Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4635-4647.doi: 10.3864/j.issn.0578-1752.2023.23.006

• SPECIAL FOCUS: FIBER DEVELOPMENT IN COTTON • Previous Articles     Next Articles

Research Advances of Map-Based Cloning Genes in Cotton

ZANG XinShan1,2,4(), WANG KangWen1,3(), ZHANG XianLiang1,2, WANG XuePing1, WANG Jun1, LIANG Yu1, PEI XiaoYu1, REN Xiang1,2, LÜ YuLong1,2, GAO Yu1, WANG XingXing1, PENG YunLing3(), MA XiongFeng1,2,3,4()   

  1. 1 Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology/Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Anyang 455000, Henan
    2 Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang
    3 College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Lab of Arid Land Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070
    4 School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001
  • Received:2023-02-08 Accepted:2023-04-17 Online:2023-12-04 Published:2023-12-04
  • Contact: PENG YunLing, MA XiongFeng

Abstract:

Map-based cloning is a classical and effective method to identify candidate genes for specific phenotypic variants. Map-based cloning of functional genes plays important roles in the innovative utilization of germplasm resources, molecular design breeding and improving breeding efficiency. In recent years, the whole-genome sequencing of Gossypium raimondii, Gossypium arboreum, Gossypium hirsutum, and Gossypium barbadense has been completed and improved. Map-based cloning has entered into a crucial period. In 2016, the dominant glandless gene Gl2e (GoPGF) was the first map-based cloning gene in cotton. So far, 20 qualitative traits genes and 5 quantitative traits genes have been identified by map-based cloning technology. In this paper, research progress was systematically reviewed in fiber, gland, nectary, leaf type, plant architecture, plant color, and fertility in terms of gene symbols, names, chromosomal positioning, and candidate genes. Moreover, map-based cloning strategies were systematically reviewed in mapping populations and bulked segregate analysis-sequencing (BSA-seq). With the reduction of sequencing cost and utilization of BSA-seq, it is believed that more and more genes will be cloned by map-based cloning technology. In addition, transformation and genome editing have been successfully used to evaluate the function of the candidate gene in the target interval. It is believed that map-based cloning could provide a theoretical basis and genetic resources for molecular design breeding in cotton.

Key words: cotton, map-based cloning, molecular marker, mapping population, BSA-seq

Table 1

Map-based cloning of qualitative traits genes in cotton"

性状
Trait
基因符号
Gene symbol
名称
Name
染色体定位
Chromosome location
候选基因
Candidate gene
参考文献
Reference
纤维
Fiber
N1 光籽 Naked seed A12 GhMML3_A12 (Gh_A12G185500) [14]
Li1 李氏无纤维 Ligon lintless D04 GhACT_LI1 (Gh_D04G101800) [15]
Li3 李氏无纤维 Ligon lintless D12 GhMML4_D12 (Gh_D12G181300) [16]
Lc1 棕色纤维 Brown lint A07 GhTT2-3A (Gh_A07G020100) [17]
腺体
Gland
Gl2e 有无腺体植株
Glandless and glanded plant
A12 GoPGF (Gh_A12G265100) [12]
MYC (Gh_A12G265100) [18]
gl1 无腺体棉铃 Glandless boll D08 GoSPGF (Gh_D08G192900) [19]
蜜腺
Nectary
EFN 花外蜜腺 Extrafloral nectary A12 GaNEC1 (Ga12G1409) [20]
ne1 无蜜腺 Nectariless A12 GhNe1 (Gh_A12G165500) [21]
ne2 无蜜腺 Nectariless D12 GhNe2 (Gh_D12G163600) [21]
叶型
Leaf type
L2o 鸡脚叶 Okra leaf D01 GhOKRA (Gh_D01G231000) [22]
GhOKRA-Dt (Gh_D01G231000) [23]
L-D1 GhLMI1-D1b (Gh_D01G230600) [24]
株型
Plant architecture
Cl1 丛生铃/零式果枝
Clustered boll / Cluster fruiting
D07 GbAF (Gh_D07G116400) [25]
A08 GoCEN-Dt (Gh_D07G116400) [26]
ob1 柱头外漏 Open bud D13 GhMML10_Dt (Gh_D13G085500) [27]
植株颜色
Plant color
v1 芽黄 Virescent D10 GhCHLI (Gh_D10G031700) [28]
[29]
R1 红株 Red plant D07 GhPAP1D/RLC1 (Gh_D07G083600) [30]
育性
Fertility
Le4 致死基因 Lethality gene D11 CC-NBS-LRR (Gh_D11G325500) [31]
Ms 不育基因 Male-sterile A12 Ms5 (Gh_A12G129100) [32]
D12 Ms6 (Gh_D12G129300) [32]
GhNsp 败育恢复基因 No spine pollen D02 GhNSP (Gh_D02G264700) [33]
其他性状
Other traits
Ghlmm 类病变突变体 Lesion mimic mutant D05 GhLMMD (Gh_D05G236600) [34]
R3 红色花瓣 Red petal A07 GhTT19 (Gh_A07G079800) [35]
GbBM 花瓣基斑 Beauty mark A07 GbBM (Gbar_A07G008330) [36]

Table 2

Map-based cloning of quantitative traits genes in cotton"

性状
Trait
基因符号
Gene symbol
名称
Name
染色体定位
Chromosome location
候选基因
Candidate gene
参考文献
Reference
纤维
Fiber
qFS-D3-1 纤维强度 Fiber strength D03 GHUBX (Gh_D03G097900) [37]
qFL-c10-1 纤维长度 Fiber length A10 GhFL10 (Ghir_A10G022020) [38]
铃重 Boll weight qBWT-c12 铃重 Boll weight A12 GhBRH1_A12 (Gh_A12G124400) [39]
黄萎病
Verticillium wilt
qVW-Bp2-1 黄萎病 Verticillium wilt D04 GbTMEM214 (GOBAR_DD35466) [40]
qVWBp2-2 黄萎病 Verticillium wilt D04 GbCYP450 (GOBAR_DD30825)

Table 3

Mapping population constructed for map-based cloning in cotton"

基因符号
Gene symbol
群体
Populations
群体类型
Population type
群体大小
Population size
群体大小
(总和)
Population size (Sum)
连锁的分子标记
Linked molecular markers
物理距离
Physical distance (kb)
参考文献
Reference
Gl2e TM-1(腺体Glanded)×Hai-1(无腺体Glandless) F2 1599 2197 w7954 Gl2e w5383 43 [12]
TM-1 (腺体Glanded)×N1(无腺体Glandless) F2 244
TM-1 (腺体Glanded)×N7(无腺体Glandless) F2 354
CCRI12(腺体Glanded)×Dgl-CCRI12(无腺体Glandless) F2 1225 4530 CS2 Gl2e CS4 15 [18]
CCRI12(腺体Glanded)×Dgl-CCRI12(无腺体Glandless) F2 1051
L7(腺体Glanded)×Dgl-L7(无腺体Glandless) F2 2254
N1 N1(光籽突变体Naked seed mutant)×Xinhai 16 (正常种子Normal seed) F2 232 2012 H5532 N1
H5536
49 [14]
N1 (光籽突变体Naked seed mutant)×Junhai 1(正常种子Normal seed) F2 408
N1(光籽突变体Naked seed mutant)×CSIL158(正常种子Normal seed) F2 1372
L2o RIL034(鸡脚叶Okra leaf)×Yumian1(正常叶Normal leaf) F2 1873 2360 SWU07749 L2o SWU07354 12 [22]
RIL090(鸡脚叶Okra leaf)×Jinnong08(正常叶Normal leaf) F2 310
陆地棉品系
Gossypium hirsutum accessions
自然群体
Natural population
177
TM-1(正常叶Normal leaf)×IL-15-5-1(鸡脚叶Okra leaf) F2 770 1278 JESPR152 L2o NAU3040 183 [23]
TM-1(正常叶Normal leaf)×IL-15-5-1(鸡脚叶Okra leaf) F2 508
L-D1 NC05AZ21(鸡脚叶Okra leaf)×NC11-2100 (正常叶Normal leaf) F2 1027 1565 N.A. 52 [24]
异源四倍体棉花品系
Tetraploid cotton accessions
自然群体
Natural population
538
v1 [TM-1(正常Normal)×T582(芽黄Virescent)]×T582(芽黄Virescent) BC1 412 2576 K5499 v1
K5846
44 [28]
TM-1(正常Normal)×T582(芽黄Virescent) F2 2164
TM-1(正常Normal)×CCRI60(芽黄Virescent) F2 1132 4232 D10M-180 v1 D10BIN45 84.1 [29]
TM-1(正常Normal)×CCRI60(芽黄Virescent) F2 3100
Li1 DP5690NIL(短纤维Short fiber)×DP5690(正常纤维 Normal fiber) F2 2567 4319 N.A. N.A. [15]
DP5690NIL(短纤维Short fiber)×DP5690(正常纤维 Normal fiber) F3 426
DP5690NIL(短纤维Short fiber)×DP5690(正常纤维 Normal fiber) F3 470
DP5690NIL(短纤维Short fiber)×DP5690(正常纤维 Normal fiber) F3 670
陆地棉品种
Gossypium hirsutum cultivars
自然群体
Natural population
186
Li3 XZ142FLM (无绒无絮种子Lintless-fuzzless seed)×n2NSM (无绒种子Fuzzless seed) F2 4662 9330 W1644 Li3 W1650 79.8 [16]
XZ142FLM (无绒无絮种子Lintless-fuzzless seed)×n2NSM (无绒种子Fuzzless seed) BC1 4668
Ghlmm Ghlmm(病变模拟突变体Lesion mimic mutant)×TM-1(正常植株Normal plant) F2 763 763 NAU7928
Ghlmm S2393
371 [34]
ne1/ ne2 MD90ne(无蜜腺 Nectariless line)×TM-1(有蜜腺 Nectary line) F2 1021 6477 K9201
ne2 K5116
467 [21]
MD90ne(无蜜腺Nectariless line)×TM-1(有蜜腺Nectary line) F2 1972
MD90ne(无蜜腺Nectariless line)×TM-1(有蜜腺 Nectary line) F2 2240
MD90ne(无蜜腺Nectariless line)×TM-1(有蜜腺 Nectary line) BC1 539 K5997 ne2
K9224
156
MD90ne(无蜜腺Nectariless line)×TM-1(有蜜腺 Nectary line) BC1 715
Cl1 TM-1(正常植株Normal plant)×Xinhai 25(从生铃Clustered boll) F2 998 2079 K4918 Cl1
K583
390 [25]
T582(从生铃Clustered boll)×TM-1(正常植株Normal plant) ;[TM-1(正常植株Normal plant)×T582(从生铃Clustered boll)]×T582(从生铃Clustered boll) F2/BC1 852
海岛棉品种
Gossypium barbadense cultivars
自然群体
Natural population
229
CCRI35(正常植株Normal plant)×Hai170(从生铃Cluster fruiting) F2 310 5163 SWU07707 Cl SWU08487 69 [26]
CCRI35(正常植株Normal plant)×Hai170(从生铃Cluster fruiting) F2 2341
Duan063(正常植株Normal plant)×Pima-S6(从生铃Cluster fruiting) F2 184
Yumian1(正常植株Normal plant)×Chaozao3(从生铃Cluster fruiting) F2 2236
海岛棉品系
Sea island cotton accessions
自然群体
Natural population
92
Lc1 T586(棕色纤维Dark-brown fiber)×Yumian No. 1(正常纤维Normal fiber) RIL population (F2:7) 270 1968 TT2-1A Lc1 TT2-3A 67 [17]
T586(棕色纤维Dark-brown fiber)×Yumian No. 1(正常纤维Normal fiber) F2 1698
Le4 [TM-1(正常植株Normal plant)×R4-4(杂交致死植株Lethality plant)]×TM-1(正常植株Normal plant) BC1 2013 2013 K1805 Le4 W8424 267 [31]
R1 T586(红色植株Red plant)×Yumian 1 (正常植株Normal plant) RIL 270 270 S5 R1 S6 136 [30]
ob1 TM-1(正常植株Normal plant)×CS-B18(柱头外露Open bud) F2 4333 6137 M6058 ob1 M25377 400 [27]
TM-1(正常植株Normal plant)×(TM-1(正常植株Normal plant)×CS-B18(柱头外露Open bud)) BC1 1804
R3 LR(红花Red flowers)×LW(白花White flowers)
LR(红花Red flowers)×LW(白花White flowers)
LR(红花Red flowers)×LW(白花White flowers)
F2
F2
F2
351
1191
136
1678 A07-0594 R3 A07-0592 33.2 [35]
Ms NanNong6(雄性不育系Male-sterile line)×GangZa8 (可育品种Fertile cultivar) F2 485 1962 T1 Ms5 T5
T1 Ms6 T5
212 [32]
NanNong6
(雄性不育系Male-sterile line)×GangZa8 (可育品种Fertile cultivar)
F2 913
NanNong6
(雄性不育系Male-sterile line)×GangZa8 (可育品种Fertile cultivar)
F2 563
GhNsp 1355A(雄性不育系Male-sterile line)×E22 (可育品种Fertile cultivar) F2 64 1904 flanked by D02-2919 103 [33]
1355A (雄性不育系Male-sterile line)×1355B (可育系 Fertile line) NIL 1840
GbBM HaiR(花瓣基斑Spotted petal)×P30B (无花瓣基斑Nonspotted petal) F2 120 5780 CMB5 GbBM CMB7 298 [36]
HaiR(花瓣基斑Spotted petal)×P30B (无花瓣基斑Nonspotted petal) F2 5660
EFN GA0028(无蜜腺Nectariless)×GA0028(花外蜜腺Nectary) F2 96 2481 H1893 EFN H8099 96.6 [20]
GA0028(无蜜腺Nectariless)×GA0028(花外蜜腺Nectary) F2 2385
qFS-D3-1 RIL168(高纤维强度Fine fiber strength)×86-1(低纤维强度Low fiber strength) F2 747 1864 K5219 qFS-
D3-1 K5221
930 [37]
RIL98(高纤维强度Fine fiber strength)×86-1(低纤维强度Low fiber strength) F2 355
RIL120(高纤维强度Fine fiber strength)×86-1(低纤维强度Low fiber strength) F2 417
RIL143(高纤维强度Fine fiber strength)×86-1(低纤维强度Low fiber strength) F2 345
qFL-c10-1 DJ61(高纤维长度Fine fiber length)×Jimian5(低纤维强度Low-fiber length) F2 1081 1081 SNP-294 qFL- c10-1A10-29 96.5 [38]
qBWT-c12 Emian22高铃重High boll weight×BS41(低铃重Lowered boll weight) F2 311 3841 AD-A12_07 qBWT-c12 AD-FM_44 180 [39]
Emian22 (高铃重High boll weight)×BS41(低铃重Lowered boll weight) F2 795
Emian22 (高铃重High boll weight)×BS41(低铃重Lowered boll weight) F3 2289
Emian22 (高铃重High boll weight)×BS41(低铃重Lowered boll weight) F4 446
qVW-Bp2-1 CSIL SuVR043(高黄萎病抗性Highly verticillium wilt resistant)×Sumian 8(易感黄萎病susceptible to verticillium wilt) F2 176 176 cgr6409 qVW- Bp2-1 ZHX37 254 [40]
qVW-Bp2-2 CSIL SuVR043(高黄萎病抗性Highly verticillium wilt resistant)×Sumian 8(易感黄萎病susceptible to verticillium wilt) F2 176 176 ZHX57 qVW- Bp2-2 ZHX70 140
[1]
WANG K B, WANG Z W, LI F G, YE W W, WANG J Y, SONG G L, YUE Z, CONG L, SHANG H H, ZHU S L, ZOU C S, LI Q, YUAN Y L, LU C R, WEI H L, GOU C Y, ZHENG Z Q, YIN Y, ZHANG X Y, LIU K, WANG B, SONG C, SHI N, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(10): 1098-1103.

doi: 10.1038/ng.2371
[2]
PATERSON A H, WENDEL J F, GUNDLACH H, GUO H, JENKINS J, JIN D C, LLEWELLYN D, SHOWMAKER K C, SHU S Q, UDALL J, YOO M J, BYERS R, CHEN W, DORON-FAIGENBOIM A, DUKE M V, GONG L, GRIMWOOD J, GROVER C, GRUPP K, HU G J, LEE T H, LI J P, LIN L F, LIU T, MARLER B S, PAGE J T, ROBERTS A W, ROMANEL E, SANDERS W S, SZADKOWSKI E, TAN X, TANG H B, XU C M, WANG J P, WANG Z N, ZHANG D, ZHANG L, ASHRAFI H, BEDON F, BOWERS J E, BRUBAKER C L, CHEE P W, DAS S, GINGLE A R, HAIGLER C H, HARKER D, HOFFMANN L V, HOVAV R, JONES D C, LEMKE C, MANSOOR S, RAHMAN M U, RAINVILLE L N, RAMBANI A, REDDY U K, RONG J-K, SARANGA Y, SCHEFFLER B E, SCHEFFLER J A, STELLY D M, TRIPLETT B A, VAN DEYNZE A, VASLIN M F S, WAGHMARE V N, WALFORD S A, WRIGHT R J, ZAKI E A, ZHANG T D, DENNIS E S, MAYER K F X, PETERSON D G, ROKHSAR D S, WANG X Y, SCHMUTZ J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492(7429): 423-427.

doi: 10.1038/nature11798
[3]
LI F G, FAN G Y, WANG K B, SUN F M, YUAN Y L, SONG G L, LI Q, MA Z Y, LU C R, ZOU C S, CHEN W B, LIANG X M, SHANG H H, LIU W Q, SHI C C, XIAO G H, GOU C Y, YE W W, XU X, ZHANG X Y, WEI H L, LI Z F, ZHANG G Y, WANG J Y, LIU K, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46(6): 567-572.

doi: 10.1038/ng.2987
[4]
LI F G, FAN G Y, LU C R, XIAO G H, ZOU C S, KOHEL R J, MA Z Y, SHANG H H, MA X F, WU J Y, LIANG X M, HUANG G, PERCY R G, LIU K, YANG W H, CHEN W B, DU X M, SHI C C, YUAN Y L, YE W W, LIU X, ZHANG X Y, LIU W Q, WEI H L, WEI S J, HUANG G D, ZHANG X L, ZHU S J, ZHANG H, SUN F M, WANG X F, LIANG J, WANG J H, HE Q, HUANG L H, WANG J, CUI J J, SONG G L, WANG K B, XU X, YU J Z, ZHU Y X, YU S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.

doi: 10.1038/nbt.3208
[5]
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.

doi: 10.1038/nbt.3207
[6]
YUAN D J, TANG Z H, WANG M J, GAO W H, TU L L, JIN X, CHEN L L, HE Y H, ZHANG L, ZHU L F, LI Y, LIANG Q Q, LIN Z X, YANG X Y, LIU N, JIN S X, LEI Y, DING Y H, LI G L, RUAN X A, RUAN Y J, ZHANG X L. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Scientific Reports, 2016, 5(1): 17662.

doi: 10.1038/srep17662
[7]
LIU X, ZHAO B, ZHENG H J, HU Y, LU G, YANG C Q, CHEN J D, CHEN J J, CHEN D Y, ZHANG L, ZHOU Y, WANG L J, GUO W Z, BAI Y L, RUAN J X, SHANGGUAN X X, MAO Y B, SHAN C M, JIANG J P, ZHU Y Q, JIN L, KANG H, CHEN S T, HE X L, WANG R, WANG Y Z, CHEN J, WANG L J, YU S T, WANG B Y, WEI J, SONG S C, LU X Y, GAO Z C, GU W Y, DENG X, MA D, WANG S, LIANG W H, FANG L, CAI C P, ZHU X F, ZHOU B L, JEFFREY CHEN Z, XU S H, ZHANG Y G, WANG S Y, ZHANG T Z, ZHAO G P, CHEN X Y. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Scientific Reports, 2015, 5(1): 14139.

doi: 10.1038/srep14139
[8]
MA Z Y, ZHANG Y, WU L Q, ZHANG G Y, SUN Z W, LI Z K, JIANG Y F, KE H F, CHEN B, LIU Z W, GU Q S, WANG Z C, WANG G N, YANG J, WU J H, YAN Y Y, MENG C S, LI L H, LI X X, MO S J, WU N, MA L M, CHEN L T, ZHANG M, SI A J, YANG Z W, WANG N, WU L Z, ZHANG D M, CUI Y R, CUI J, LV X, LI Y, SHI R K, DUAN Y H, TIAN S L, WANG X F. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53(9): 1385-1391.

doi: 10.1038/s41588-021-00910-2 pmid: 34373642
[9]
HE S P, SUN G F, GENG X L, GONG W F, DAI P H, JIA Y H, SHI W J, PAN Z E, WANG J D, WANG L Y, XIAO S H, CHEN B J, CUI S F, YOU C Y, XIE Z M, WANG F, SUN J, FU G Y, PENG Z, HU D W, WANG L R, PANG B Y, DU X M. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nature Genetics, 2021, 53(6): 916-924.

doi: 10.1038/s41588-021-00844-9 pmid: 33859417
[10]
HUANG G, WU Z G, PERCY R G, BAI M Z, LI Y, FRELICHOWSKI J E, HU J, WANG K, YU J Z, ZHU Y X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5): 516-524.

doi: 10.1038/s41588-020-0607-4
[11]
YANG Z E, GE X Y, YANG Z R, QIN W Q, SUN G F, WANG Z, LI Z, LIU J, WU J, WANG Y, LU L L, WANG P, MO H J, ZHANG X Y, LI F G. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications, 2019, 10(1): 2989.

doi: 10.1038/s41467-019-10820-x pmid: 31278252
[12]
MA D, HU Y, YANG C Q, LIU B L, FANG L, WAN Q, LIANG W H, MEI G F, WANG L J, WANG H P, DING L Y, DONG C G, PAN M Q, CHEN J D, WANG S, CHEN S Q, CAI C P, ZHU X F, GUAN X Y, ZHOU B L, ZHU S J, WANG J W, GUO W Z, CHEN X Y, ZHANG T Z. Genetic basis for glandular trichome formation in cotton. Nature Communications, 2016, 7: 10456.

doi: 10.1038/ncomms10456 pmid: 26795254
[13]
臧新山, 耿延会, 裴文锋, 吴嫚, 李兴丽, 张金发, 于霁雯. 棉花形态性状质量遗传分析与基因定位研究进展. 棉花学报, 2018, 30(6): 473-485.
ZANG X S, GENG Y H, PEI W F, WU M, LI X L, ZHANG J F, YU J W. Research progress on the Mendelian genetic analysis and molecular mapping of morphological qualitative traits in cotton. Cotton Science, 2018, 30(6): 473-485. (in Chinese)
[14]
WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. The New Phytologist, 2016, 210(4): 1298-1310.

doi: 10.1111/nph.2016.210.issue-4
[15]
THYSSEN G N, FANG D D, TURLEY R B, FLORANE C B, LI P, MATTISON C P, NAOUMKINA M. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants. The Plant Journal, 2017, 90(1): 111-121.

doi: 10.1111/tpj.2017.90.issue-1
[16]
WU H T, TIAN Y, WAN Q, FANG L, GUAN X Y, CHEN J D, HU Y, YE W X, ZHANG H, GUO W Z, CHEN X Y, ZHANG T Z. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. The New Phytologist, 2018, 217(2): 883-895.

doi: 10.1111/nph.2018.217.issue-2
[17]
YAN Q, WANG Y, LI Q, ZHANG Z S, DING H, ZHANG Y, LIU H S, LUO M, LIU D X, SONG W, LIU H F, YAO D, OUYANG X F, LI Y H, LI X, PEI Y, XIAO Y H. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnology Journal, 2018, 16(10): 1735-1747.

doi: 10.1111/pbi.2018.16.issue-10
[18]
CHENG H L, LU C R, YU J Z, ZOU C S, ZHANG Y P, WANG Q L, HUANG J, FENG X X, JIANG P F, YANG W C, SONG G L. Fine mapping and candidate gene analysis of the dominant glandless gene Gl2e in cotton (Gossypium spp.). Theoretical and Applied Genetics, 2016, 129(7): 1347-1355.

doi: 10.1007/s00122-016-2707-1
[19]
ZANG Y H, XU C Y, XUAN L S, DING L Y, ZHU J K, SI Z F, ZHANG T Z, HU Y. Identification and characteristics of a novel gland-forming gene in cotton. The Plant Journal, 2021, 108(3): 781-792.

doi: 10.1111/tpj.v108.3
[20]
HU W, QIN W Q, JIN Y Y, WANG P, YAN Q D, LI F G, YANG Z E. Genetic and evolution analysis of extrafloral nectary in cotton. Plant Biotechnology Journal, 2020, 18(10): 2081-2095.

doi: 10.1111/pbi.v18.10
[21]
PEI Y F, ZHANG J, WU P, YE L, YANG D F, CHEN J D, LI J, HU Y, ZHU X F, GUO X P, ZHANG T Z. GoNe encoding a class VIIIb AP2/ERF is required for both extrafloral and floral nectary development in Gossypium. The Plant Journal, 2021, 106(4): 1116-1127.

doi: 10.1111/tpj.v106.4
[22]
ZHU Q H, ZHANG J, LIU D X, STILLER W, LIU D J, ZHANG Z S, LLEWELLYN D, WILSON I. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L. Journal of Experimental Botany, 2016, 67(3): 763-774.

doi: 10.1093/jxb/erv494
[23]
CHANG L J, FANG L, ZHU Y J, WU H T, ZHANG Z Y, LIU C X, LI X H, ZHANG T Z. Insights into interspecific hybridization events in allotetraploid cotton formation from characterization of a gene- regulating leaf shape. Genetics, 2016, 204(2): 799-806.

doi: 10.1534/genetics.116.193086
[24]
ANDRES R J, CONEVA V, FRANK M H, TUTTLE J R, SAMAYOA L F, HAN S-W, KAUR B, ZHU L, FANG H, BOWMAN D T, ROJAS-PIERCE M, HAIGLER C H, JONES D C, HOLLAND J B, CHITWOOD D H, KURAPARTHY V. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1): E57-E66.
[25]
SI Z F, LIU H, ZHU J K, CHEN J D, WANG Q, FANG L, GAO F K, TIAN Y, CHEN Y L, CHANG L J, LIU B L, HAN Z G, ZHOU B L, HU Y, HUANG X Z, ZHANG T Z. Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture. Journal of Experimental Botany, 2018, 69(10): 2543-2553.

doi: 10.1093/jxb/ery093
[26]
LIU D X, TENG Z H, KONG J, LIU X Y, WANG W W, ZHANG X, ZHAI T F, DENG X P, WANG J X, ZENG J Y, XIAO Y H, GUO K, ZHANG J, LIU D J, WANG W R, ZHANG Z S. Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton. BMC Plant Biology, 2018, 18(1): 286.

doi: 10.1186/s12870-018-1518-8 pmid: 30458710
[27]
CHEN W, YAO J B, LI Y, ZHU S H, GUO Y, FANG S T, ZHAO L J, WANG J Y, YUAN L, LU Y J, ZHANG Y S. Open-bud duplicate loci are identified as MML10s, orthologs of MIXTA-like genes on homologous chromosomes of allotetraploid cotton. Frontiers in Plant Science, 2020, 11: 81.

doi: 10.3389/fpls.2020.00081
[28]
ZHU J K, CHEN J D, GAO F K, XU C Y, WU H T, CHEN K, SI Z F, YAN H, ZHANG T Z. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. Journal of Experimental Botany, 2017, 68(15): 4125-4135.

doi: 10.1093/jxb/erx240 pmid: 28922761
[29]
MAO G Z, MA Q, WEI H L, SU J J, WANG H T, MA Q F, FAN S L, SONG M Z, ZHANG X L, YU S X. Fine mapping and candidate gene analysis of the virescent gene v1 in Upland cotton (Gossypium hirsutum). Molecular Genetics and Genomics, 2018, 293(1): 249-264.

doi: 10.1007/s00438-017-1383-4
[30]
LI X, OUYANG X F, ZHANG Z S, HE L, WANG Y, LI Y H, ZHAO J, CHEN Z, WANG C N, DING L L, PEI Y, XIAO Y H. Over- expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton. Molecular Genetics and Genomics, 2019, 294(2): 469-478.

doi: 10.1007/s00438-018-1525-3
[31]
DENG J Q, FANG L, ZHU X F, ZHOU B L, ZHANG T Z. A CC-NBS-LRR gene induces hybrid lethality in cotton. Journal of Experimental Botany, 2019, 70(19): 5145-5156.

doi: 10.1093/jxb/erz312
[32]
MA H H, WU Y L, LV R L, CHI H B, ZHAO Y L, LI Y L, LIU H B, MA Y Z, ZHU L F, GUO X P, KONG J, WU J Y, XING C Z, ZHANG X L, MIN L. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton. Journal of Integrative Plant Biology, 2022, 64(10): 2009-2025

doi: 10.1111/jipb.v64.10
[33]
WU Y L, LI X, LI Y L, MA H H, CHI H B, MA Y Z, YANG J, XIE S, ZHANG R, LIU L Y, SU X J, LV R J, KHAN A H, KONG J, GUO X P, LINDSEY K, MIN L, ZHANG X L. Degradation of de-esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary for pollen exine formation and male fertility in cotton. Plant Biotechnology Journal, 2022, 20(6): 1054-1068.

doi: 10.1111/pbi.v20.6
[34]
CHAI Q C, SHANG X G, WU S, ZHU G Z, CHENG C Z, CAI C P, WANG X Y, GUO W Z. 5-aminolevulinic acid dehydratase gene dosage affects programmed cell death and immunity. Plant Physiology, 2017, 175(1): 511-528.

doi: 10.1104/pp.17.00816 pmid: 28751313
[35]
CHAI Q C, WANG X L, GAO M, ZHAO X C, CHEN Y, ZHANG C, JIANG H, WANG J B, WANG Y C, ZHENG M N, BALTAEVICH A M, ZHAO J, ZHAO J S. A glutathione S‐transferase GhTT19 determines flower petal pigmentation via regulating anthocyanin accumulation in cotton. Plant Biotechnology Journal, 2022, 21: 433-448.

doi: 10.1111/pbi.v21.2
[36]
ABID M A, WEI Y X, MENG Z G, WANG Y, YE Y L, WANG Y N, HE H Y, ZHOU Q, LI Y Y, WANG P L, LI X G, YAN L H, MALIK W, GUO S D, CHU C C, ZHANG R, LIANG C Z. Increasing floral visitation and hybrid seed production mediated by beauty mark in Gossypium hirsutum. Plant Biotechnology Journal, 2022, 20(7): 1274-1284.

doi: 10.1111/pbi.v20.7
[37]
ZANG Y H, HU Y, XU C Y, WU S J, WANG Y K, NING Z Y, HAN Z G, SI Z F, SHEN W J, ZHANG Y Y, FANG L, ZHANG T Z. GhUBX controlling helical growth results in production of stronger cotton fiber. iScience, 2021, 24(8): 102930.

doi: 10.1016/j.isci.2021.102930
[38]
ZHANG R T, SHEN C, ZHU D, LE Y, WANG N, LI Y X, ZHANG X L, LIN Z X. Fine-mapping and candidate gene analysis of qFL-c10-1 controlling fiber length in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2022, 135(12): 4483-4494.

doi: 10.1007/s00122-022-04233-6
[39]
AHMED M M, HUANG C, SHEN C, KHAN A Q, LIN Z X. Map-based cloning of qBWT-c12 discovered brassinosteroid-mediated control of organ size in cotton. Plant Science, 2020, 291: 110315.

doi: 10.1016/j.plantsci.2019.110315
[40]
ZHAO J, LIU J G, XU J W, ZHAO L, WU Q J, XIAO S H. Quantitative trait locus mapping and candidate gene analysis for Verticillium wilt resistance using Gossypium barbadense chromosomal segment introgressed line. Frontiers in Plant Science, 2018, 9: 682.

doi: 10.3389/fpls.2018.00682
[41]
DONG C G, DING Y Z, GUO W Z, ZHANG T Z. Fine mapping of the dominant glandless Gene Gl2e in Sea-island cotton (Gossypium barbadense L.). Chinese Science Bulletin, 2007, 52(22): 3105-3109.

doi: 10.1007/s11434-007-0468-6
[42]
SONG L, GUO W Z, ZHANG T Z. Interaction of novel Dobzhansky-Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4-4. Theoretical and Applied Genetics, 2009, 119(1): 33-41.

doi: 10.1007/s00122-009-1014-5
[43]
LIU D X, LIU F, SHAN X R, ZHANG J, TANG S Y, FANG X M, LIU X Y, WANG W W, TAN Z Y, TENG Z H, ZHANG Z S, LIU D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Molecular Genetics and Genomics, 2015, 290(5): 1683-1700.

doi: 10.1007/s00438-015-1027-5
[44]
MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.
[45]
TAKAGI H, TAMIRU M, ABE A, YOSHIDA K, UEMURA A, YAEGASHI H, OBARA T, OIKAWA K, UTSUSHI H, KANZAKI E, MITSUOKA C, NATSUME S, KOSUGI S, KANZAKI H, MATSUMURA H, URASAKI N, KAMOUN S, TERAUCHI R. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 2015, 33(5): 445-449.

doi: 10.1038/nbt.3188 pmid: 25798936
[46]
TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.

doi: 10.1111/tpj.12105 pmid: 23289725
[47]
ZHONG C, SUN S L, LI Y P, DUAN C X, ZHU Z D. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theoretical and Applied Genetics, 2018, 131(3): 525-538.

doi: 10.1007/s00122-017-3016-z
[48]
LU H F, LIN T, KLEIN J, WANG S H, QI J J, ZHOU Q, SUN J J, ZHANG Z H, WENG Y Q, HUANG S W. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theoretical and Applied Genetics, 2014, 127(7): 1491-1499.

doi: 10.1007/s00122-014-2313-z pmid: 24845123
[49]
ILLA-BERENGUER E, VAN HOUTEN J, HUANG Z J, VAN DER KNAAP E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 2015, 128(7): 1329-1342.

doi: 10.1007/s00122-015-2509-x
[50]
NAOUMKINA M, THYSSEN G N, FANG D D, FLORANE C B, LI P. A deletion/duplication in the Ligon lintless-2 locus induces siRNAs that inhibit cotton fiber cell elongation. Plant Physiology, 2022, 190(3): 1792-1805.

doi: 10.1093/plphys/kiac384 pmid: 35997586
[51]
WANG X Y, ZHANG X W, FAN D R, GONG J W, LI S Q, GAO Y J, LIU A Y, LIU L J, DENG X Y, SHI Y Z, SHANG H H, ZHANG Y M, YUAN Y L. AAQSP increases mapping resolution of stable QTLs through applying NGS-BSA in multiple genetic backgrounds. Theoretical and Applied Genetics, 2022, 135(9): 3223-3235.

doi: 10.1007/s00122-022-04181-1
[52]
COULSON A, SULSTON J, BRENNER S, KARN J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(20): 7821-7825.
[53]
LI T G, MA X F, LI N Y, ZHOU L, LIU Z, HAN H Y, GUI Y J, BAO Y M, CHEN J Y, DAI X F. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal, 2017, 15(12): 1520-1532.

doi: 10.1111/pbi.2017.15.issue-12
[54]
LIU S M, ZHANG X J, XIAO S H, MA J, SHI W J, QIN T, XI H, NIE X H, YOU C Y, XU Z, WANG T Y, WANG Y J, ZHANG Z N, LI J Y, KONG J, AIERXI A, YU Y, LINDSEY K, KLOSTERMAN S J, ZHANG X L, ZHU L F. A Single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum. Advanced Science, 2021, 8(7): 2002723.

doi: 10.1002/advs.v8.7
[55]
GE X Y, XU J T, YANG Z E, YANG X F, WANG Y, CHEN Y L, WANG P, LI F G. Efficient genotype‐independent cotton genetic transformation and genome editing. Journal of Integrative Plant Biology, 2023, 65(4): 907-917.

doi: 10.1111/jipb.v65.4
[56]
WANG P C, ZHANG J, SUN L, MA Y Z, XU J, LIANG S J, DENG J W, TAN J F, ZHANG Q H, TU L L, DANIELL H, JIN S X, ZHANG X L. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnology Journal, 2018, 16(1): 137-150.

doi: 10.1111/pbi.12755 pmid: 28499063
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[5] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[6] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[7] DANG YuanYue, MA JianJiang, YANG ShuXian, SONG JiKun, JIA Bing, FENG Pan, CHEN QuanJia, YU JiWen. Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4585-4601.
[8] TANG LiYuan, CAI Xiao, WANG HaiTao, LI XingHe, ZHANG SuJun, LIU CunJing, ZHANG JianHong. Genome-Wide Identification of Cotton FLA Gene Family and Functional Analysis of GhFLA05 in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4602-4620.
[9] ZHANG YaLin, JIANG Yan, ZHAO LiHong, FENG ZiLi, FENG HongJie, WEI Feng, ZHOU JingLong, ZHU HeQin, MA ZhiYing. Effect of Temperature on the Occurrence of Cotton Verticillium Wilt and Host Defense Response [J]. Scientia Agricultura Sinica, 2023, 56(23): 4671-4683.
[10] ZHANG ZeYuan, LI Yue, ZHAO WenSha, GU JingJing, ZHANG AoYan, ZHANG HaiLong, SONG PengBo, WU JianHui, ZHANG ChuanLiang, SONG QuanHao, JIAN JunTao, SUN DaoJie, WANG XingRong. QTL Mapping and Molecular Marker Development of Traits Related to Grain Weight in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149.
[11] YANG Hao, HUANG YanYan, YI ChunLin, SHI Jun, TAN ChuTian, REN WenRui, WANG WenMing. Development and Application of Specific Molecular Markers for Six Homologous Rice Blast Resistance Genes in Pi9 Locus of Rice [J]. Scientia Agricultura Sinica, 2023, 56(21): 4219-4233.
[12] DONG JiZi, CHEN LinQu, GUO HaoRu, ZHANG MengYu, LIU ZhiXiao, HAN Lei, TIAN ZhaoSaShuang, XU NingHao, GUO QingJie, HUANG ZhenJie, YANG AoYu, ZHAO ChunHua, WU YongZhen, SUN Han, QIN Ran, CUI Fa. Analysis of Genetic and Breeding Selection Effects of A Major QTL-qSl-2D for Wheat Spike Length [J]. Scientia Agricultura Sinica, 2023, 56(20): 3917-3930.
[13] LIU Fang, XU MengBei, WANG QiaoLing, MENG Qian, LI GuiMing, ZHANG HongJu, TIAN HuiDan, XU Fan, LUO Ming. Cloning and Functional Characterization of the Promoter of GhSLD1 Gene That Predominantly Expressed in Cotton Fiber [J]. Scientia Agricultura Sinica, 2023, 56(19): 3712-3722.
[14] DING GuoHua, XIAO GuangHui, ZHU LiPing. Genome-Wide Identification and Expression Analysis of NLP (NIN- Like Protein) Transcription Factor Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(19): 3723-3746.
[15] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!