Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2703-2716.doi: 10.3864/j.issn.0578-1752.2024.14.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Evolutionary Analysis of the Early Heading Gene OsEHD8 in Common Wild Rice (Oryza rufipogon Giff.)

YAN LiuHui1,2(), ZHONG Qi1(), MA ZengFeng1, WEI MinYi1, LIU Chi1, QIN YuanYuan3, ZHOU XiaoLong1, HUANG DaHui1, LU YingPing2, QIN Gang1(), ZHANG YueXiong1()   

  1. 1 Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-Bioresources, Nanning 530007
    2 Liuzhou Branch, Guangxi Academy of Agricultural Sciences/Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, Guangxi
    3 Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2024-01-16 Accepted:2024-03-07 Online:2024-07-16 Published:2024-07-24
  • Contact: QIN Gang, ZHANG YueXiong

Abstract:

【Objective】 The heading date plays a crucial role in influencing the regional adaptation and yield of rice (Oryza sativa L.). The identification of early heading genes contributes significantly to enhancing and fine-tuning the regulatory network that controls rice heading, which provides valuable genetic resources for molecular breeding with the goal of achieving early maturity and high yield in rice. 【Method】 CL33, a chromosome segment substitution line with early heading, and 93-11, its recipient parent with late heading, were used as research materials to investigate and analyze their major agronomic traits. Two DNA pools were constructed, comprising plants exhibiting extremely early and late heading. Whole-genome resequencing and BSA-Seq analyses were then conducted to locate the genomic region associated with the heading date. In the subsequent steps, InDel markers within this identified region were developed for fine mapping. The gene LOC-Os08g07740 emerged as the primary candidate gene within localization intervals, determined through gene prediction, candidate gene analyses, as well as references to relevant literatures. This candidate gene was subsequently cloned and analyzed for allelic variations. Moreover, we explored the genetic and phylogenetic relationships of the LOC_Os08g07740 gene within the three rice subgroups, Indica, Japonica and O. rufipogon. This analysis involved studying genomic data within approximately 40 kb upstream and downstream of the gene utilizing bioinformatics software.【Result】 Under both natural long-day and short-day conditions in Nanning, Guangxi, CL33 exhibited a 20-25 days shorter than its recipient parent 93-11. Moreover, under natural long-day conditions, the agronomic traits of CL33 were largely similar to those of 93-11, with the exception of a shortened spike length and a reduced number of grains per spike. Genetic analysis revealed that the early heading trait in CL33 was controlled by a recessive gene. This gene was finely localized within a 100 kb region between the markers PSM8-6 and PSM8-8 on the short arm of rice chromosome 8, encompassing 15 predicted candidate genes. Significantly, the candidate gene ORF13 (LOC_Os08g07740), which shared alleles with known heading date genes like DTH8/Ghd8 emerged as a key candidate. Sequencing and sequence alignment of ORF13 demonstrated an 888 bp coding sequence without introns, encoding a protein of 295 amino acids. Compared to the recipient parent 93-11, LOC_Os08g07740 in CL33 featured a 6 bp insertion and a 9 bp deletion between the 535-536th and 820-821st base pairs, respectively, resulting in consequential amino acid sequence alterations. Hence, it was tentatively named OsEHD8 as the target candidate gene. Genetic evolutionary analyses indicated a significant decrease in genetic diversity within the LOC_Os08g07740 gene in Indica and Japonica compared to O. rufipogon, with a 62.53% decrease in Indica and a 53.76% decrease in Japonica. Nevertheless, the differences in genetic diversity between Indica and Japonica were not statistically significant. The LOC_Os08g07740 gene featured a total of 13 haplotypes, with the Hap_2 possibly representing the common ancestor of the three subgroups. Geographical isolation or environmental differences might have led to the fixation of different haplotypes in the Indica and Japonica subgroups. These findings suggested that the LOC_Os08g07740 gene underwent directional selection in the three subgroups.【Conclusion】 OsEHD8, identified as a functional allele of DTH8/Ghd8, played a key role in promoting early heading in rice under both natural long-day and short-day conditions. Moreover, the chromosomal segment substitution line CL33, which carried the OsEHD8 allele, exhibited no significant differences in other agronomic traits compared to the recipient parent 93-11 under natural long-day conditions, except for a shorter spike length and a reduction in grains per spike.

Key words: rice (Oryza sativa L.), heading date, DTH8/Ghd8, BSA-seq, evolution

Table 1

Genetic background detection of Chromosome segment substitution line of CL33"

染色体
Chromosome
代换片段
Substitution segment
位置
Position (bp)
片段长度
Fragment length (bp)
1 --RM5365-- 12264091-17274013 2504961
1 --RM315-RM472-- 34949898-43207575 4706424
3 --RM175-RM282-- 2454279-14694597 10390997
4 --RM3474-RM5320-RM7187-RM17308-- 31845534-27015983 3444945
8 --RM5556-RM1309-RM8264-- 3174356-19953040 16011747
11 --RM224-- 25457233-26796502 669634

Fig. 1

Phenotypes characterization of heading date and investigation of agronomic traits in chromosome segment substitution line CL33 and the recipient parent 93-11 A: Plant morphology. Bar=20 cm; B: Grain lengths. Bar=1 cm; C:Panicles morphology. Bar=5 cm; D: Grain number per panicle. Bar=2 cm; E: Grain width. Bar=1 cm; F: Statistical analysis of agronomic traits. NLD: Natural long-day; NSD: Natural short-day"

Fig. 2

Distribution of heading date in F2 populations of the cross between 93-11 and CL33 under natural long day conditions"

Fig. 3

SNP-index graphs of E1-30 DNA bulk, L1-30 DNA bulk and Δ (SNP-index) from BSA-seq analysis A: SNP-index of extremely early-heading bulk; B: SNP-index of extremely late-heading bulk; C: Δ(SNP-index) between extremely early-heading and extremely late-heading bulk. SNP-index indicates the SNP frequency. The blue dotted line is the 95% threshold line, and the red box represents the SNP frequency in the region associated with heading date on chromosome 8 of rice"

Fig. 4

Fine mapping of OsEHD8 and its alignment of DNA and protein sequences in CL33 and 93-11 A: Fine mapping of OsEHD8; B: Candidate gene prediction in mapping interval, with red indicating target candidate gene; C: Structure diagram of OsEHD8, the black and white boxes indicate base insertions and deletions on exons, respectively; D: Sequencing peak map of OsEHD8 gene at differential sites; E: DNA and protein sequence alignment of OsEHD8"

Table 2

Annotation of candidate genes"

开放阅读框
Open reading frame
基因名称
Gene name
CDS物理位置
CDS physical position (bp)
CDS长度
CDS length (bp)
蛋白质长度
Protein length (aa)
预测功能
Putative function
ORF1 LOC_Os08g07620 4278359-4278688 330 109 表达蛋白Expressed protein
ORF2 LOC_Os08g07630 4283826-4284332 507 168 表达蛋白Expressed protein
ORF3 LOC_Os08g07640 4286407-4286820 414 137 表达蛋白Expressed protein
ORF4 LOC_Os08g07650 4289245-4289615 303 100 表达蛋白Expressed protein
ORF5 LOC_Os08g07660 4290418-4291283 549 182 表达蛋白Expressed protein
ORF6 LOC_Os08g07670 4293995-4294513 519 172 表达蛋白Expressed protein
ORF7 LOC_Os08g07680 4297225-4297737 444 147 表达蛋白Expressed protein
ORF8 LOC_Os08g07690 4300553-4301470 336 111 表达蛋白Expressed protein
ORF9 LOC_Os08g07700 4304696-4303902 528 175 表达AP2结构域蛋白
AP2 domain containing protein, expressed
ORF10 LOC_Os08g07710 4311784-4312071 288 95 假设蛋白Hypothetical protein
ORF11 LOC_Os08g07720 4318638-4316160 1449 482 预测表达的转移酶家族蛋白
Transferase family protein, putative, expressed
ORF12 LOC_Os08g07730 4325887-4329768 1410 469 预测表达的转移酶家族蛋白
Transferase family protein, putative, expressed
ORF13 LOC_Os08g07740 4335434-4333717 894 297 预测表达的类组氨酸转录因子
Histone-like transcription factor and archaeal histone, putative, expressed
ORF14 LOC_Os08g07760 4344171-4350502 1875 624 预测表达的BRI1相关受体激酶1
BRASSINOSTEROID INSENSITIVE 1- associated receptor kinase 1 precursor, putative, expressed
ORF15 LOC_Os08g07774 4352807-4361458 2397 798 预测表达的抗病蛋白RPM1
Disease resistance protein RPM1, putative, expressed

Fig. 5

Protein sequence analysis and alignment of LOC_Os08g07740 in 112 rice varieties"

Fig. 6

Phylogenetic tree and haplotype analysis of LOC_Os08g07740 A: Nucleotide diversity (π) within a 20 kb region upstream and downstream of LOC_Os08g0774; B: The nucleotide diversity (π) and genetic distance (FST) within a 20 kb region upstream and downstream of LOC_Os08g07740; C: A phylogenetic tree of the genomic region surrounding LOC_Os08g07740, including 20 kb upstream and downstream sequences, from 250 rice varieties; D: Haplotype network of LOC_Os08g07740. Different circles represent different haplotypes, with the size of the circle indicating the number of varieties included in the corresponding haplotype. The lines between two circles represent the correlation between the two haplotypes, and short lines on the lines indicate the number of base substitutions required to transition from one haplotype to another; E: Compared to the MSU7 reference genome, the natural variation of LOC_Os08g07740 among 250 rice varieties. Blue indicates the same as the reference genotype, red indicates different from reference genotype, light blue indicates heterozygosity, white indicates the missing"

[1]
ZHOU S R, ZHU S S, CUI S, HOU H G, WU H Q, HAO B Y, CAI L, XU Z, LIU L L, JIANG L, WANG H Y, WAN J M. Transcriptional and post-transcriptional regulation of heading date in rice. The New Phytologist, 2021, 230(3): 943-956.
[2]
XUE W Y, XING Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761-767.
[3]
DOI K, IZAWA T, FUSE T, YAMANOUCHI U, KUBO T, SHIMATANI Z, YANO M, YOSHIMURA A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18(8): 926-936.
[4]
HORI K, OGISO-TANAKA E, MATSUBARA K, YAMANOUCHI U, EBANA K, YANO M. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day‐length response. The Plant Journal, 2013, 76(1): 36-46.
[5]
ISHIKAWA R, AOKI M, KUROTANI K, YOKOI S, SHINOMURA T, TAKANO M, SHIMAMOTO K. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Molecular Genetics and Genomics, 2011, 285(6): 461-470.
[6]
KOJIMA S, TAKAHASHI Y, KOBAYASHI Y, MONNA L, SASAKI T, ARAKI T, YANO M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant & Cell Physiology, 2002, 43(10): 1096-1105.
[7]
KOMIYA R, YOKOI S, SHIMAMOTO K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 2009, 136(20): 3443-3450.
[8]
LI J, CHU H W, ZHANG Y H, MOU T M, WU C Y, ZHANG Q F, XU J. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS ONE, 2012, 7(3): e34231.
[9]
MATSUBARA K, YAMANOUCHI U, NONOUE Y, SUGIMOTO K, WANG Z X, MINOBE Y, YANO M. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. The Plant Journal, 2011, 66(4): 603-612.

doi: 10.1111/j.1365-313X.2011.04517.x pmid: 21284756
[10]
RYU C H, LEE S, CHO L H, KIM S L, LEE Y S, CHOI S C, JEONG H J, YI J, PARK S J, HAN C D, AN G. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)‐dependent flowering in rice. Plant, Cell & Environment, 2009, 32(10): 1412-1427.
[11]
TAKAHASHI Y, SHOMURA A, SASAKI T, YANO M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7922-7927.
[12]
WEI H, WANG X L, XU H, WANG L. Molecular basis of heading date control in rice. aBIOTECH, 2020, 1(4): 219-232.

doi: 10.1007/s42994-020-00019-w pmid: 36304129
[13]
YAN W H, WANG P, CHEN H X, ZHOU H J, LI Q P, WANG C R, DING Z H, ZHANG Y S, YU S B, XING Y Z, ZHANG Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant, 2011, 4(2): 319-330.
[14]
YANO M, KATAYOSE Y, ASHIKARI M, YAMANOUCHI U, MONNA L, FUSE T, BABA T, YAMAMOTO K, UMEHARA Y, NAGAMURA Y, SASAKI T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12(12): 2473-2484.
[15]
ZHANG H, ZHU S S, LIU T Z, WANG C M, CHENG Z J, ZHANG X, CHEN L P, SHENG P K, CAI M H, LI C N, WANG J C, ZHANG Z, CHAI J T, ZHOU L, LEI C L, GUO X P, WANG J L, WANG J, JIANG L, WU C Y, WAN J M. DELAYED HEADING DATE1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice. Plant Biotechnology Journal, 2019, 17(2): 531-539.
[16]
ZHANG X N, FENG Q, MIAO J S, ZHU J J, ZHOU C C, FAN D L, LU Y Q, TIAN Q L, WANG Y C, ZHAN Q L, WANG Z Q, WANG A H, ZHANG L, SHANGGUAN Y Y, LI W J, CHEN J Y, WENG Q J, HUANG T, TANG S C, SI L Z, HUANG X H, WANG Z X, HAN B. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). The Plant Cell, 2023, 35(11): 4002-4019.
[17]
蒋丹, 洪广成, 陈倩, 刘石锋, 秦小健. 水稻抽穗期分子调控研究进展. 分子植物育种, 2019, 17(21): 7071-7077.
JIANG D, HONG G C, CHEN Q, LIU S F, QIN X J. Research progress in molecular regulation of heading date in rice (Oryza sativa). Molecular Plant Breeding, 2019, 17(21): 7071-7077. (in Chinese)
[18]
王玉博, 王悦, 刘雄, 唐文帮. 水稻光周期调控开花的研究进展. 中国水稻科学, 2021, 35(3): 207-224.

doi: 10.16819/j.1001-7216.2021.0514
WANG Y B, WANG Y, LIU X, TANG W B. Research progress of photoperiod regulation in rice flowering. Chinese Journal of Rice Science, 2021, 35(3): 207-224. (in Chinese)

doi: 10.16819/j.1001-7216.2021.0514
[19]
ANDRÉS F, GALBRAITH D W, TALÓN M, DOMINGO C. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiology, 2009, 151(2): 681-690.

doi: 10.1104/pp.109.139097 pmid: 19675157
[20]
HUANG L L, TANG J C, ZHU B H, CHEN G D, CHEN L Y, BU S H, ZHU H T, LIU Z P, LI Z, MENG L J, LIU G F, WANG S K. QTL epistasis plays a role of homeostasis on heading date in rice. Scientific Reports, 2024, 14(1): 373.
[21]
TSUJI H, TAOKA K I, SHIMAMOTO K. Regulation of flowering in rice: Two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology, 2011, 14(1): 45-52.

doi: 10.1016/j.pbi.2010.08.016 pmid: 20864385
[22]
ZONG W B, REN D, HUANG M H, SUN K L, FENG J, L ZHAO J, XIAO D D, XIE W H, LIU S Q, ZHANG H, QIU R, TANG W J, YANG R Q, CHEN H Y, XIE X R, CHEN L T, LIU Y G, GUO J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. The New Phytologist, 2021, 229(3): 1635-1649.
[23]
王诗宇, 王志兴, 隋亚云, 黄河, 宋晓波, 郭素华. 光周期调控水稻开花期的分子机制研究进展. 北方水稻, 2020, 50(3): 49-52.
WANG S Y, WANG Z X, SUI Y Y, HUANG H, SONG X B, GUO S H. Research progress of the molecular mechanism of photoperiod control rice flowering. North Rice, 2020, 50(3): 49-52. (in Chinese)
[24]
马雅美, 张少红, 赵均良, 刘斌. FCS-Like锌指蛋白OsFLZ18在调控水稻抽穗期中的作用. 中国农业科学, 2022, 55(20): 3875-3884. doi: 10.3864/j.issn.0578-1752.2022.20.001.
MA Y M, ZHANG S H, ZHAO J L, LIU B. Function of FCS-like zinc-finger protein OsFLZ18 in regulating rice flowering time. Scientia Agricultura Sinica, 2022, 55(20): 3875-3884. doi: 10.3864/j.issn.0578-1752.2022.20.001. (in Chinese)
[25]
张月雄, 颜群, 黄大辉, 梁海福, 高汉亮, 马增凤, 刘驰, 阎勇, 高利军, 秦刚, 李容柏. 利用单片段代换系鉴定水稻稻瘟病抗性座位. 西南农业学报, 2014, 27(4): 1478-1482.
ZHANG Y X, YAN Q, HUANG D H, LIANG H F, GAO H L, MA Z F, LIU C, YAN Y, GAO L J, QIN G, LI R B. Detection of resistance loci for rice blast with single-segment substitution lines in rice (Oryza sativa L.). Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1478-1482. (in Chinese)
[26]
MCCOUCH S R, KOCHERT G, YU Z H, WANG Z Y, KHUSH G S, COFFMAN W R, TANKSLEY S D. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics, 1988, 76(6): 815-829.

doi: 10.1007/BF00273666 pmid: 24232389
[27]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[28]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[29]
TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.

doi: 10.1111/tpj.12105 pmid: 23289725
[30]
WANG K, LI M Y, HAKONARSON H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.
[31]
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, GENOMES PROJECT ANALYSIS GROUP 1000. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.

doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[32]
WEI X J, XU J F, GUO H N, JIANG L J, CHEN S H, YU C Y, ZHOU Z L, HU P S, ZHAI H Q, WAN J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, 2010, 153(4): 1747-1758.
[33]
DAI X D, DING Y N, TAN L B, FU Y C, LIU F X, ZHU Z F, SUN X Y, SUN X W, GU P, CAI H W, SUN C Q. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon). Journal of Integrative Plant Biology, 2012, 54(10): 790-799.
[34]
DONG S Q, SUN D Y, HAN X K, ZHU Y, NIU F A, LIU Y, LIU S, SUN X J, REN D, HU Z J, WANG Y, YAN P W, XIN X Y, YANG J S, LUO X J. Cloning and functional analysis of LH2, a gene controlling late heading in rice. Crop Science, 2021, 61(4): 2398-2408.
[35]
任民, 陈成斌, 荣廷昭, 张万霞, 盖红梅, 杨庆文. 桂东南地区普通野生稻遗传多样性研究. 植物遗传资源学报, 2005, 6(1): 31-36, 42.
REN M, CHEN C B, RONG T Z, ZHANG W X, GAI H M, YANG Q W. Genetic diversity of Oryza rufipogon giff. in southeast region of Guangxi in China. Journal of Plant Genetic Resources, 2005, 6(1): 31-36, 42. (in Chinese)
[36]
杨庆文, 黄娟. 中国普通野生稻遗传多样性研究进展. 作物学报, 2013, 39(4): 580-588.
YANG Q W, HUANG J. Research progress on genetic diversity of Oryza rufipogon in China. Acta Agronomica Sinica, 2013, 39(4): 580-588. (in Chinese)
[37]
LIU C H, WANG T Y, CHEN H C, MA X D, JIAO C Z, CUI D, HAN B, LI X B, JIAO A X, RUAN R C, XUE D Y, WANG Y J, HAN L Z. Genomic footprints of Kam Sweet Rice domestication indicate possible migration routes of the Dong people in China and provide resources for future rice breeding. Molecular Plant, 2023, 16(2): 415-431.
[38]
SUN C Q, WANG X K, LI Z C, YOSHIMURA A, IWATA N. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theoretical and Applied Genetics, 2001, 102(1): 157-162.
[39]
邓伟, 吕莹, 董阳均, 徐雨然, 杨华涛, 张锦文, 张建华, 奎丽梅, 涂建, 相罕章, 管俊娇, 董维, 谷安宇, 安华, 杨丽萍, 张笑, 李小林. 云南水稻种质资源的遗传多样性分析. 植物遗传资源学报, 2023, 24(3): 624-635.

doi: 10.13430/j.cnki.jpgr.20221014002
DENG W, Y, DONG Y J, XU Y R, YANG H T, ZHANG J W, ZHANG J H, KUI L M, TU J, XIANG H Z, GUAN J J, DONG W, GU A Y, AN H, YANG L P, ZHANG X, LI X L. The genetic diversity analysis of rice germplasm resources in Yunnan Province of China. Journal of Plant Genetic Resources, 2023, 24(3): 624-635. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20221014002
[40]
CHEN J B, LI X Y, CHENG C, WANG Y H, QIN M, ZHU H T, ZENG R Z, FU X L, LIU Z Q, ZHANG G Q. Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Scientific Reports, 2014, 4: 4263.
[41]
LI X, ZHANG R C, CHEN G, XIE J X, XIAO Z W, CAO F B, ALI I, IQBAL A, WAHAB A, HUANG M, CHEN J N. Increasing grain weight and yield stability by increasing pre-heading non-structural carbohydrate reserves per spikelet in short-growth duration rice. The Crop Journal, 2023, 11(6): 1912-1920.
[1] WEI NaiCui, TAO JinBo, YUAN MingYang, ZHANG Yu, KAI MengXiang, QIAO Ling, WU BangBang, HAO YuQiong, ZHENG XingWei, WANG JuanLing, ZHAO JiaJia, ZHENG Jun. Seedling Characterization and Genetic Analysis of Low Phosphorus Tolerance in Shanxi Varieties [J]. Scientia Agricultura Sinica, 2024, 57(5): 831-845.
[2] LI BOTIAN, LI CHUNQI, LIU GUOPING, XIE JUN, ZENG PAN, ZHAO RUNZE, LI TONG, PEI JIE, GUO LIWEI, WU RUI, TAN LEI. Molecular Epidemic Characteristics and Genetic Variation Analysis of Porcine Circovirus 3 in Some Pig Farms in Central China from 2020 to 2022 [J]. Scientia Agricultura Sinica, 2024, 57(3): 613-626.
[3] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[4] REN CaiXia, LIU Lin, LIU ShengXue, BU Fang DI, XIANG BenChun, ZHENG YinYing, CUI BaiMing. Complete Genome Sequence Analysis and Infectious Clone Construction of Mume Virus A Peach Isolate pp in Xinjiang [J]. Scientia Agricultura Sinica, 2024, 57(19): 3810-3822.
[5] MIAO Long, SHU Kuo, HU YanJiao, HUANG Ru, HE GenHua, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Identification and Gene Mapping of Hard Seededness Mutant Mzp661 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(11): 2065-2078.
[6] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[7] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[8] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[9] MENG QingLei, YIN YuXiang, WANG YuHao. Spatial-Temporal Evolution, Decoupling Effect and Performance Evaluation of China’s Agricultural Carbon Emissions [J]. Scientia Agricultura Sinica, 2023, 56(20): 4049-4066.
[10] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[11] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[12] ZHANG Rui,ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue. Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species [J]. Scientia Agricultura Sinica, 2022, 55(9): 1859-1867.
[13] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[14] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[15] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!