100.42c 1943±26.81a 531.58±2.93e 白兰地、天竺葵
Brandy, geranium
其他酯Other esters
辛酸甲酯
Methyl octylate
200[29] >0.1 / 25.56±1.93a 10.87±1.59b / / / 水果、橙子、甜味
Fruit, orange, sweet
丙酸己酯
Hexyl propionate
8[30] >1.0 / 31.27±0.3a 17.65±0.68b / 10.73±0.73c / *
正辛酸异戊酯
Isoamyl octylate
125[30] >0.1 / 13.93±3.36b 20.63±4.99a / 7.79±0.03c / 烤苹果
Roast apple
高级醇Higher alcohol
异戊醇
Isoamylol
30000[30] >0.1 2900.7±225.8e 4431.76±136.36a 3753.93±290.09c 3470.63±18.08d 4040.31±126.07b 3807.05±291.5bc 苦杏仁、香蕉
Bitter almonds, bananas
正庚醇
Heptan-1-ol
200[30] >0.1 6.1±0.63d 32.68±2.27a 9.25±0.01c 25.3±1b 4.08±0.44e 7.03±0.23d 柠檬、柑橘
Lemon, citrus,
正辛醇
1-Octanol
40[31] >0.1 / 40.15±1.71a / 30.62±3.31b / / 柑橘、玫瑰、茉莉
Citrus, rose, jasmine
苯衍生物Benzene derivative
乙酸苯乙酯
Phenethyl acetate
250[31] >0.1 223.55±7.43d 635.44±11.41c 748.95±28.74b 616.93±41.09c 874.39±69.95a 625.54±14.26c 玫瑰、花香、果香
Rose, floral, fruity aromas
苯乙醇
Phenethyl alcohol
10000[31] >0.1 2570.47±399.9b 2604.23±88.12b 3101.56±141.2a 2495.06±257.03b 3129.64±209.56a 2632.84±163.54b 玫瑰、花香、蜂蜜
Rose, floral fragrance, honey
脂肪酸Fatty acids
2-甲基丁酸
2-Methylbutyric acid
30[29] >0.1 73.71±0.34a 29.38±1.19c 19.63±1.29d 35.64±4.26b 30.46±3.74c 21.57±1.53d 辛辣、乳酪
Spicy, cheese
辛酸
Octanoic acid
500[32] >0.1 24.3±5.7c 103.4±30.3a 86.42±2.36ab 33.94±0.9c 73.2±13.84b 20.73±4.81c 奶酪、脂肪
Cheese, fat
萜烯类Terpene
芳樟醇
Linalool
15[31] >0.1 18.78±0.62a 12.27±0.46d 13.87±0.93c 12.04±0.09d 17.11±0.69b 19.35±0.35a 花香、果香、葡萄
Floral, fruity, grape
乙酸香叶酯
Geranyl acetate
150[29] >0.1 / / / 20.47±2.59b / 40.3±2.31a 薰衣草、玫瑰、甜味
Lavender, rose, sweet taste
香茅醇
Citronellol
100[30] >0.1 20.21±0.3c 19.08±0.92c 26.75±1.77a 22.09±2.66b 17.16±0.68d 17±0.3d 柑橘、花香、水果
Citrus, floral, fruit
香叶醇
Geraniol
20[31] >0.1 14.52±1.92c / 19.01±0.03b 29.11±3.15a / / 花香、百香果
Floral, passion fruit
反式-橙花叔醇
(E)-Nerolidol
70[29] >0.1 2.84±0.89c / 5.68±0.12b 2.48±0.27c 10.8±1.64a 10.97±0.04a 花、蜡、木香
Flower, wax, wood fragrance
金合欢醇
Farnesol
20[29] >0.1 4.73±0.44c / 6.89±0.12a 2.96±0.05d 5.35±0.45b 6.71±0.12a 花香、油味、甜味
Floral, oily, sweet flavors
C13降异戊二烯C13-norbornadiene
β-大马士酮
β-Damascone
0.05[32] >1.0 32.74±0.86d 32.17±0.54d 41.84±0.35c 45.38±0.44a 44.37±1.72ab 43.94±0.26b 花香、果香、蜂蜜
Floral, fruity, honey
C6化合物C6 compounds
正己醇
1-Hexanol
1100[32] >0.1 382.05±20.64b 401.35±1.69a 287.02±24.53c 277.96±9.8c 210.24±16.06d 207.8±3.19d 花、水果、生青味
Flowers, fruits, green flavors

Fig. 9

Principal component analysis of aroma compounds with OAV>0.1 in Cabernet Sauvignon wines"

Fig. 10

Sensory evaluation of Cabernet Sauvignon wines with different fermentation strategies"

[1]
MOREIRA N, MENDES F, GUEDES DE PINHO P, HOGG T, VASCONCELOS I. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. International Journal of Food Microbiology, 2008, 124(3): 231-238.
[2]
DEL FRESNO J M, MORATA A, LOIRA I, BAÑUELOS M A, ESCOTT C, BENITO S, GONZÁLEZ CHAMORRO C, SUÁREZ- LEPE J A. Use of non-Saccharomyces in single-culture, mixed and sequential fermentation to improve red wine quality. European Food Research and Technology, 2017, 243(12): 2175-2185.
[3]
RENAULT P, MIOT-SERTIER C, MARULLO P, HERNÁNDEZ- ORTE P, LAGARRIGUE L, LONVAUD-FUNEL A, BELY M. Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: potential applications in the wine industry. International Journal of Food Microbiology, 2009, 134(3): 201-210.
[4]
COMITINI F, GOBBI M, DOMIZIO P, ROMANI C, LENCIONI L, MANNAZZU I, CIANI M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology, 2011, 28(5): 873-882.
[5]
MEDINA K, BOIDO E, FARIÑA L, GIOIA O, GOMEZ M E, BARQUET M, GAGGERO C, DELLACASSA E, CARRAU F. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chemistry, 2013, 141(3): 2513-2521.
[6]
WANG X C, LI A H, DIZY M, ULLAH N, SUN W X, TAO Y S. Evaluation of aroma enhancement for “Ecolly” dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Food Chemistry, 2017, 228: 550-559.
[7]
ALBERGARIA H, ARNEBORG N. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: Role of physiological fitness and microbial interactions. Applied Microbiology and Biotechnology, 2016, 100(5): 2035-2046.
[8]
CIANI M, CAPECE A, COMITINI F, CANONICO L, SIESTO G, ROMANO P. Yeast interactions in inoculated wine fermentation. Frontiers in Microbiology, 2016, 7: 555.

doi: 10.3389/fmicb.2016.00555 pmid: 27148235
[9]
CIANI M, COMITINI F. Yeast interactions in multi-starter wine fermentation. Current Opinion in Food Science, 2015, 1: 1-6.
[10]
NISSEN P, NIELSEN D, ARNEBORG N. Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact- mediated mechanism. Yeast, 2003, 20(4): 331-341.
[11]
NISSEN P, NIELSEN D, ARNEBORG N. The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures. Applied Microbiology and Biotechnology, 2004, 64(4): 543-550.
[12]
RENAULT P E, ALBERTIN W, BELY M. An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions. Applied Microbiology and Biotechnology, 2013, 97(9): 4105-4119.

doi: 10.1007/s00253-012-4660-5 pmid: 23292550
[13]
KEMSAWASD V, BRANCO P, ALMEIDA M G, CALDEIRA J, ALBERGARIA H, ARNEBORG N. Cell-to-cell contact and antimicrobial peptides play a combined role in the death of Lachanchea thermotolerans during mixed-culture alcoholic fermentation with Saccharomyces cerevisiae. FEMS Microbiology Letters, 2015, 362(14): fnv103.
[14]
LUYT N A, BEAUFORT S, DIVOL B, SETATI M E, TAILLANDIER P, BAUER F F. Phenotypic characterization of cell-to-cell interactions between two yeast species during alcoholic fermentation. World Journal of Microbiology and Biotechnology, 2021, 37(11): 186.
[15]
ENGLEZOS V, RANTSIOU K, GIACOSA S, RÍO SEGADE S, ROLLE L, COCOLIN L. Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae. International Journal of Food Microbiology, 2019, 289: 106-114.
[16]
PIETRAFESA A, CAPECE A, PIETRAFESA R, BELY M, ROMANO P. Saccharomyces cerevisiae and Hanseniaspora uvarum mixed starter cultures: Influence of microbial/physical interactions on wine characteristics. Yeast, 2020, 37(11): 609-621.
[17]
PETITGONNET C, KLEIN G L, ROULLIER-GALL C, SCHMITT- KOPPLIN P, QUINTANILLA-CASAS B, VICHI S, JULIEN-DAVID D, ALEXANDRE H. Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Food Microbiology, 2019, 83: 122-133.
[18]
HU K, ZHAO H Y, EDWARDS N, PEYER L, TAO Y S, ARNEBORG N. The effects of cell-cell contact between Pichia kluyveri and Saccharomyces cerevisiae on amino acids and volatiles in mixed culture alcoholic fermentations. Food Microbiology, 2022, 103: 103960.
[19]
贾世宽, 刘亚琼, 陈佳威, 杨学威, 傅晓方, 王颉. 戴尔有孢圆酵母与酿酒酵母混合发酵对马瑟兰干红葡萄酒风味品质的影响. 中国食品学报, 2023, 23(10): 157-166.
JIA S K, LIU Y Q, CHEN J W, YANG X W, FU X F, WANG J. Effects of mixed fermentation of Torulaspora delbrueckii and Saccharomyces cerevisiae on flavor quality of marselan dry red wine. Journal of Chinese Institute of Food Science and Technology, 2023, 23(10): 157-166. (in Chinese)
[20]
战吉宬, 曹梦竹, 游义琳, 黄卫东. 非酿酒酵母在葡萄酒酿造中的应用. 中国农业科学, 2020, 53(19): 4057-4069. doi: 10.3864/j.issn.0578-1752.2020.19.018.
ZHAN J C, CAO M Z, YOU Y L, HUANG W D. Research advance on the application of non-Saccharomyces in winemaking. Scientia Agricultura Sinica, 2020, 53(19): 4057-4069. doi: 10.3864/j.issn.0578-1752.2020.19.018. (in Chinese)
[21]
BALMASEDA A, ROZÈS N, BORDONS A, REGUANT C. The use of Torulaspora delbrueckii to improve malolactic fermentation. Microbial Biotechnology, 2024, 17(1): e14302.
[22]
祝霞, 刘琦, 赵丹丹, 王璐璐, 韩舜愈, 杨学山. 酿造条件对酿酒酵母发酵香气的影响. 食品科学, 2019, 40(16): 115-123.

doi: 10.7506/spkx1002-6630-20180929-321
ZHU X, LIU Q, ZHAO D D, WANG L L, HAN S Y, YANG X S. Effect of different winemaking conditions on fermentation aroma production by Saccharomyces cerevisiae. Food Science, 2019, 40(16): 115-123. (in Chinese)

doi: 10.7506/spkx1002-6630-20180929-321
[23]
PERRONE B, GIACOSA S, ROLLE L, COCOLIN L, RANTSIOU K. Investigation of the dominance behavior of Saccharomyces cerevisiae strains during wine fermentation. International Journal of Food Microbiology, 2013, 165(2): 156-162.
[24]
中华人民共和国国家质量监督检验检疫总局. GB/T15038—2006葡萄酒、果酒通用分析方法. 北京: 中国标准出版社, 2006.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T15038-2006 Analytical methods of wine and fruit wine. Beijing: Standards Press of China, 2006. (in Chinese)
[25]
JAYAPRAKASHA G K, SINGH R P, SAKARIAH K K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 2001, 73(3): 285-290.
[26]
房玉林, 孟江飞, 张昂, 张振文, 刘金串, 韩国民, 刘树文. 罐储时间对赤霞珠葡萄酒中酚类化合物及抗氧化活性的影响. 食品科学, 2011, 32(11): 14-20.

doi: 10.7506/spkx1002-6630-201111004
FANG Y L, MENG J F, ZHANG A, ZHANG Z W, LIU J C, HAN G M, LIU S W. Effect of storage time on phenolic components and antioxidant activity of red wine. Food Science, 2011, 32(11): 14-20. (in Chinese)
[27]
郑秋玲, 谭玉超, 肖慧琳, 贺长映, 刘万好, 王建萍, 刘笑宏, 唐美玲, 杜远鹏, 宫磊, 宋志忠, 卢建声, 徐维华. 不同砧木对赤霞珠干红葡萄酒花色苷及其抗氧化活力的影响. 中国酿造, 2021, 40(8): 105-109.

doi: 10.11882/j.issn.0254-5071.2021.08.019
ZHENG Q L, TAN Y C, XIAO H L, HE C Y, LIU W H, WANG J P, LIU X H, TANG M L, DU Y P, GONG L, SONG Z Z, LU J S, XU W H. Effects of different rootstocks on anthocyanins and antioxidant activity of Cabernet Sauvignon dry red wine. China Brewing, 2021, 40(8): 105-109. (in Chinese)

doi: 10.11882/j.issn.0254-5071.2021.08.019
[28]
祝霞, 赵丹丹, 李俊娥, 毛亚玲, 韩舜愈, 杨学山. O. oeni糖苷酶活性对干白葡萄酒萜烯类香气的影响. 农业机械学报, 2021, 52(8): 363-373.
ZHU X, ZHAO D D, LI J E, MAO Y L, HAN S Y, YANG X S. Effect of glycosidase activity of Oenococcus oeni on terpene aroma compounds of dry white wine. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 363-373. (in Chinese)
[29]
马腾臻, 宫鹏飞, 史肖, 牛见明, 王春霞, 翟文娟, 张波, 韩舜愈. 红枣发酵酒香气成分分析及感官品质评价. 食品科学, 2021, 42(4): 247-253.
MA T Z, GONG P F, SHI X, NIU J M, WANG C X, ZHAI W J, ZHANG B, HAN S Y. Aroma components and sensory properties of fermented jujube wine. Food Science, 2021, 42(4): 247-253. (in Chinese)

doi: 10.7506/spkx1002-6630-20200131-293
[30]
FAÚNDEZ C, PÉREZ R, RAVANAL M C, EYZAGUIRRE J. Penicillium purpurogenum produces a novel, acidic, GH 3 beta- xylosidase: Heterologous expression and characterization of the enzyme. Carbohydrate Research, 2019, 482: 107738.
[31]
SÁENZ-NAVAJAS M P, AVIZCURI J M, BALLESTER J, FERNÁNDEZ-ZURBANO P, FERREIRA V, PEYRON D, VALENTIN D. Sensory-active compounds influencing wine experts' and consumers' perception of red wine intrinsic quality. LWT-Food Science and Technology, 2015, 60(1): 400-411.
[32]
MATTHEWS A, GRBIN P R, JIRANEK V. Biochemical characterisation of the esterase activities of wine lactic acid bacteria. Applied Microbiology and Biotechnology, 2007, 77(2): 329-337.

pmid: 17828602
[33]
王倩倩, 覃杰, 马得草, 陶永胜. 优选发酵毕赤酵母与酿酒酵母混合发酵增香酿造爱格丽干白葡萄酒. 中国农业科学, 2018, 51(11): 2178-2192. doi: 10.3864/j.issn.0578-1752.2018.11.015.
WANG Q Q, QIN J, MA D C, TAO Y S. Aroma enhancement of ecolly dry white wine by co-inoculation of selected Pichia fermentans and Saccharomyces cerevisiae. Scientia Agricultura Sinica, 2018, 51(11): 2178-2192. doi: 10.3864/j.issn.0578-1752.2018.11.015. (in Chinese)
[34]
ENGLEZOS V, RANTSIOU K, TORCHIO F, ROLLE L, GERBI V, COCOLIN L. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology, 2015, 199: 33-40.
[35]
BRANCO P, FRANCISCO D, CHAMBON C, HÉBRAUD M, ARNEBORG N, ALMEIDA M G, CALDEIRA J, ALBERGARIA H. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Applied Microbiology and Biotechnology, 2014, 98(2): 843-853.
[36]
李卉, 王颉, 吕烨, 徐立强, 郭海枫. 超声波催陈对干红葡萄酒感官指标、花色素、色度、色调和总酸浓度变化的影响. 河北农业大学学报, 2007, 30(4): 114-120.
LI H, WANG J, Y, XU L Q, GUO H F. The influence of ultrasonic aging on the organoleptic character, anthocyanins, chromaticity, tonality and total acidity of dry red wine. Journal of Hebei Agricultural University, 2007, 30(4): 114-120. (in Chinese)
[37]
任学梅. 高产风味酶非酿酒酵母筛选、鉴定及其在葡萄酒增香酿造中的应用[D]. 兰州: 甘肃农业大学, 2022.
REN X M. Screening and identification of non-Saccharomyces cerevisiae with high yield of flavor enzyme and its application in wine flavoring brewing[D]. Lanzhou: Gansu Agricultural University, 2022. (in Chinese)
[38]
彭昕, 杨兴元, 艾赛提∙阿合旦, 杨凡, 李泽涵, 李函伦. 游离SO2、溶解氧浓度对葡萄酒颜色及花色苷含量的影响. 食品与机械, 2022, 38(10): 11-16.
PENG X, YANG X Y, ASAT A, YANG F, LI Z H, LI H L. Effects of different concentrations of free SO2and dissolved oxygen on wine color and anthocyanins content. Food & Machinery, 2022, 38(10): 11-16. (in Chinese)
[39]
RENAULT P, COULON J, DE REVEL G, BARBE J C, BELY M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. International Journal of Food Microbiology, 2015, 207: 40-48.
[40]
TONDINI F, LANG T, CHEN L, HERDERICH M, JIRANEK V. Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2019, 294: 42-49.
[41]
ENGLEZOS V, RANTSIOU K, CRAVERO F, TORCHIO F, GIACOSA S, ORTIZ-JULIEN A, GERBI V, ROLLE L, COCOLIN L. Volatile profiles and chromatic characteristics of red wines produced with Starmerella bacillaris and Saccharomyces cerevisiae. Food Research International, 2018, 109: 298-309.
[42]
BENITO S, HOFMANN T, LAIER M, LOCHBÜHLER B, SCHÜTTLER A, EBERT K, FRITSCH S, RÖCKER J, RAUHUT D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. European Food Research and Technology, 2015, 241(5): 707-717.
[43]
耿仕瑾, 姜娇, 曲睿, 石侃, 秦义, 刘延琳, 宋育阳. 戴尔有孢圆酵母调控晚采小芒森葡萄酒乙酸和香气. 农业工程学报, 2021, 37(7): 293-300.
GENG S J, JIANG J, QU R, SHI K, QIN Y, LIU Y L, SONG Y Y. Managing volatile acidity and aroma of Petit Manseng wine using Torulaspora delbruekii. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 293-300. (in Chinese)
[44]
SADOUDI M, TOURDOT-MARÉCHAL R, ROUSSEAUX S, STEYER D, GALLARDO-CHACÓN J J, BALLESTER J, VICHI S, GUÉRIN-SCHNEIDER R, CAIXACH J, ALEXANDRE H. Yeast- yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non- Saccharomyces and Saccharomyces yeasts. Food Microbiology, 2012, 32(2): 243-253.
[45]
张文静, 杨诗妮, 杜爽, 姜娇, 叶冬青, 刘延琳. 本土毕赤克鲁维酵母与酿酒酵母混合发酵葡萄酒的增香潜力分析. 食品科学, 2020, 41(12): 84-90.

doi: 10.7506/spkx1002-6630-20190418-232
ZHANG W J, YANG S N, DU S, JIANG J, YE D Q, LIU Y L. Potential application of mixed starter cultures of indigenous Pichia kluyveri and Saccharomyces cerevisiae to wine aroma enhancement. Food Science, 2020, 41(12): 84-90. (in Chinese)
[46]
DUTRAIVE O, BENITO S, FRITSCH S, BEISERT B, PATZ C D, RAUHUT D. Effect of sequential inoculation with non- Saccharomyces and Saccharomyces yeasts on Riesling wine chemical composition. Fermentation, 2019, 5(3): 79.
[47]
夏鸿川, 张众, 孙丽君, 李伟, 张军翔. 混菌发酵对贺兰山东麓‘赤霞珠’干红葡萄酒香气的影响. 食品科学, 2022, 43(14): 165-175.
XIA H C, ZHANG Z, SUN L J, LI W, ZHANG J X. Effect of mixed culture fermentations on the aroma compounds of ‘Cabernet Sauvignon’ dry red wine produced in the eastern foothill of Helan Mountain. Food Science, 2022, 43(14): 165-175. (in Chinese)

doi: 10.7506/spkx1002-6630-20210710-099
[48]
HU K, JIN G J, XU Y H, TAO Y S. Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Food Research International, 2018, 108: 119-127.
[49]
ZHANG B Q, LUAN Y, DUAN C Q, YAN G L. Use of Torulaspora delbrueckii co-fermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile. Frontiers in Microbiology, 2018, 9: 606.
[50]
PÉREZ D, DENAT M, MINEBOIS R, HERAS J M, GUILLAMÓN J M, FERREIRA V, QUEROL A. Modulation of aroma and chemical composition of Albariño semi-synthetic wines by non- wine Saccharomyces yeasts and bottle aging. Food Microbiology, 2022, 104: 103981.
[51]
王伟雄. 基于Kluyveromyces marxianus与酿酒酵母混合发酵葡萄酒动力学分析及质量提升研究[D]. 乌鲁木齐: 新疆农业大学, 2022.
WANG W X. Dynamic analysis and quality improvement of mixed fermentation wine based on Kluyveromyces marxianus and Saccharomyces cerevisiae[D]. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese)
[1] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[2] LIU ChuanXia, CHEN Xin, WANG Xiao, LI XueWen, LI TingTing, WENG ChangJiang, ZHENG Jun. Preparation and Application of Polyclonal Antibodies Against Pig CD1d Protein [J]. Scientia Agricultura Sinica, 2024, 57(8): 1620-1628.
[3] TAN FangDai, HE YingXia, LIU JiaYue, LI AiHua, TAO YongSheng. Multidimensional Characterization of Astringency Quality in Dry Red Wine and Its Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4342-4355.
[4] ZHAO WenShuo, ZHANG JinLong, YAO ZhaoRan, SONG YuQi, LÜ Shun, LIU YingXue, YUAN CongCong, SUN YuHang. Effects of Aflatoxin B1 on Influenza Virus Replication, Organ Damages and Intestinal Microbiota Disorder of Swine [J]. Scientia Agricultura Sinica, 2024, 57(20): 4145-4160.
[5] WANG JianFeng, HAN YuQi, WANG Kai, ZHAO Man, LI JiXin, FENG LiDan, ZHANG Bo, ZHAO Yong, JIANG YuMei. Influence of Pre-Harvest Application of Benzothiadiazole on Color and Aroma of Cabernet Gernischt Grapes During Fruit Development [J]. Scientia Agricultura Sinica, 2024, 57(19): 3870-3893.
[6] FENG ChunYing, ZHANG ZhaoXia, LIU YunFei, HUANG Li, WENG ChangJiang. Preparation of Monoclonal Antibody Against African Swine Fever Virus p54 Protein and Identification of Its Epitope [J]. Scientia Agricultura Sinica, 2024, 57(19): 3936-3944.
[7] DUAN HuiMin, LIU LingLing, XIA LuLu, YUAN JianLong, CHENG LiXiang, CHEN AiRong, ZHANG Feng. Screening of Low Glycemic Potato Varieties [J]. Scientia Agricultura Sinica, 2024, 57(12): 2295-2308.
[8] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[9] WU ShiHao, HUANG TianRan, HUANG Ming. Effect of Heat Treatment on the Warmed-Over Flavor of Nanjing Water-Boiled Salted Duck Detected by HS-SPME-GC-MS Technology and Electronic Nose [J]. Scientia Agricultura Sinica, 2023, 56(17): 3435-3451.
[10] ZHANG NaiXin, XU ChengZhi, YANG YuYing, ZHANG YaPing, WAN YunFei, QIAO ChuanLing, CHEN HuaLan. Identification of Key Amino Acids in the Antigenic Variation of Eurasian Avian-Like H1N1 Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2023, 56(14): 2828-2836.
[11] WANG Tao, LUO Rui, SUN Yuan, QIU HuaJi. Development Strategies and Application Prospects of African Swine Fever Vaccines: Feasibility and Probability [J]. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222.
[12] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[13] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[14] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[15] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!