[1] |
WANG K B, WANG Z W, LI F G, YE W W, WANG J Y, SONG G L, YUE Z, CONG L, SHANG H H, ZHU S L, ZOU C S, LI Q, YUAN Y L, LU C R, WEI H L, GOU C Y, ZHENG Z Q, YIN Y, ZHANG X Y, LIU K, WANG B, SONG C, SHI N, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(10): 1098-1103.
doi: 10.1038/ng.2371
|
[2] |
PATERSON A H, WENDEL J F, GUNDLACH H, GUO H, JENKINS J, JIN D C, LLEWELLYN D, SHOWMAKER K C, SHU S Q, UDALL J, YOO M J, BYERS R, CHEN W, DORON-FAIGENBOIM A, DUKE M V, GONG L, GRIMWOOD J, GROVER C, GRUPP K, HU G J, LEE T H, LI J P, LIN L F, LIU T, MARLER B S, PAGE J T, ROBERTS A W, ROMANEL E, SANDERS W S, SZADKOWSKI E, TAN X, TANG H B, XU C M, WANG J P, WANG Z N, ZHANG D, ZHANG L, ASHRAFI H, BEDON F, BOWERS J E, BRUBAKER C L, CHEE P W, DAS S, GINGLE A R, HAIGLER C H, HARKER D, HOFFMANN L V, HOVAV R, JONES D C, LEMKE C, MANSOOR S, RAHMAN M U, RAINVILLE L N, RAMBANI A, REDDY U K, RONG J-K, SARANGA Y, SCHEFFLER B E, SCHEFFLER J A, STELLY D M, TRIPLETT B A, VAN DEYNZE A, VASLIN M F S, WAGHMARE V N, WALFORD S A, WRIGHT R J, ZAKI E A, ZHANG T D, DENNIS E S, MAYER K F X, PETERSON D G, ROKHSAR D S, WANG X Y, SCHMUTZ J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492(7429): 423-427.
doi: 10.1038/nature11798
|
[3] |
LI F G, FAN G Y, WANG K B, SUN F M, YUAN Y L, SONG G L, LI Q, MA Z Y, LU C R, ZOU C S, CHEN W B, LIANG X M, SHANG H H, LIU W Q, SHI C C, XIAO G H, GOU C Y, YE W W, XU X, ZHANG X Y, WEI H L, LI Z F, ZHANG G Y, WANG J Y, LIU K, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46(6): 567-572.
doi: 10.1038/ng.2987
|
[4] |
LI F G, FAN G Y, LU C R, XIAO G H, ZOU C S, KOHEL R J, MA Z Y, SHANG H H, MA X F, WU J Y, LIANG X M, HUANG G, PERCY R G, LIU K, YANG W H, CHEN W B, DU X M, SHI C C, YUAN Y L, YE W W, LIU X, ZHANG X Y, LIU W Q, WEI H L, WEI S J, HUANG G D, ZHANG X L, ZHU S J, ZHANG H, SUN F M, WANG X F, LIANG J, WANG J H, HE Q, HUANG L H, WANG J, CUI J J, SONG G L, WANG K B, XU X, YU J Z, ZHU Y X, YU S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.
doi: 10.1038/nbt.3208
|
[5] |
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
doi: 10.1038/nbt.3207
|
[6] |
YUAN D J, TANG Z H, WANG M J, GAO W H, TU L L, JIN X, CHEN L L, HE Y H, ZHANG L, ZHU L F, LI Y, LIANG Q Q, LIN Z X, YANG X Y, LIU N, JIN S X, LEI Y, DING Y H, LI G L, RUAN X A, RUAN Y J, ZHANG X L. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Scientific Reports, 2016, 5(1): 17662.
doi: 10.1038/srep17662
|
[7] |
LIU X, ZHAO B, ZHENG H J, HU Y, LU G, YANG C Q, CHEN J D, CHEN J J, CHEN D Y, ZHANG L, ZHOU Y, WANG L J, GUO W Z, BAI Y L, RUAN J X, SHANGGUAN X X, MAO Y B, SHAN C M, JIANG J P, ZHU Y Q, JIN L, KANG H, CHEN S T, HE X L, WANG R, WANG Y Z, CHEN J, WANG L J, YU S T, WANG B Y, WEI J, SONG S C, LU X Y, GAO Z C, GU W Y, DENG X, MA D, WANG S, LIANG W H, FANG L, CAI C P, ZHU X F, ZHOU B L, JEFFREY CHEN Z, XU S H, ZHANG Y G, WANG S Y, ZHANG T Z, ZHAO G P, CHEN X Y. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Scientific Reports, 2015, 5(1): 14139.
doi: 10.1038/srep14139
|
[8] |
MA Z Y, ZHANG Y, WU L Q, ZHANG G Y, SUN Z W, LI Z K, JIANG Y F, KE H F, CHEN B, LIU Z W, GU Q S, WANG Z C, WANG G N, YANG J, WU J H, YAN Y Y, MENG C S, LI L H, LI X X, MO S J, WU N, MA L M, CHEN L T, ZHANG M, SI A J, YANG Z W, WANG N, WU L Z, ZHANG D M, CUI Y R, CUI J, LV X, LI Y, SHI R K, DUAN Y H, TIAN S L, WANG X F. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53(9): 1385-1391.
doi: 10.1038/s41588-021-00910-2
pmid: 34373642
|
[9] |
HE S P, SUN G F, GENG X L, GONG W F, DAI P H, JIA Y H, SHI W J, PAN Z E, WANG J D, WANG L Y, XIAO S H, CHEN B J, CUI S F, YOU C Y, XIE Z M, WANG F, SUN J, FU G Y, PENG Z, HU D W, WANG L R, PANG B Y, DU X M. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nature Genetics, 2021, 53(6): 916-924.
doi: 10.1038/s41588-021-00844-9
pmid: 33859417
|
[10] |
HUANG G, WU Z G, PERCY R G, BAI M Z, LI Y, FRELICHOWSKI J E, HU J, WANG K, YU J Z, ZHU Y X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5): 516-524.
doi: 10.1038/s41588-020-0607-4
|
[11] |
YANG Z E, GE X Y, YANG Z R, QIN W Q, SUN G F, WANG Z, LI Z, LIU J, WU J, WANG Y, LU L L, WANG P, MO H J, ZHANG X Y, LI F G. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications, 2019, 10(1): 2989.
doi: 10.1038/s41467-019-10820-x
pmid: 31278252
|
[12] |
MA D, HU Y, YANG C Q, LIU B L, FANG L, WAN Q, LIANG W H, MEI G F, WANG L J, WANG H P, DING L Y, DONG C G, PAN M Q, CHEN J D, WANG S, CHEN S Q, CAI C P, ZHU X F, GUAN X Y, ZHOU B L, ZHU S J, WANG J W, GUO W Z, CHEN X Y, ZHANG T Z. Genetic basis for glandular trichome formation in cotton. Nature Communications, 2016, 7: 10456.
doi: 10.1038/ncomms10456
pmid: 26795254
|
[13] |
臧新山, 耿延会, 裴文锋, 吴嫚, 李兴丽, 张金发, 于霁雯. 棉花形态性状质量遗传分析与基因定位研究进展. 棉花学报, 2018, 30(6): 473-485.
|
|
ZANG X S, GENG Y H, PEI W F, WU M, LI X L, ZHANG J F, YU J W. Research progress on the Mendelian genetic analysis and molecular mapping of morphological qualitative traits in cotton. Cotton Science, 2018, 30(6): 473-485. (in Chinese)
|
[14] |
WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. The New Phytologist, 2016, 210(4): 1298-1310.
doi: 10.1111/nph.2016.210.issue-4
|
[15] |
THYSSEN G N, FANG D D, TURLEY R B, FLORANE C B, LI P, MATTISON C P, NAOUMKINA M. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants. The Plant Journal, 2017, 90(1): 111-121.
doi: 10.1111/tpj.2017.90.issue-1
|
[16] |
WU H T, TIAN Y, WAN Q, FANG L, GUAN X Y, CHEN J D, HU Y, YE W X, ZHANG H, GUO W Z, CHEN X Y, ZHANG T Z. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. The New Phytologist, 2018, 217(2): 883-895.
doi: 10.1111/nph.2018.217.issue-2
|
[17] |
YAN Q, WANG Y, LI Q, ZHANG Z S, DING H, ZHANG Y, LIU H S, LUO M, LIU D X, SONG W, LIU H F, YAO D, OUYANG X F, LI Y H, LI X, PEI Y, XIAO Y H. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnology Journal, 2018, 16(10): 1735-1747.
doi: 10.1111/pbi.2018.16.issue-10
|
[18] |
CHENG H L, LU C R, YU J Z, ZOU C S, ZHANG Y P, WANG Q L, HUANG J, FENG X X, JIANG P F, YANG W C, SONG G L. Fine mapping and candidate gene analysis of the dominant glandless gene Gl2e in cotton (Gossypium spp.). Theoretical and Applied Genetics, 2016, 129(7): 1347-1355.
doi: 10.1007/s00122-016-2707-1
|
[19] |
ZANG Y H, XU C Y, XUAN L S, DING L Y, ZHU J K, SI Z F, ZHANG T Z, HU Y. Identification and characteristics of a novel gland-forming gene in cotton. The Plant Journal, 2021, 108(3): 781-792.
doi: 10.1111/tpj.v108.3
|
[20] |
HU W, QIN W Q, JIN Y Y, WANG P, YAN Q D, LI F G, YANG Z E. Genetic and evolution analysis of extrafloral nectary in cotton. Plant Biotechnology Journal, 2020, 18(10): 2081-2095.
doi: 10.1111/pbi.v18.10
|
[21] |
PEI Y F, ZHANG J, WU P, YE L, YANG D F, CHEN J D, LI J, HU Y, ZHU X F, GUO X P, ZHANG T Z. GoNe encoding a class VIIIb AP2/ERF is required for both extrafloral and floral nectary development in Gossypium. The Plant Journal, 2021, 106(4): 1116-1127.
doi: 10.1111/tpj.v106.4
|
[22] |
ZHU Q H, ZHANG J, LIU D X, STILLER W, LIU D J, ZHANG Z S, LLEWELLYN D, WILSON I. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L. Journal of Experimental Botany, 2016, 67(3): 763-774.
doi: 10.1093/jxb/erv494
|
[23] |
CHANG L J, FANG L, ZHU Y J, WU H T, ZHANG Z Y, LIU C X, LI X H, ZHANG T Z. Insights into interspecific hybridization events in allotetraploid cotton formation from characterization of a gene- regulating leaf shape. Genetics, 2016, 204(2): 799-806.
doi: 10.1534/genetics.116.193086
|
[24] |
ANDRES R J, CONEVA V, FRANK M H, TUTTLE J R, SAMAYOA L F, HAN S-W, KAUR B, ZHU L, FANG H, BOWMAN D T, ROJAS-PIERCE M, HAIGLER C H, JONES D C, HOLLAND J B, CHITWOOD D H, KURAPARTHY V. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1): E57-E66.
|
[25] |
SI Z F, LIU H, ZHU J K, CHEN J D, WANG Q, FANG L, GAO F K, TIAN Y, CHEN Y L, CHANG L J, LIU B L, HAN Z G, ZHOU B L, HU Y, HUANG X Z, ZHANG T Z. Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture. Journal of Experimental Botany, 2018, 69(10): 2543-2553.
doi: 10.1093/jxb/ery093
|
[26] |
LIU D X, TENG Z H, KONG J, LIU X Y, WANG W W, ZHANG X, ZHAI T F, DENG X P, WANG J X, ZENG J Y, XIAO Y H, GUO K, ZHANG J, LIU D J, WANG W R, ZHANG Z S. Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton. BMC Plant Biology, 2018, 18(1): 286.
doi: 10.1186/s12870-018-1518-8
pmid: 30458710
|
[27] |
CHEN W, YAO J B, LI Y, ZHU S H, GUO Y, FANG S T, ZHAO L J, WANG J Y, YUAN L, LU Y J, ZHANG Y S. Open-bud duplicate loci are identified as MML10s, orthologs of MIXTA-like genes on homologous chromosomes of allotetraploid cotton. Frontiers in Plant Science, 2020, 11: 81.
doi: 10.3389/fpls.2020.00081
|
[28] |
ZHU J K, CHEN J D, GAO F K, XU C Y, WU H T, CHEN K, SI Z F, YAN H, ZHANG T Z. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. Journal of Experimental Botany, 2017, 68(15): 4125-4135.
doi: 10.1093/jxb/erx240
pmid: 28922761
|
[29] |
MAO G Z, MA Q, WEI H L, SU J J, WANG H T, MA Q F, FAN S L, SONG M Z, ZHANG X L, YU S X. Fine mapping and candidate gene analysis of the virescent gene v1 in Upland cotton (Gossypium hirsutum). Molecular Genetics and Genomics, 2018, 293(1): 249-264.
doi: 10.1007/s00438-017-1383-4
|
[30] |
LI X, OUYANG X F, ZHANG Z S, HE L, WANG Y, LI Y H, ZHAO J, CHEN Z, WANG C N, DING L L, PEI Y, XIAO Y H. Over- expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton. Molecular Genetics and Genomics, 2019, 294(2): 469-478.
doi: 10.1007/s00438-018-1525-3
|
[31] |
DENG J Q, FANG L, ZHU X F, ZHOU B L, ZHANG T Z. A CC-NBS-LRR gene induces hybrid lethality in cotton. Journal of Experimental Botany, 2019, 70(19): 5145-5156.
doi: 10.1093/jxb/erz312
|
[32] |
MA H H, WU Y L, LV R L, CHI H B, ZHAO Y L, LI Y L, LIU H B, MA Y Z, ZHU L F, GUO X P, KONG J, WU J Y, XING C Z, ZHANG X L, MIN L. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton. Journal of Integrative Plant Biology, 2022, 64(10): 2009-2025
doi: 10.1111/jipb.v64.10
|
[33] |
WU Y L, LI X, LI Y L, MA H H, CHI H B, MA Y Z, YANG J, XIE S, ZHANG R, LIU L Y, SU X J, LV R J, KHAN A H, KONG J, GUO X P, LINDSEY K, MIN L, ZHANG X L. Degradation of de-esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary for pollen exine formation and male fertility in cotton. Plant Biotechnology Journal, 2022, 20(6): 1054-1068.
doi: 10.1111/pbi.v20.6
|
[34] |
CHAI Q C, SHANG X G, WU S, ZHU G Z, CHENG C Z, CAI C P, WANG X Y, GUO W Z. 5-aminolevulinic acid dehydratase gene dosage affects programmed cell death and immunity. Plant Physiology, 2017, 175(1): 511-528.
doi: 10.1104/pp.17.00816
pmid: 28751313
|
[35] |
CHAI Q C, WANG X L, GAO M, ZHAO X C, CHEN Y, ZHANG C, JIANG H, WANG J B, WANG Y C, ZHENG M N, BALTAEVICH A M, ZHAO J, ZHAO J S. A glutathione S‐transferase GhTT19 determines flower petal pigmentation via regulating anthocyanin accumulation in cotton. Plant Biotechnology Journal, 2022, 21: 433-448.
doi: 10.1111/pbi.v21.2
|
[36] |
ABID M A, WEI Y X, MENG Z G, WANG Y, YE Y L, WANG Y N, HE H Y, ZHOU Q, LI Y Y, WANG P L, LI X G, YAN L H, MALIK W, GUO S D, CHU C C, ZHANG R, LIANG C Z. Increasing floral visitation and hybrid seed production mediated by beauty mark in Gossypium hirsutum. Plant Biotechnology Journal, 2022, 20(7): 1274-1284.
doi: 10.1111/pbi.v20.7
|
[37] |
ZANG Y H, HU Y, XU C Y, WU S J, WANG Y K, NING Z Y, HAN Z G, SI Z F, SHEN W J, ZHANG Y Y, FANG L, ZHANG T Z. GhUBX controlling helical growth results in production of stronger cotton fiber. iScience, 2021, 24(8): 102930.
doi: 10.1016/j.isci.2021.102930
|
[38] |
ZHANG R T, SHEN C, ZHU D, LE Y, WANG N, LI Y X, ZHANG X L, LIN Z X. Fine-mapping and candidate gene analysis of qFL-c10-1 controlling fiber length in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2022, 135(12): 4483-4494.
doi: 10.1007/s00122-022-04233-6
|
[39] |
AHMED M M, HUANG C, SHEN C, KHAN A Q, LIN Z X. Map-based cloning of qBWT-c12 discovered brassinosteroid-mediated control of organ size in cotton. Plant Science, 2020, 291: 110315.
doi: 10.1016/j.plantsci.2019.110315
|
[40] |
ZHAO J, LIU J G, XU J W, ZHAO L, WU Q J, XIAO S H. Quantitative trait locus mapping and candidate gene analysis for Verticillium wilt resistance using Gossypium barbadense chromosomal segment introgressed line. Frontiers in Plant Science, 2018, 9: 682.
doi: 10.3389/fpls.2018.00682
|
[41] |
DONG C G, DING Y Z, GUO W Z, ZHANG T Z. Fine mapping of the dominant glandless Gene Gl2e in Sea-island cotton (Gossypium barbadense L.). Chinese Science Bulletin, 2007, 52(22): 3105-3109.
doi: 10.1007/s11434-007-0468-6
|
[42] |
SONG L, GUO W Z, ZHANG T Z. Interaction of novel Dobzhansky-Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4-4. Theoretical and Applied Genetics, 2009, 119(1): 33-41.
doi: 10.1007/s00122-009-1014-5
|
[43] |
LIU D X, LIU F, SHAN X R, ZHANG J, TANG S Y, FANG X M, LIU X Y, WANG W W, TAN Z Y, TENG Z H, ZHANG Z S, LIU D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Molecular Genetics and Genomics, 2015, 290(5): 1683-1700.
doi: 10.1007/s00438-015-1027-5
|
[44] |
MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.
|
[45] |
TAKAGI H, TAMIRU M, ABE A, YOSHIDA K, UEMURA A, YAEGASHI H, OBARA T, OIKAWA K, UTSUSHI H, KANZAKI E, MITSUOKA C, NATSUME S, KOSUGI S, KANZAKI H, MATSUMURA H, URASAKI N, KAMOUN S, TERAUCHI R. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 2015, 33(5): 445-449.
doi: 10.1038/nbt.3188
pmid: 25798936
|
[46] |
TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.
doi: 10.1111/tpj.12105
pmid: 23289725
|
[47] |
ZHONG C, SUN S L, LI Y P, DUAN C X, ZHU Z D. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theoretical and Applied Genetics, 2018, 131(3): 525-538.
doi: 10.1007/s00122-017-3016-z
|
[48] |
LU H F, LIN T, KLEIN J, WANG S H, QI J J, ZHOU Q, SUN J J, ZHANG Z H, WENG Y Q, HUANG S W. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theoretical and Applied Genetics, 2014, 127(7): 1491-1499.
doi: 10.1007/s00122-014-2313-z
pmid: 24845123
|
[49] |
ILLA-BERENGUER E, VAN HOUTEN J, HUANG Z J, VAN DER KNAAP E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 2015, 128(7): 1329-1342.
doi: 10.1007/s00122-015-2509-x
|
[50] |
NAOUMKINA M, THYSSEN G N, FANG D D, FLORANE C B, LI P. A deletion/duplication in the Ligon lintless-2 locus induces siRNAs that inhibit cotton fiber cell elongation. Plant Physiology, 2022, 190(3): 1792-1805.
doi: 10.1093/plphys/kiac384
pmid: 35997586
|
[51] |
WANG X Y, ZHANG X W, FAN D R, GONG J W, LI S Q, GAO Y J, LIU A Y, LIU L J, DENG X Y, SHI Y Z, SHANG H H, ZHANG Y M, YUAN Y L. AAQSP increases mapping resolution of stable QTLs through applying NGS-BSA in multiple genetic backgrounds. Theoretical and Applied Genetics, 2022, 135(9): 3223-3235.
doi: 10.1007/s00122-022-04181-1
|
[52] |
COULSON A, SULSTON J, BRENNER S, KARN J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(20): 7821-7825.
|
[53] |
LI T G, MA X F, LI N Y, ZHOU L, LIU Z, HAN H Y, GUI Y J, BAO Y M, CHEN J Y, DAI X F. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal, 2017, 15(12): 1520-1532.
doi: 10.1111/pbi.2017.15.issue-12
|
[54] |
LIU S M, ZHANG X J, XIAO S H, MA J, SHI W J, QIN T, XI H, NIE X H, YOU C Y, XU Z, WANG T Y, WANG Y J, ZHANG Z N, LI J Y, KONG J, AIERXI A, YU Y, LINDSEY K, KLOSTERMAN S J, ZHANG X L, ZHU L F. A Single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum. Advanced Science, 2021, 8(7): 2002723.
doi: 10.1002/advs.v8.7
|
[55] |
GE X Y, XU J T, YANG Z E, YANG X F, WANG Y, CHEN Y L, WANG P, LI F G. Efficient genotype‐independent cotton genetic transformation and genome editing. Journal of Integrative Plant Biology, 2023, 65(4): 907-917.
doi: 10.1111/jipb.v65.4
|
[56] |
WANG P C, ZHANG J, SUN L, MA Y Z, XU J, LIANG S J, DENG J W, TAN J F, ZHANG Q H, TU L L, DANIELL H, JIN S X, ZHANG X L. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnology Journal, 2018, 16(1): 137-150.
doi: 10.1111/pbi.12755
pmid: 28499063
|