Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 4049-4066.doi: 10.3864/j.issn.0578-1752.2023.20.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial-Temporal Evolution, Decoupling Effect and Performance Evaluation of China’s Agricultural Carbon Emissions

MENG QingLei(), YIN YuXiang(), WANG YuHao()   

  1. School of Economics, South-Central Minzu University, Wuhan 430074
  • Received:2023-05-11 Accepted:2023-06-30 Online:2023-10-16 Published:2023-10-31
  • Contact: YIN YuXiang, WANG YuHao

Abstract:

【Objective】The temporal characteristics, spatial pattern, evolution mode, decoupling relationship and performance evaluation of China’s agricultural carbon emissions were analyzed scientifically, so as to provide a basis for helping China achieve the goal of “carbon peaking and carbon neutrality” and strengthen the construction of an agricultural power. 【Method】This study constructed an index system for assessing agricultural carbon emissions and agricultural carbon emission performance in China, and measured the systematic measurement index of agricultural carbon emissions in Chinese provinces from 2007 to 2020. The Kernel density estimation and standardized ellipsoidal visualization analysis were used to analyze the regional distribution characteristics and spatial-temporal evolution trends of agricultural carbon emissions, Tapio model was used to examine the decoupling relationship between examining agricultural carbon emissions and economic growth, and the super-efficient SBM model with non-expected output was constructed to report the agricultural carbon emission performance and decomposition efficiency of China and the seven economic regions. 【Result】 From 2007 to 2020, the overall agricultural carbon emissions in China showed an “inverted U-shaped” curve of rising and then declining, with obvious regional differences and stable distribution of ranks. The eastern region had the best emission reduction effect, the central region had a “bipolar” distribution, and the western region had a higher pressure of emission reduction, with the overall spatial pattern dominated by the northeast-southwest direction, and tended to be decentralized to the northeast and northwest. China’s agricultural carbon emissions and agricultural economic development have been maintained at a weakly decoupled level and have made a breakthrough to a strongly decoupled level, which could be divided into two stages: a stable period (2007-2016) and a breakthrough period (2017-2020). The assessment of agricultural carbon emission performance showed a trend of “rapid rise - slow decline - steady improvement”, with the Great Northwest Economic Zone and the Northern Coastal Economic Zone in the first and last positions, respectively, and the contribution of technological change in agricultural production (TC) was more prominent than that of technical efficiency change (EC). 【Conclusion】With 2017 as the inflection point, China’s agricultural carbon emissions as a whole showed a decreasing trend, and the agricultural economic development as a whole was gradually getting rid of the dependence on agricultural carbon emissions, with different agricultural bases and different emission reduction targets in each region and province. It was necessary to reasonably plan the scale and internal structure of agricultural comparative advantage industries according to local conditions, reasonably select the resource endowment production characteristics of industries in the region. At the same time, we should pay attention to technology iteration and updating in the agricultural economic development and energy conservation and emission reduction in the role of promoting, taking into account the regional ecological benefits and economic benefits.

Key words: carbon emissions from agriculture, space-time evolution, decoupling effect, performance evaluation

Table 1

Agricultural carbon emission index system"

类别
Category
碳源
Carbon source
排放系数
Emission coefficient
排放系数来源
Source of emission coefficient
农用物资
Agricultural
material
化肥 Chemical fertilizer (kg CE·kg-1) 0.896 美国橡树岭国家实验室 Oak Ridge National Laboratory
农药 Pesticide (kg CE·kg-1) 4.934 美国橡树岭国家实验室 Oak Ridge National Laboratory
农膜
Agricultural film (kg CE·kg-1)
5.180 南京农业大学农业资源与生态环境研究所
Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University
农业机械 Agricultural machinery (kW·h) 0.180 West et al[5]
农业灌溉
Agricultural irrigation
灌溉 Irrigate (kg CE·hm-2) 266.480 West et al[5]
农业种植
Agricultural cultivation
稻谷种植 Rice planting (g CE·m-2·d-1) 3.136 WANG[24], MATTHEWS[25], CAO[26]et al
复种 Multiple cropping (kg CE·hm-2) 312.600 中国农业大学生物学院
College of Biological Sciences, China Agricultural University
畜牧养殖
Animal husbandry
猪 Per pig (kg CE·a-1) 34.091 联合国政府间气候变化专门委员会 IPCC
牛 Per cattle (kg CE·a-1) 415.910 联合国政府间气候变化专门委员会 IPCC
羊 Per sheep (kg CE·a-1) 35.182 联合国政府间气候变化专门委员会 IPCC
农业能源消耗
Agricultural energy consumption
煤炭 Coal (kg CE·kg-1) 0.757 联合国政府间气候变化专门委员会 IPCC
汽油 Gasoline (kg CE·kg-1) 0.552 联合国政府间气候变化专门委员会 IPCC
柴油 Diesel oil (kg CE·kg-1) 0.593 联合国政府间气候变化专门委员会 IPCC
电力 Electricity(kg CE·kg-1) 1.773 联合国政府间气候变化专门委员会 IPCC

Table 2

8 levels of elasticity in Tapio"

类别
Category
状态
State
环境压力
EP
经济增长
DF
弹性
e
负脱钩
Negative decoupling
扩张负脱钩 Expansion negative decoupling >0 >0 e>1.2
强负脱钩 Strong negative decoupling >0 <0 e<0
弱负脱钩 Weak negative decoupling <0 <0 0≤e<0.8
脱钩
Decoupling
弱脱钩 Weak decoupling >0 >0 0≤e<0.8
强脱钩 Strong decoupling <0 >0 e<0
衰退脱钩 Recessive decoupling <0 <0 e>1.2
连接
Coupling
扩张连接 Expansion coupling >0 >0 0.8≤e≤1.2
衰退连接 Recessive coupling <0 <0 0.8≤e≤1.2

Table 3

Agricultural carbon emission performance evaluation system"

一级指标
Level 1 indicator
二级指标
Level 2 indicator
变量
Variable
投入
Input
劳动力要素 Labor element 第一产业就业人员数 Number of employees in primary industry (×104)
资本要素 Capital element 第一产业固定资产投资额 Primary industry fixed asset investment (×108 yuan)
土地要素 Land element 农作物总播种面积 Total planting area of crops (×103 hm2)
其他要素
Other elements
农药使用量 Pesticide usage (t)
农用薄膜使用量 Agricultural film usage (t)
农业机械总动力 Total power of agricultural machinery (×104 kW·h)
期望产出
Desirable output
农业总产值
Gross value of agricultural output (×108 yuan)
-
非期望产出
Undesirable output
农业碳排放
Agricultural carbon emissions (×104 t)
-

Fig. 1

Total agricultural carbon emissions in China and the average value of agricultural carbon emissions by region, 2007-2020"

Fig. 2

Three-dimensional Kernel density estimation of total agricultural carbon emissions in China"

Fig. 3

Three-dimensional Kernel density estimates of total agricultural carbon emissions in East (A), Central (B) and West (C) of China"

Table 4

Standard deviation elliptic parameters of agricultural carbon emissions in China, 2007-2020"

年份
Year
经度
CenterX (°E)
纬度
CenterY (°N)
短轴
XStdDist (km)
长轴
YStdDist (km)
方位角
Rotation (°)
周长
Shape-Leng (km)
面积
Shape-Area (×104 km2)
2007 113.670 34.711 856.581 1124.487 29.996 6252.097 302.585
2008 113.592 34.641 868.014 1127.473 29.562 6295.434 307.439
2009 113.528 34.692 877.827 1131.104 29.688 6336.250 311.916
2010 113.510 34.745 882.632 1134.134 30.048 6360.416 314.463
2011 113.471 34.779 888.164 1138.055 30.322 6389.686 317.528
2012 113.395 34.811 908.207 1138.908 30.456 6451.544 324.937
2013 113.358 34.860 915.593 1140.389 30.933 6478.282 328.006
2014 113.256 34.926 938.222 1140.385 31.412 6545.494 336.112
2015 113.236 34.957 941.804 1142.787 31.613 6564.069 338.105
2016 113.238 34.992 941.149 1145.643 31.966 6571.505 338.715
2017 113.453 35.169 925.936 1158.203 32.354 6567.766 336.893
2018 113.431 35.200 932.339 1158.368 32.892 6587.262 339.271
2019 113.405 35.227 936.561 1161.511 33.087 6610.151 341.732
2020 113.388 35.215 934.996 1163.445 33.206 6611.900 341.729

Fig. 4

The gravity center evolution paths of agricultural carbon emissions in East (A), Central (B) and West (C) of China from 2007 to 2020"

Table 5

The decoupling relationship between agricultural carbon emission and agricultural economic development in China from 2007 to 2020: based on OECD decoupling evaluation index"

年份
Year
农业碳排放总量
Total agricultural carbon emissions, C (×104 t)
农业碳排放指数
Agricultural carbon emission index, Cn
农业总产值
Total agricultural output value, AGRI (×108 yuan)
农业经济增长指数
Agricultural economic growth index, AGRIn
脱钩指数
Decoupling index, Dn
2007 8286.715 1.000 24658.091 1.000 1.000
2008 8400.551 1.014 28044.152 1.137 0.891
2009 8708.147 1.051 30611.073 1.241 0.846
2010 8889.450 1.073 36941.111 1.498 0.716
2011 9053.173 1.092 41988.638 1.703 0.642
2012 9206.634 1.111 46940.458 1.904 0.584
2013 9355.943 1.129 51497.369 2.088 0.541
2014 9505.084 1.147 54771.600 2.221 0.516
2015 9588.401 1.157 57635.797 2.337 0.495
2016 9612.699 1.160 59287.782 2.404 0.482
2017 9680.836 1.168 58059.758 2.355 0.496
2018 9502.133 1.147 61452.595 2.492 0.460
2019 9300.162 1.122 66066.451 2.679 0.419
2020 9253.597 1.117 71748.100 2.910 0.384

Table 6

The decoupling relationship between agricultural carbon emission and agricultural economic development in China from 2007 to 2020: based on Tapio decoupling evaluation index"

年份
Year
ΔC/C ΔAGRI/AGRI 弹性值
e
碳排放特征
Carbon emission characteristics
2007 0.013 0.133 0.098 弱脱钩 Weak decoupling
2008 0.014 0.121 0.112 弱脱钩 Weak decoupling
2009 0.035 0.084 0.421 弱脱钩 Weak decoupling
2010 0.020 0.171 0.119 弱脱钩 Weak decoupling
2011 0.018 0.120 0.150 弱脱钩 Weak decoupling
2012 0.017 0.105 0.158 弱脱钩 Weak decoupling
2013 0.016 0.088 0.180 弱脱钩 Weak decoupling
2014 0.016 0.060 0.262 弱脱钩 Weak decoupling
2015 0.009 0.050 0.175 弱脱钩 Weak decoupling
2016 0.003 0.028 0.091 弱脱钩 Weak decoupling
2017 0.007 -0.021 -0.333 强负脱钩 Expansion negative decoupling
2018 -0.019 0.055 -0.341 强脱钩 Strong decoupling
2019 -0.022 0.070 -0.311 强脱钩 Strong decoupling
2020 -0.005 0.079 -0.064 强脱钩 Strong decoupling

Fig. 5

Run chart of the decoupling ratio between China’s agricultural carbon emissions and agricultural economic growth"

Table 7

Performance evaluation and decomposition of China’s agricultural carbon emissions in 2007-2020"

年份 Year 农业碳排放绩效 AMCPI 技术效率变化 EC 生产技术变化 TC
2007-2008 1.017 0.922 1.068
2008-2009 1.006 1.044 0.995
2009-2010 1.176 1.052 1.185
2010-2011 1.117 1.040 1.125
2011-2012 1.027 0.999 1.120
2012-2013 1.027 1.003 1.103
2013-2014 1.011 0.990 1.072
2014-2015 1.008 0.933 1.093
2015-2016 1.020 1.094 1.012
2016-2017 0.997 1.087 0.927
2017-2018 1.035 1.029 1.118
2018-2019 1.136 1.115 1.349
2019-2020 1.045 1.011 1.073

Table 8

Dynamic changes of agricultural carbon emission performance (AMCPI) in seven major economic regions in China in 2007-2020"

年份
Year
北部沿海
North coast
大西南
Great Southwest
长江中游
Middle reaches of the Yangtze River
黄河中游
Middle reaches of the Yellow River
南部沿海
Southern coast
东部沿海
Eastern coastal
大西北
Great Northwest
2007-2008 0.917 0.837 0.885 0.901 0.858 0.954 0.912
2008-2009 0.941 0.935 0.907 0.919 1.035 0.908 0.890
2009-2010 1.069 1.034 1.042 1.036 1.003 1.033 1.152
2010-2011 0.990 1.056 1.106 1.043 1.004 1.064 0.983
2011-2012 0.962 1.041 0.919 1.010 0.996 0.993 1.007
2012-2013 1.055 0.979 1.057 0.989 0.997 0.948 0.931
2013-2014 0.962 1.019 0.978 0.994 1.014 0.928 0.836
2014-2015 1.033 0.965 0.935 0.917 0.878 0.974 0.952
2015-2016 1.005 1.039 1.070 0.914 1.157 1.003 1.023
2016-2017 0.912 0.987 0.874 0.989 0.969 1.024 1.070
2017-2018 1.079 0.942 0.998 1.045 1.002 1.135 1.112
2018-2019 1.022 1.139 1.147 1.095 1.000 1.036 1.133
2019-2020 1.062 1.046 1.103 1.174 1.114 1.031 1.054
均值 Mean 1.001 1.001 1.002 1.002 1.002 1.002 1.004
排名 Order 2 1 3 4 5 6 7
[1]
国家统计局. 2021年全国农业及相关产业增加值占GDP比重为16.05%. (2022-12-30)[2023-05-10]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202212/t20221230_1891328.html.
National Bureau of Statistics. In 2021, the added value of agriculture and related industries accounted for 16.05% of GDP. (2022-12-30) [2023-05-10]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202212/t20221230_1891328.html. (in Chinese)
[2]
农业科技进步贡献率10年提升7个百分点——科技兴农开花结果. (2022-08-19)[2023-05-10]. http://www.kjs.moa.gov.cn/gzdt/202208/t20220819_6407317.htm.
The contribution rate of agricultural scientific and technological progress has increased by 7 percentage points in 10 years-science and technology develop rapidly. (2022-08-19)[2023-05-10]. http://www.kjs.moa.gov.cn/gzdt/202208/t20220819_6407317.htm. (in Chinese)
[3]
关于印发《减污降碳协同增效实施方案》的通知. (2022-06-10) [2023-05-10]. http://www.gov.cn/zhengce/zhengceku/2022-06/17/content_5696364.htm.
Notice on the issuance of the implementation plan for pollution reduction and carbon reduction synergy. (2022-06-10)[2023-05-10]. http://www.gov.cn/zhengce/zhengceku/2022-06/17/content_5696364.htm. (in Chinese)
[4]
国务院关于印发“十四五”推进农业农村现代化规划的通知. (2021-11-12)[2023-05-09]. http://www.gov.cn/zhengce/content/2022-02/11/content_5673082.htm.
Notice of the state council on the issuance of the 14th five-year plan for promoting agricultural and rural modernization. (2021-11-12) [2023-05-09]. http://www.gov.cn/zhengce/content/2022-02/11/content_5673082.htm. (in Chinese)
[5]
WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217-232.

doi: 10.1016/S0167-8809(01)00233-X
[6]
董红敏, 李玉娥, 陶秀萍, 彭小培, 李娜, 朱志平. 中国农业源温室气体排放与减排技术对策. 农业工程学报, 2008, 24(10): 269-273.
DONG H M, LI Y E, TAO X P, PENG X P, LI N, ZHU Z P. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273. (in Chinese)
[7]
李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解. 中国人口·资源与环境, 2011, 21(8): 80-86.
LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. China Population, Resources and Environment, 2011, 21(8): 80-86. (in Chinese)
[8]
李俊杰. 民族地区农地利用碳排放测算及影响因素研究. 中国人口·资源与环境, 2012, 22(9): 42-47.
LI J J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China. China Population, Resources and Environment, 2012, 22(9): 42-47. (in Chinese)
[9]
刘月仙, 刘娟, 吴文良. 北京地区畜禽温室气体排放的时空变化分析. 中国生态农业学报, 2013, 21(7): 891-897.
LIU Y X, LIU J, WU W L. Spatiotemporal dynamics of greenhouse gases emissions from livestock and poultry in Beijing area during 1978—2009. Chinese Journal of Eco-Agriculture, 2013, 21(7): 891-897. (in Chinese)

doi: 10.3724/SP.J.1011.2013.00891
[10]
邵桂兰, 孔海峥, 于谨凯, 李晨. 基于LMDI法的我国海洋渔业碳排放驱动因素分解研究. 农业技术经济, 2015(6): 119-128.
SHAO G L, KONG H Z, YU J K, LI C. Study on decomposition of driving factors of carbon emissions from marine fisheries in China based on LMDI method. Journal of Agrotechnical Economics, 2015(6): 119-128. (in Chinese)
[11]
GROOT L. Carbon lorenz curves. Resource and Energy Economics, 2010, 32(1): 45-64.

doi: 10.1016/j.reseneeco.2009.07.001
[12]
田云, 张俊飚, 李波. 基于投入角度的农业碳排放时空特征及因素分解研究: 以湖北省为例. 农业现代化研究, 2011, 32(6): 752-755.
TIAN Y, ZHANG J B, LI B. Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle—taking Hubei Province for example. Research of Agricultural Modernization, 2011, 32(6): 752-755. (in Chinese)
[13]
闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012, 22(7): 21-27.
MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China. China Population, Resources and Environment, 2012, 22(7): 21-27. (in Chinese)
[14]
戴小文. 中国农业隐含碳排放核算与分析: 兼与一般碳排放核算方法的对比. 财经科学, 2014(12): 127-136.
DAI X W. Calculation and analysis of embodied CO2 emission in China’s agriculture department—a comparison with the general CO2 emission calculate method. Finance & Economics, 2014(12): 127-136. (in Chinese)
[15]
章胜勇, 尹朝静, 贺亚亚, 肖小勇. 中国农业碳排放的空间分异与动态演进: 基于空间和非参数估计方法的实证研究. 中国环境科学, 2020, 40(3): 1356-1363.
ZHANG S Y, YIN C J, HE Y Y, XIAO X Y. Spatial differentiation and dynamic evolution of agricultural carbon emission in China— empirical research based on spatial and non-parametric estimation methods. China Environmental Science, 2020, 40(3): 1356-1363. (in Chinese)
[16]
田云, 尹忞昊. 中国农业碳排放再测算:基本现状、动态演进及空间溢出效应. 中国农村经济, 2022(3): 104-127.
TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects. Chinese Rural Economy, 2022(3): 104-127. (in Chinese)
[17]
陈胜涛, 张开华, 张岳武. 农业碳排放绩效的测量与脱钩效应. 统计与决策, 2021, 37(22): 85-88.
CHEN S T, ZHANG K H, ZHANG Y W. Measurement and decoupling effect of agricultural carbon emission performance. Statistics & Decision, 2021, 37(22): 85-88. (in Chinese)
[18]
SUN J W. The decrease of CO2 emission intensity is decarbonization at national and global levels. Energy Policy, 2005, 33(8): 975-978.

doi: 10.1016/j.enpol.2003.10.023
[19]
RAMANATHAN R. Combining indicators of energy consumption and CO2 emissions: a cross-country comparison. International Journal of Global Energy Issues, 2002, 17(3): 214.

doi: 10.1504/IJGEI.2002.000941
[20]
邵帅, 范美婷, 杨莉莉. 经济结构调整、绿色技术进步与中国低碳转型发展: 基于总体技术前沿和空间溢出效应视角的经验考察. 管理世界, 2022, 38(2): 46-69, 4.
SHAO S, FAN M T, YANG L L. Economic restructuring, green technical progress, and low-carbon transition development in China: an empirical investigation based on the overall technology frontier and spatial spillover effect. Journal of Management World, 2022, 38(2): 46-69, 4. (in Chinese)
[21]
朱洪革, 曹博, 赵文铖. 中国农业全要素碳排放绩效时序演进及空间收敛特征. 统计与决策, 2022, 38(9): 63-68.
ZHU H G, CAO B, ZHAO W C. Temporal evolution and spatial convergence characteristics of China’s agricultural total factor carbon emission performance. Statistics & Decision, 2022, 38(9): 63-68. (in Chinese)
[22]
周泽炯, 张葆俊, 江珂鑫, 朱家明. 绿色发展下的乡村碳排放绩效评价及随机性收敛研究: 基于SE-SBM与面板单位根检验. 哈尔滨师范大学自然科学学报, 2023, 39(1): 20-29.
ZHOU Z J, ZHANG B J, JIANG K X, ZHU J M. Evaluation of rural carbon emission performance under green development and stochastic convergence study—based on SE-SBM with panel unit root test. Natural Science Journal of Harbin Normal University, 2023, 39(1): 20-29. (in Chinese)
[23]
王方怡, 洪志猛, 康智明, 兰思仁, 陈世品, 叶玉珍. 福建省农业碳排放时空变化及其驱动因素. 福建农业学报, 2019, 34(1): 124-134.
WANG F Y, HONG Z M, KANG Z M, LAN S R, CHEN S P, YE Y Z. Spatial-temporal variations and driving forces of agricultural carbon emissions in Fujian. Fujian Journal of Agricultural Sciences, 2019, 34(1): 124-134. (in Chinese)
[24]
WANG M X, DAI A G, SHEN R X, HELMUTSCHITZ, HEINZRENNENBERG, WOLFGANGSEILER, WU H B. ch4 emission from a Chinese rice paddy field. Acta Meteorologica Sinica, 1990, 4(3): 265-275.
[25]
MATTHEWS E, FUNG I, LERNER J. Methane emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions. Global Biogeochemical Cycles, 1991, 5(1): 3-24.

doi: 10.1029/90GB02311
[26]
CAO M. Methane emissions from China’s paddyland. Agriculture, Ecosystems & Environment, 1995, 55(2): 129-137.

doi: 10.1016/0167-8809(95)00613-W
[27]
OECD. Indicators to Measure Decoupling of Environmental Pressures from Economic Growth. Paris: OECD, 2002.
[28]
徐卫涛, 张俊飚, 李树明, 孙笑男. 我国循环农业中的化肥施用与粮食生产脱钩研究. 农业现代化研究, 2010, 31(2): 200-203.
XU W T, ZHANG J B, LI S M, SUN X N. Decoupling research on relationship between chemical fertilizer usage and grain production of recycling agriculture in China. Research of Agricultural Modernization, 2010, 31(2): 200-203. (in Chinese)
[29]
王崇梅. 中国经济增长与能源消耗脱钩分析. 中国人口·资源与环境, 2010, 20(3): 35-37.
WANG C M. Decoupling analysis of China economic growth and energy consumption. China Population, Resources and Environment, 2010, 20(3): 35-37. (in Chinese)
[30]
李期, 郑明贵. 中国能源消耗与经济增长关系研究: 基于1996—2017年数据. 江西理工大学学报, 2019, 40(4): 57-61.
LI Q, ZHENG M G. Study on the relationship between energy consumption and economic growth in china—based on the data from 1996 to 2017. Journal of Jiangxi University of Science and Technology, 2019, 40(4): 57-61. (in Chinese)
[31]
陈浩, 曾娟. 武汉市经济发展与能源消耗的脱钩分析. 华中农业大学学报(社会科学版), 2011(6): 90-95.
CHEN H, ZENG J. Study on decoupling between economic development and energy consumption of Wuhan. Journal of Huazhong Agricultural University (Social Sciences Edition), 2011(6): 90-95. (in Chinese)
[32]
彭佳雯, 黄贤金, 钟太洋, 赵雲泰. 中国经济增长与能源碳排放的脱钩研究. 资源科学, 2011, 33(4): 626-633.
PENG J W, HUANG X J, ZHONG T Y, ZHAO Y T. Decoupling analysis of economic growth and energy carbon emissions in China. Resources Science, 2011, 33(4): 626-633. (in Chinese)
[33]
徐玥, 王辉, 韩秋凤. 徐州市农业碳排放时空特征与脱钩效应. 水土保持通报. https://doi.org/10.13961/j.cnki.stbctb.20230526.004.
XU Y, WANG H, HAN Q F. Temporal and spatial characteristics and decoupling effect of agricultural carbon emissions in Xuzhou City. Bulletin of Soil and Water Conservation. https://doi.org/10.13961/j.cnki.stbctb.20230526.004. (in Chinese)
[34]
孙耀华, 李忠民. 中国各省区经济发展与碳排放脱钩关系研究. 中国人口·资源与环境, 2011, 21(5): 87-92.
SUN Y H, LI Z M. Analysing on the decoupling relationship between carbon dioxide emissions and economic growth of each province in China. China Population, Resources and Environment, 2011, 21(5): 87-92. (in Chinese)
[35]
SHESTALOVA V. Sequential malmquist indices of productivity growth: an application to OECD industrial activities. Journal of Productivity Analysis, 2003, 19(2): 211-226.

doi: 10.1023/A:1022857501478
[36]
程开明, 李泗娥. 全要素生产率指数:演变、比较及展望. 统计学报, 2022, 3(1): 11-26.
CHENG K M, LI S E. Total factor productivity indices: evolution, comparison and prospect. Journal of Statistics, 2022, 3(1): 11-26. (in Chinese)
[37]
GROSSMAN G M, KRUEGER A B. Economic growth and the environment. The Quarterly Journal of Economics, 1995, 110(2): 353-377.

doi: 10.2307/2118443
[38]
伍国勇, 刘金丹, 杨丽莎. 中国农业碳排放强度动态演进及碳补偿潜力. 中国人口·资源与环境, 2021, 31(10): 69-78.
WU G Y, LIU J D, YANG L S. Dynamic evolution of China’s agricultural carbon emission intensity and carbon offset potential. China Population, Resources and Environment, 2021, 31(10): 69-78. (in Chinese)
[39]
陈海韵. 环保“费改税”对环境保护效果的影响研究: 基于G省案例分析[D]. 广州: 华南理工大学, 2019.
CHEN H Y. Study on the effect of environmental protection “fee to tax”[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
[40]
薛钢, 明海蓉, 刘彦龙. 环境保护税减排治污的“倒U”效应: 基于区域征收强度的测算. 税收经济研究, 2020, 25(3): 25-34.
XUE G, MING H R, LIU Y L. Inverted U-shaped effect of environmental protection tax on emission reduction and pollution control—based on measurement of the intensity of regional collection. Tax and Economic Research, 2020, 25(3): 25-34. (in Chinese)
[41]
国务院关于印发全国农业现代化规划(2016—2020年)的通知.(2016-10-20) [2023-05-02]. http://www.gov.cn/zhengce/content/2016-10/20/content_5122217.htm.
Notice of the state council on issuing the national agricultural modernization plan (2016-2020). (2016-10-20)[2023-05-02]. http://www.gov.cn/zhengce/content/2016-10/20/content_5122217.htm. (in Chinese)
[42]
中华人民共和国土壤污染防治法. (2018-08-31)[2023-05-02] https://www.mee.gov.cn/ywgz/fgbz/fl/201809/t20180907_549845.shtml.
Law of the people's republic of China on the prevention and control of soil pollution. (2018-08-31)[2023-05-02]. https://www.mee.gov.cn/ywgz/fgbz/fl/201809/t20180907_549845.shtml. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!