Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2717-2731.doi: 10.3864/j.issn.0578-1752.2024.14.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Wheat Enolase Gene TaENO1-5B Involved in Regulating Plant Height and Grain Number Per Spike in Multiple Environments

ZHANG ZiHui1,2(), ZHANG YanFei2,3, LI Long2, LI ChaoNan2, WANG JingYi2, YANG DeLong1(), MAO XinGuo1,2(), JING RuiLian2   

  1. 1 College of Life Science and Technology, Gansu Agricultural University/State Key Laboratory of Arid Land Crop Science, Lanzhou 730070
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081
    3 Henan Agricultural University/National Wheat Technology Innovation Center (Preparatory), Zhengzhou 450046
  • Received:2024-01-11 Accepted:2024-02-06 Online:2024-07-24 Published:2024-07-24
  • Contact: YANG DeLong, MAO XinGuo

Abstract:

【Objective】 Enolase is a key rate-limiting enzyme in the process of glycolysis, and plays a crucial role in plant growth and development, and response to abiotic stress. The function of common wheat enolase gene TaENO1-5B was revealed and molecular markers were developed to provide genetic resources for improving wheat through molecular breeding. 【Method】 TaENO1-5B was cloned from wheat variety Hanxuan 10. The domains of its encoded protein were analyzed on the SMART website. The secondary and tertiary structures of the protein were predicted by Phyre2 software. Real-time quantitative fluorescent PCR was used to analyze the expression levels of the target gene in wheat tissues at different developmental stages and its expression patterns under phytohormone treatment and abiotic stress. Thirty wheat germplasm with rich genetic diversity were used as plant materials to analyze the gene sequence polymorphisms, and develop molecular markers. The association analysis between TaENO1-5B haplotypes and phenotypic traits was carried out in a natural population consisting of 323 wheat accessions. The trend of breeding selection of superior haplotype in different wheat production zones in China was analyzed by using a landrace population and a modern variety population. 【Result】 TaENO1-5B gene consists of 17 exons and 16 introns encoding 446 amino acids and contains a conserved N-terminal domain and a C-terminal TIM (triose-phosphate isomerase) barrel domain. TaENO1-5B was expressed in all tissues of wheat at seedling, jointing, heading and flowering stages, and the expression level was higher in roots, root bases and spikes. The TaENO1-5B promoter region contains a variety of cis-acting elements, including elements responding to plant hormones, such as abscisic acid (ABA), auxin (IAA), and methyl jasmonate (MeJA), as well as elements responding to drought and low temperature. The expression of TaENO1-5B was significantly induced by phytohormones and abiotic stress in wheat. Four SNPs were detected in the promoter region and three SNPs in the gene region of the TaENO1-5B gene, which constituted three haplotypes, i.e., Hap-5B-1, Hap-5B-2, and Hap-5B-3. Among them, Hap-5B-2 was a favorable haplotype highly associated with shorter plant height, more spikelets per spike, and more grains per spike under various environments such as drought and high temperature, and had been positively selected in the breeding history of major wheat production zones in China. The KASP (kompetitive allele-specific PCR) marker developed based on the SNP (2 399 bp, G/A) of the TaENO1-5B promoter region was significantly correlated with the spikelet number per spike in multiple environments. 【Conclusion】 TaENO1-5B gene responds to phytohormones and abiotic stress, and is significantly correlated with plant height, spikelet number per spike and grain number per spike under various environments such as drought and high temperature. Hap-5B-2 is a favorable haplotype with shorter plant height and more number of spikelets and grains per spike. Molecular markers developed based on the variation sites of TaENO1-5B gene sequence can be used for genetic improvement of plant height and related yield traits in wheat.

Key words: wheat, TaENO1-5B, agronomic trait, KASP marker, haplotype

Table 1

Thirty wheat germplasm for testing"

序号 Number 种质 Germplasm 序号 Number 种质 Germplasm
1 沧麦6001 Cangmai 6001 16 泰山23 Taishan 23
2 冬协2号Dongxie 2 17 泰山24 Taishan 24
3 丰产1号Fengchan 1 18 太原566 Taiyuan 566
4 衡5229 Heng 5229 19 温麦6号(豫麦49)Wenmai 6 (Yumai 49)
5 葫芦头Hulutou 20 小白麦(京856)Xiaobaimai (Jing 856)
6 冀麦6号Jimai 6 21 西峰9号Xifeng 9
7 冀麦9号Jimai 9 22 西农688(西农213)Xinong 688 (Xinong 213)
8 冀麦30 Jimai 30 23 小山8号Xiaoshan 8
9 京品3号Jingpin 3 24 原冬847 Yuandong 847
10 京品11 Jingpin 11 25 运旱20410 Yunhan 20410
11 洛旱11号Luohan 11 26 运旱23-35 Yunhan 23-35
12 临旱935 Linhan 935 27 烟农21 Yannong 21
13 兰天15号Lantian 15 28 偃展一号Yanzhan 1
14 秦麦3号Qinmai 3 29 中7902 Zhong 7902
15 山农优麦2号Shannongyoumai 2 30 中作60064 Zhongzuo 60064

Table 2

Primers used in this study"

引物名称 Primer name 序列 Sequence (5′-3′)
qRT-TaENO1-5B-F AGATGACTGAAGAATGTGGAGAGC
qRT-TaENO1-5B-R GGTACATATCCGTCCCGTTCA
TaACTIN-F CTCCCTCACAACAACAACCGC
TaACTIN-R TACCAGGAACTTCCATACCAAC
TaENO1-5B-F GGAGATAGAGGCTGGGGAGG
TaENO1-5B-R AGATTTCACTACAAACTACATACGGAT
TaENO1-pro-5B-F GGGCTCCCGATTGGCTT
TaENO1-pro-5B-R TTGTGGGGACGAGGAAACTG
TaENO1-5B-SNP1-A1 GAAGGTGACCAAGTTCATGCTTCCGCCTCCTCCACCTTCATT
TaENO1-5B-SNP1-A2 GAAGGTCGGAGTCAACGGATTCCGCCTCCTCCACCTTCATC
TaENO1-5B-SNP1-C ACTCGTCGGAGCCGAGGGAG
TaENO1-5B-SNP2-A1 GAAGGTGACCAAGTTCATGCTTTTTGCCTGCTAGGAATCCGTTC
TaENO1-5B-SNP2-A2 GAAGGTCGGAGTCAACGGATTTTATTTTGCCTGCTAGGAATCCGTTT
TaENO1-5B-SNP2-C CCATCTGTGGATACACACTGTGAAAAC

Fig. 1

Analysis of TaENO1-5B gene sequence and protein structure A: Diagram of TaENO1-5B gene structure. Black rectangles indicate exons; B: Alignment of TaENO1 proteins. The red rectangular box indicates the N-terminal capped domain and the green rectangular box represents the C-terminal TIM barrel domain; C: Phylogenetic tree of TaENO1 proteins. TaENO1-5B is marked with a red dot; Ta: Triticum. aestivum; Td: Triticum dicoccoides; Hv: Hordeum vulgare; Bd: Brachypodium distachyon; Os: Oryza sativa; Pv: Panicum virgatum; Si: Setaria italica; Pm: Panicum miliaceum; Ph: Panicum halli; Zm: Zea mays; Ma: Musa acuminata subsp; At: Arabidopsis thaliana; D: Secondary structure of TaENO1-5B protein; E: Tertiary structure of TaENO1-5B protein"

Fig. 2

Expression pattern of TaENO1-5B in different tissues of wheat at different growth stages A: Seedling stage; B: Jointing stage; C: Heading stage; D: Flowering stage; R: Root; RB: Root base; L: Leaf; S: Spike; YL: Young leaf; FL: Flag leaf; US: Upper spikelet; MS: Middle spikelet; LS: Lower spikelet; P: Peduncle; PI: Peduncle internode; PN: Penultimate; PNI: Penultimate internode; AT: Antepenultimate; ATI: Antepenultimate internode; R30, R60, R90, R120, and R150 indicate the roots in 0-30 cm, 30-60 cm, 60-90 cm, 90-120 cm, and 120-150 cm soil layer, respectively; Values are the means ± SD"

Table 3

Putative cis-acting regulatory elements in the promoter region of TaENO1-5B"

顺式作用元件
Cis-acting regulatory element
数量
Number
生物学功能
Biological function
G-box 9 光响应元件cis-acting regulatory element involved in light responsiveness
ABRE 8 脱落酸应答元件cis-acting element involved in the abscisic acid responsiveness
TGACG-motif 3 茉莉酸甲酯应答元件cis-acting regulatory element involved in the MeJA-responsiveness
CGTCA-motif 3 茉莉酸甲酯应答元件cis-acting regulatory element involved in the MeJA-responsiveness
AuxRR-core 1 生长素应答元件cis-acting regulatory element involved in auxin responsiveness
TCA-element 1 水杨酸应答元件cis-acting element involved in salicylic acid responsiveness
MYB 2 MYB蛋白结合元件MYB protein binding element
TATA-box 29 低温胁迫应答元件cis-acting element involved in low-temperature responsiveness
DRE core 1 DREB结合元件DREB binding element

Fig. 3

Expression pattern of TaENO1-5B under different stressed treatments A: 50 µmol·L-1 abscisic acid (ABA) treatment; B: 100 μmol·L-1 auxin (IAA) treatment; C: 0.1 μmol·L-1 methyl jasmonate (MeJA) treatment; D: 16.1% (m/v) PEG treatment; E: 250 mmol·L-1 NaCl treatment; F: Low temperature (4 ℃) treatment. *, P<0.05; **, P<0.01; ***, P<0.001. The same as below"

Fig. 4

Allelic variations of TaENO1-5B and their molecular markers A: The allelic variations and haplotypes of TaENO1-5B. Black boxes indicate UTR sequences, and black rectangles represent exons; B: KASP marker KASP-SNP1 at 2 399 bp. Blue dots represent FAM-type allele A, red dots represent HEX-type allele G, and black dots are controls; C: KASP marker KASP-SNP2 at 3 864 bp. Blue dots represent FAM-type allele C, red dots represent HEX-type allele T, and black dots are controls"

Fig. 5

Association analysis between KASP-SNP1 marker and spikelet number per spike E1: 15-SY-DS-HS; E2: 15-SY-DS; E3: 15-SY-WW-HS; E4: 15-SY-WW; E5: 16-SY-DS-HS; E6: 16-SY-DS; E7: 16-SY-WW-HS; E8: 16-SY-WW; E9: 16-CP-WW; E10: 16-CP-DS; E11: 17-SY-DS-HS; E12: 17-SY-DS; E13: 17-SY-WW-HS; E14: 17-SY-WW; E15: 17-CP-WW; E16: 17-CP-DS. 15: 2015; 16: 2016; 17: 2017; SY: Shunyi; CP: Changping; WW: Well-watered; DS: Drought-stressed; HS: Heat-stressed. The same as below"

Fig. 6

Phenotypic comparisons of two TaENO1-5B haplotypes in 16 environments A: Spikelet number per spike; B: Grain number per spike; C: Spike number per plant; D: Plant height; E: Peduncle length. F: Penultimate length"

Fig. 7

Frequency distribution of TaENO1-5B haplotypes in modern varieties released in different decades in the ten wheat production zones of China A: Frequency distribution of two TaENO1-5B haplotypes in modern varieties in the ten wheat production zones of China; B: Frequency distribution of two TaENO1-5B haplotypes in modern varieties released in different decades. Ⅰ: Northern Winter Wheat Zone; Ⅱ: Yellow and Huai River Valleys Facultative Wheat Zone; Ⅲ: Middle and Low Yangtze River Valleys Autumn-Sown Spring Wheat Zone; Ⅳ: Southwestern Autumn-Sown Spring Wheat Zone; Ⅴ: Southern Autumn-Sown Spring Wheat Zone; Ⅵ: Northeastern Spring Wheat Zone; Ⅶ: Northern Spring Wheat Zone; Ⅷ: Northwestern Spring Wheat Zone; Ⅸ: Qinghai-Tibetan Plateau Spring-Winter Wheat Zone; Ⅹ: Xinjiang Winter-Spring Wheat Zone"

[1]
SHIFERAW B, SMALE M, BRAUN H J, DUVEILLER E, REYNOLDS M, MURICHO G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317.
[2]
LESK C, ROWHANI P, RAMANKUTTY N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529(7584): 84-87.
[3]
DREHER K, CALLIS J. Ubiquitin, hormones and biotic stress in plants. Annals of Botany, 2007, 99(5): 787-822.
[4]
KO J H, YANG S H, HAN K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. The Plant Journal, 2006, 47(3): 343-355.
[5]
LOHMAN K, MEYERHOF O. Enzymatic transformation of phosphoglyceric acid into pyruvic and phosphoric acid. Biochemische Zeitschft, 2023, 273: 60-72.
[6]
SUBRAMANIAN A, MILLER D M. Structural analysis of alpha- enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. The Journal of Biological Chemistry, 2000, 275(8): 5958-5965.
[7]
FEO S, ARCURI D, PIDDINI E, PASSANTINO R, GIALLONGO A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: Relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Letters, 2000, 473(1): 47-52.
[8]
RAY R, MILLER D M. Cloning and characterization of a human c-myc promoter-binding protein. Molecular and Cellular Biology, 1991, 11(4): 2154-2161.

doi: 10.1128/mcb.11.4.2154-2161.1991 pmid: 2005901
[9]
VAN DER STRAETEN D, RODRIGUES-POUSADA R A, GOODMAN H M, VAN MONTAGU M. Plant enolase: gene structure, expression, and evolution. The Plant Cell, 1991, 3(7): 719-735.
[10]
ANDRIOTIS V M E, KRUGER N J, PIKE M J, SMITH A M. Plastidial glycolysis in developing Arabidopsis embryos. The New Phytologist, 2010, 185(3): 649-662.
[11]
EREMINA M, ROZHON W, YANG S Q, POPPENBERGER B. ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. The Plant Journal, 2015, 81(6): 895-906.

doi: 10.1111/tpj.12775 pmid: 25620024
[12]
KANG M, ABDELMAGEED H, LEE S, REICHERT A, MYSORE K S, ALLEN R D. AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. The Plant Journal, 2013, 76(3): 481-493.
[13]
YUSTE-LISBONA F J, FERNÁNDEZ-LOZANO A, PINEDA B, BRETONES S, ORTÍZ-ATIENZA A, GARCÍA-SOGO B, MÜLLER N A, ANGOSTO T, CAPEL J, MORENO V, JIMÉNEZ-GÓMEZ J M, LOZANO R. ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(14): 8187-8195.
[14]
SEKI M, NARUSAKA M, ABE H, KASUGA M, YAMAGUCHI- SHINOZAKI K, CARNINCI P, HAYASHIZAKI Y, SHINOZAKI K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell, 2001, 13(1): 61-72.
[15]
HASHEMI A, GHARECHAHI J, NEMATZADEH G, SHEKARI F, HOSSEINI S A, SALEKDEH G H. Two-dimensional blue native/sds-page analysis of whole cell lysate protein complexes of rice in response to salt stress. Journal of Plant Physiology, 2016, 200: 90-101.

doi: 10.1016/j.jplph.2016.05.023 pmid: 27362847
[16]
JIANG Y Q, YANG B, HARRIS N S, DEYHOLOS M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007, 58(13): 3591-3607.

doi: 10.1093/jxb/erm207 pmid: 17916636
[17]
LAL S K. Transcriptional and translational regulation of enolase under anaerobic stress in maize. Molecular and Cellular Biology, 1992, 17(7): 3955-3965.
[18]
SHARMA P, GANESHAN S, FOWLER D B, CHIBBAR R N. Characterisation of two wheat enolase cDNA showing distinct patterns of expression in leaf and crown tissues of plants exposed to low temperature. Annals of Applied Biology, 2013, 162(2): 271-283.
[19]
曹丽茹, 庞芸芸, 王振云, 郭书磊, 张前进, 王振华, 鲁晓民. 玉米烯醇化酶基因ZmENO1响应干旱和高温胁迫的功能分析. 植物生理学报, 2023, 59(1): 127-137.
CAO L R, PANG Y Y, WANG Z Y, GUO S L, ZHANG Q J, WANG Z H, LU X M. Functional analysis of a maize enolase gene ZmENO1 in response to drought and high-temperature stress. China Industrial Economics, 2023, 59(1): 127-137. (in Chinese)
[20]
ZHANG Y F, WANG J Y, LI Y Y, ZHANG Z H, YANG L L, WANG M, ZHANG Y N, ZHANG J, LI C N, LI L, REYNOLDS M P, JING R L, WANG C Y, MAO X G. Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice. Plant Physiology, 2023, 191(2): 1344-1364.
[21]
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124(6): 993-1006.

doi: 10.1093/aob/mcz041 pmid: 31329816
[22]
HAO C Y, WANG L F, GE H M, DONG Y C, ZHANG X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE, 2011, 6(2): e17279.
[23]
LI L, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant, Cell & Environment, 2019, 42(9): 2540-2553.
[24]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262 pmid: 11846609
[25]
UCKER D S. Exploiting death: apoptotic immunity in microbial pathogenesis. Cell Death and Differentiation, 2016, 23(6): 990-996.

doi: 10.1038/cdd.2016.17 pmid: 26943319
[26]
LEBIODA L, STEC B. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Nature, 1988, 333(6174): 683-686.
[27]
RIUS S P, CASATI P, IGLESIAS A A, GOMEZ-CASATI D F. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiology, 2008, 148(3): 1655-1667.
[28]
PRABHAKAR V, LÖTTGERT T, GEIMER S, DÖRMANN P, KRÜGER S, VIJAYAKUMAR V, SCHREIBER L, GÖBEL C, FEUSSNER K, FEUSSNER I, MARIN K, STAEHR P, BELL K, FLÜGGE U I, HÄUSLER R E. Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. The Plant Cell, 2010, 22(8): 2594-2617.
[29]
ZHAO Z X, ASSMANN S M. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62(14): 5179-5189.
[30]
马小凤, 刘子金, 郑超星, 王星, 武宇, 李洪杰, 张根发. 植物烯醇化酶基因ENO2的功能研究进展. 植物遗传资源学报, 2018, 19(6): 1030-1037.

doi: 10.13430/j.cnki.jpgr.20180402001
MA X F, LIU Z J, ZHENG C X, WANG X, WU Y, LI H J, ZHANG G F. Status and progress on function of plant enolase gene ENO2. Journal of Plant Genetic Resources, 2018, 19(6): 1030-1037. (in Chinese)
[31]
PANDEY A K, JAIN P, PODILA G K, TUDZYNSKI B, DAVIS M R. Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP. Molecular Genetics and Genomics, 2009, 281(2): 135-146.

doi: 10.1007/s00438-008-0397-3 pmid: 19011901
[32]
YIN F Q, LIU M, GAO J, ZHANG W Y, QIN C, YANG A G, LUO C G, LIU H B, SHEN Y O, LIN H J, ZHANG Z M, PAN G T. Analysis of global gene expression profiles in tobacco roots under drought stress. Open Life Sciences, 2015, 10(1): 361-380.
[33]
WU Y, LIU H M, BING J, ZHANG G F. Integrative transcriptomic and TMT-based proteomic analysis reveals the mechanism by which AtENO2 affects seed germination under salt stress. Frontiers in Plant Science, 2022, 13: 1035750.
[34]
LIU Y N, HE Z H, APPELS R, XIA X C. Functional markers in wheat: Current status and future prospects. Theoretical and Applied Genetics, 2012, 125(1): 1-10.

doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[35]
HAMMOND-KOSACK M C U, KING R, KANYUKA K, HAMMOND- KOSACK K E. Exploring the diversity of promoter and 5'UTR sequences in ancestral, historic and modern wheat. Plant Biotechnology Journal, 2021, 19(12): 2469-2487.
[36]
XUE Y H, WANG J Y, MAO X G, LI C N, LI L, YANG X, HAO C Y, CHANG X P, LI R Z, JING R L. Association analysis revealed that TaPYL4genes are linked to plant growth related traits in multiple environment. Frontiers in Plant Science, 2021, 12: 641087.
[37]
WANG J Y, WANG R T, MAO X G, ZHANG J L, LIU Y N, XIE Q, YANG X Y, CHANG X, P LI C N, ZHANG X Y, JING R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. Journal of Experimental Botany, 2020, 71(18): 5377-5388.
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!