Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 379-389.doi: 10.3864/j.issn.0578-1752.2024.02.012

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Review on Carbon Footprint Assessment of Pig Farming System

ZHOU YuanQing1(), DONG HongMin2(), ZHU ZhiPing2, WANG Yue2, LI NanXi3   

  1. 1 The National Animal Husbandry Services, Beijing 100125
    2 Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 College of Animal Science and Technology, China Agricultural University, Beijing 100193
  • Received:2023-05-12 Accepted:2023-09-15 Online:2024-01-16 Published:2024-01-19
  • Contact: DONG HongMin

Abstract:

【Objective】 Livestock production is one of the important emission sources of greenhouse gases, while China is a major country in pig farming. Scientifically assessing the carbon footprint of pig farming system can provide a reference for further promoting carbon emission reduction of animal husbandry. 【Method】 This paper reviewed the research status of carbon footprint assessment of pig breeding system, including model, results and composition. The results of carbon footprint assessment were related to many factors, such as system boundary, emission sources, accounting methods and functional unit. In this study, we considered the main factors which affect the evaluation results, and analyzed the reasons for the difference of results. 【Result】 Through reviewing the domestic and foreign literature on carbon footprint assessment, it was realized that the assessment model of livestock had been constructed well in developed country. The carbon footprint of 1 kg functional unit product was 2.2-10.3 kg CO2-eq. The assessment results varied due to the different evaluation methods in various studies. Different system boundaries and functional units were the important reasons for different results. The different emission sources, accounting parameters selected for the same emission source, or diverse allocation methods under the same system boundary also led to great differences. For the contribution to the carbon footprint of the pig production system, feed production was the largest link, accounting for 49%-83%; the second was manure management, accounting for 12%-41%. 【Conclusion】 In order to widely precise the carbon footprint of China’s pig production system, the suggestions were as follows: monitoring the key parameters of greenhouse gas emissions for various feeding modes in all regions of China should be carried out; the Chinese carbon footprint assessment database according to the development status of Chinese pig breeding systems should be established; the unified and standardized evaluation methods should be appeared publicly; an carbon footprint assessment model fit for different regions of Chinese production practice should be created to provide data reference support for the sustainable development of Chinese pig production system.

Key words: carbon footprint, pig, assessment method, system, low carbon, greenhouse gas, life cycle assessment

Table 1

Typical carbon footprint assessment model"

模型名称
Model
应用对象
Objective
展现形式
Form
系统边界
System boundary
分配方法
Allocation method
温室气体类型
GHGs
核算方法
Method
GLEAM 全球
Global

None
从饲料生产到零售消费
From feed production to consumption
经济分配
Economic allocation
CO2、CH4、N2O、HCFs IPCC (2006) Tier1
CAPRI 欧盟
EU
网页
Website
从饲料生产到零售消费
From feed production to consumption
系统扩展
System expansion
CO2、CH4
N2O
IPCC (2006) Tier1、GAINS数据库GAINS Database
ULICEES 加拿大
Canada

None
从饲料生产到屠宰加工
From feed production to slaughter
不分配、物理分配、经济分配
No allocation,physical allocation and economic allocation
CO2、CH4
N2O
IPCC (2006) Tier2
SustainPork 企业
Enterprise
Excel 从饲料生产到屠宰加工
From feed production to slaughter
不分配、经济分配
No allocation,economic allocation
CO2、CH4
N2O
IPCC (2006) Tier1

Table 2

Comparison of studies on carbon footprint of pig production system"

国家
Country
碳足迹
CF (kg CO2-eq/FU)
功能单位
Functional unit (FU)
来源
Source
全球 Global 6.10 1 kg carcass weight [29]
美国
America
2.47 1 kg liveweight pig meat [37]
2.70 1 kg carcass weight [38]
加拿大
Canada
2.88a 1 kg pork [35]
4.15b
4.43c
中国(四川)China (Sichuan) 5.42hou、4.29agg 1 kg carcass weight [39]
中国 China 2.20 1 kg product [4]
中国(河北)China (Hebei) 2.72 1 kg liveweight [40]
欧盟
EU
4.80 1 kg pig meat slaughter weight [41]
3.07n-LUC、5.37LUC 1 kg carcass weight [34]
4.46n-LUC、5.79LUC 1 kg carcass weight [33]
荷兰 Netherlands 5.46 1 kg liveweight pig meat [42]
瑞典 Sweden 3.60 1 kg of bone and fat free meat [43]
丹麦
Denmark
3.60 1 kg pork [44]
3.10 1 kg pork [45]
德国 Germany 3.22 1 kg carcass deadweight [46]
英国
UK
6.40 1 kg carcass deadweight [47]
3.30 1 kg liveweight pig meat [48]
3.50con 4.40org 1 kg carcass deadweight [49]
法国
France
2.30 1 kg liveweight pig meat [50]
2.77 1 kg liveweight pig meat [51]
比利时
Belgium
2.55 1 kg carcass weight pig meat [52]
4.80 1 kg deboned pig meat [53]
西班牙
Spain
6.70 1 kg of liveweight pork at farm gate [50]
8.70 1 kg of carcass pork at slaughterhouse gate
10.30 1 kg fresh/frozen cut pork
10.70 1 kg ham (slicing and packaging)
澳大利亚 Australia 5.50 1 kg carcass weight [54]
日本 Japan 3.16 1 kg liveweight from 1 pig marketed at 115 kg [55]

Table 3

Overview of the allocation methods in carbon footprint assessment of pig production system."

来源
Source
饲料生产子系统
Feed supply chain
养殖场子系统(粪便施用)
Farm (manure application)
屠宰加工子系统
Slaughter-process
[43] 经济分配
Economic allocation
系统分割(归入作物种植)
System segmentation (subsumed into crop planting)
系统分割(归入可食用部分)System segmentation (subsumed into edible parts)
[50] 经济分配
Economic allocation
系统分割(归入作物种植)
System segmentation (subsumed into crop planting)
--
[47] 经济分配
Economic allocation
系统扩展(抵消化肥施用)
System expansion (offset fertilizer application)
系统分割
System segmentation
[58] 经济分配
Economic allocation
系统分割(归入作物种植)
System segmentation (subsumed into crop planting)
--
[44] 系统扩展
System expansion
系统扩展(抵消化肥施用)
System expansion (offset fertilizer application)
系统扩展
System expansion
[56] 经济分配
Economic allocation
系统分割(归入动物养殖)
System segmentation (subsumed into animal feeding)
系统分割
System segmentation
[49] 经济分配
Economic allocation
物理分配(基于活性氮量)
Physical allocation (based on active nitrogen content)
经济分配
Economic allocation
[59] 系统扩展
System expansion
系统扩展
System expansion
--
[60] 物理分配(基于质量分数)
Physical allocation (based on mass)
系统扩展(抵消化肥施用)
System expansion (offset fertilizer application)
--
[37] 物理分配(基于能量值)
Physical allocation (based on energy value)
系统扩展(归入动物养殖)
System expansion(subsumed into animal feeding)
--
[54] 系统扩展
System expansion
系统扩展
System expansion
系统扩展
System expansion
[45] 经济分配
Economic allocation
系统扩展
System expansion
系统扩展
System expansion
[38] 经济分配
Economic allocation
系统扩展(归入动物养殖)
System expansion(subsumed into animal feeding)
经济分配
Economic allocation
[55] 经济分配
Economic allocation
经济分配
Economic allocation
--
[46] 经济分配
Economic allocation
系统扩展
System expansion
系统分割(归入胴体可食部分)
System segmentation (subsumed into edible parts of the carcass)
[33] 物理分配(基于含氮量)
Physical allocation (based on nitrogen content)
系统扩展
System expansion
系统分割(归入胴体可食部分)
System segmentation (subsumed into edible parts of the carcass)
[27] 经济分配
Economic allocation
系统扩展
System expansion
物理分配(基于质量分数)
Physical allocation (based on mass)

Fig. 1

Correlation between CF of pig production system and feed conversion rate of growing-finishing pigs"

[1]
GALLI A, WIEDMANN T, ERCIN E, KNOBLAUCH D, EWING B, GILJUM S. Integrating Ecological, Carbon and Water footprint into a “Footprint Family” of indicators: definition and role in tracking human pressure on the planet. Ecological Indicators, 2012, 16: 100-112.

doi: 10.1016/j.ecolind.2011.06.017
[2]
DE VRIES M, DE BOER I J M. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livestock Science, 2010, 128(1/2/3): 1-11.

doi: 10.1016/j.livsci.2009.11.007
[3]
国家统计局农村社会经济调查司, 2022中国农村统计年鉴. 中国统计出版社, 2022.
China Rual Statistical Yearbook, 2022, China Statistics Press. 2022. (in Chinese)
[4]
XU X M, LAN Y. A comparative study on carbon footprints between plant- and animal-based foods in China. Journal of Cleaner Production, 2016, 112: 2581-2592.

doi: 10.1016/j.jclepro.2015.10.059
[5]
姜明红, 刘欣超, 唐华俊, 辛晓平, 陈吉泉, 董刚, 吴汝群, 邵长亮. 生命周期评价在畜牧生产中的应用研究现状及展望. 中国农业科学, 2019, 52(9): 1635-1645. doi: 10.3864/j.issn.0578-1752.2019.09.014.
JIANG M H, LIU X C, TANG H J, XIN X P, CHEN J Q, DONG G, WU R Q, SHAO C L. Research progress and prospect of life cycle assessment in animal husbandry. Scientia Agricultura Sinica, 2019, 52(9): 1635-1645. doi: 10.3864/j.issn.0578-1752.2019.09.014. (in Chinese)
[6]
黄文强, 董红敏, 朱志平, 刘翀, 陶秀萍, 王悦. 畜禽产品碳足迹研究进展与分析. 中国农业科学, 2015, 48(1): 93-111.

doi: 10.3864/j.issn.0578-1752.2015.01.10
HUANG W Q, DONG H M, ZHU Z P, LIU C, TAO X P, WANG Y. Research progress and analysis of carbon footprint of livestock products. Scientia Agricultura Sinica, 2015, 48(1): 93-111. (in Chinese)
[7]
王效琴, 梁东丽, 王旭东, 彭莎, 郑金正. 运用生命周期评价方法评估奶牛养殖系统温室气体排放量. 农业工程学报, 2012, 28(13): 179-184.
WANG X Q, LIANG D L, WANG X D, PENG S, ZHENG J Z. Estimation of greenhouse gas emissions from dairy farming systems based on LCA. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13): 179-184. (in Chinese)
[8]
周捷, 陈理, 吴树彪, 董仁杰, 庞昌乐. 猪粪管理系统温室气体排放研究. 十一五农业环境研究回顾与展望——第四届全国农业环境科学学术研讨会论文集. 呼和浩特, 2011: 687-692.
ZHOU J, CHEN L, WU S B, DONG R J, PANG C L. Research on greenhouse gas emissions about pig manure management systems. Review and prospect of agricultural environment research during the 11th Five Year Plan period——Proceedings of the 4th National Academic Symposium on Agricultural and Environmental Science. Hohhot, 2011: 687-692.
[9]
KAUFMANN T. Sustainable livestock production: low emission farm - The innovative combination of nutrient, emission and waste management with special emphasis on Chinese pig production. Animal Nutrition, 2015, 1(3): 104-112.

doi: 10.1016/j.aninu.2015.08.001 pmid: 29767170
[10]
SOMMER S G, PETERSEN S O, MØLLER H B. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems, 2004, 69(2): 143-154.

doi: 10.1023/B:FRES.0000029678.25083.fa
[11]
WANG Y, DONG H M, ZHU Z P, GERBER P J, XIN H W, SMITH P, OPIO C, STEINFELD H, CHADWICK D. Mitigating greenhouse gas and ammonia emissions from swine manure management: a system analysis. Environmental Science & Technology, 2017, 51(8): 4503-4511.

doi: 10.1021/acs.est.6b06430
[12]
OSADA T, TAKADA R, SHINZATO I. Potential reduction of greenhouse gas emission from swine manure by using a low-protein diet supplemented with synthetic amino acids. Animal Feed Science and Technology, 2011, 166/167: 562-574.

doi: 10.1016/j.anifeedsci.2011.04.079
[13]
周谈龙, 尚斌, 董红敏, 朱志平, 陶秀萍, 张万钦. 低碳氮比条件下猪粪堆肥氨气和温室气体排放. 中国农业气象, 2017, 38(11): 689-698.

doi: 10.3969/j.issn.1000-6362.2017.11.001
ZHOU T L, SHANG B, DONG H M, ZHU Z P, TAO X P, ZHANG W Q. Emission characteristics of ammonia and greenhouse gas during the low C/N ratio swine manure composting. Chinese Journal of Agrometeorology, 2017, 38(11): 689-698. (in Chinese)
[14]
ESHEL G, SHEPON A, MAKOV T, MILO R.Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 11996-12001.
[15]
PANG A P, JIANG S Y, YUAN Z W. An approach to identify the spatiotemporal patterns of nitrogen flows in food production and consumption systems within watersheds. Science of the Total Environment, 2018, 624: 1004-1012.

doi: 10.1016/j.scitotenv.2017.12.197
[16]
TANG K, HAILU A, KRAGT M E, MA C B. The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives. Agricultural Systems, 2018, 160: 11-20.

doi: 10.1016/j.agsy.2017.11.001
[17]
COSTA M P, SCHOENEBOOM J C, OLIVEIRA S A, VIÑAS R S, DE MEDEIROS G A. A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA. Journal of Cleaner Production, 2018, 171: 1460-1471.

doi: 10.1016/j.jclepro.2017.10.063
[18]
HERRERO M, HAVLÍK P, VALIN H, NOTENBAERT A, RUFINO M C, THORNTON P K, BLÜMMEL M, WEISS F, GRACE D, OBERSTEINER M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20888-20893.
[19]
BALDINI C, GARDONI D, GUARINO M. A critical review of the recent evolution of Life Cycle Assessment applied to milk production. Journal of Cleaner Production, 2017, 140: 421-435.

doi: 10.1016/j.jclepro.2016.06.078
[20]
GOLLNOW S, LUNDIE S, MOORE A D, MCLAREN J, VAN BUUREN N, STAHLE P, CHRISTIE K, THYLMANN D, REHL T. Carbon footprint of milk production from dairy cows in Australia. International Dairy Journal, 2014, 37(1): 31-38.

doi: 10.1016/j.idairyj.2014.02.005
[21]
WESTHOEK H, LESSCHEN J P, ROOD T, WAGNER S, DE MARCO A, MURPHY-BOKERN D, LEIP A, VAN GRINSVEN H, SUTTON M A, OENEMA O. Food choices, health and environment: effects of cutting Europe’s meat and dairy intake. Global Environmental Change, 2014, 26: 196-205.

doi: 10.1016/j.gloenvcha.2014.02.004
[22]
RÖÖS E, SUNDBERG C, TIDÅKER P, STRID I, HANSSON P A. Can carbon footprint serve as an indicator of the environmental impact of meat production? Ecological Indicators, 2013, 24: 573-581.

doi: 10.1016/j.ecolind.2012.08.004
[23]
ESHEL G. A geophysical foundation for alternative farm policy. Environmental Science & Technology, 2010, 44(10): 3651-3655.

doi: 10.1021/es9032748
[24]
ESHEL G, MARTIN P A, BOWEN E E. Land use and reactive nitrogen discharge: effects of dietary choices. Earth Interactions, 2010, 14(21): 1-15.
[25]
WEBER C L, MATTHEWS H S. Food-miles and the relative climate impacts of food choices in the United States. Environmental Science & Technology, 2008, 42(10): 3508-3513.

doi: 10.1021/es702969f
[26]
RIDOUTT B G, PAGE G, OPIE K, HUANG J, BELLOTTI W. Carbon, water and land use footprints of beef cattle production systems in southern Australia. Journal of Cleaner Production, 2014, 73: 24-30.

doi: 10.1016/j.jclepro.2013.08.012
[27]
LÉIS C M, CHERUBINI E, RUVIARO C F, PRUDÊNCIO DA SILVA V, NASCIMENTO LAMPERT V, SPIES A, SOARES S R. Carbon footprint of milk production in Brazil: a comparative case study. The International Journal of Life Cycle Assessment, 2015, 20(1): 46-60.

doi: 10.1007/s11367-014-0813-3
[28]
FLYSJÖ A, CEDERBERG C, HENRIKSSON M, LEDGARD S. The interaction between milk and beef production and emissions from land use change - critical considerations in life cycle assessment and carbon footprint studies of milk. Journal of Cleaner Production, 2012, 28: 134-142.

doi: 10.1016/j.jclepro.2011.11.046
[29]
MACLEOD M, GERBER P, MOTTET A, TEMPIO G, FALCUCCI A, OPIO C, VELLINGA T, HENDERSON B, STEINFELD H. Greenhouse gas emissions from pig and chicken supply chains-a global life cycle assessment. Rome: Food and Agriculture Organization of the United Nations (FAO), 2013.
[30]
ISO, 14044:Environmental Management - Life Cycle Assessment - Equirements and Guidelines. International Organization for Standardization, 2006.
[31]
BSI. Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. BSI British Standards. ISBN, 2008, 978(0):580.
[32]
IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan. 2006.
[33]
WEISS F, LEIP A. Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agriculture, Ecosystems & Environment, 2012, 149: 124-134.

doi: 10.1016/j.agee.2011.12.015
[34]
LESSCHEN J P, VAN DEN BERG M, WESTHOEK H J, WITZKE H P, OENEMA O. Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science and Technology, 2011, 166/167: 16-28.

doi: 10.1016/j.anifeedsci.2011.04.058
[35]
VERGÉ X, MAXIME D, DESJARDINS R L, VANDERZAAG A C. Allocation factors and issues in agricultural carbon footprint: a case study of the Canadian pork industry. Journal of Cleaner Production, 2016, 113: 587-595.

doi: 10.1016/j.jclepro.2015.11.046
[36]
NOYA I, ALDEA X, GASOL C M, GONZÁLEZ-GARCÍA S, AMORES M J, COLÓN J, PONSÁ S, ROMAN I, RUBIO M A, CASAS E, MOREIRA M T, BOSCHMONART-RIVES J. Carbon and water footprint of pork supply chain in Catalonia: from feed to final products. Journal of Environmental Management, 2016, 171: 133-143.

doi: S0301-4797(16)30037-8 pmid: 26861226
[37]
PELLETIER N, LAMMERS P, STENDER D, PIROG R. Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States. Agricultural Systems, 2010, 103(9): 599-608.

doi: 10.1016/j.agsy.2010.07.001
[38]
THOMA G, NUTTER D, ULRICH R. National life cycle carbon footprint study for production of US swine. National Pork Board, University of Arkansas, 2011.
[39]
LUO T, YUE Q, YAN M, CHENG K, PAN G X. Carbon footprint of China’s livestock system - a case study of farm survey in Sichuan Province, China. Journal of Cleaner Production, 2015, 102: 136-143.

doi: 10.1016/j.jclepro.2015.04.077
[40]
ZHOU Y Q, DONG H M, XIN H W, ZHU Z P, HUANG W Q, WANG Y E. Carbon footprint assessment of a large-scale pig production system in northern China: a case study. Transactions of the ASABE, 2018, 61(3): 1121-1131.

doi: 10.13031/trans.12805
[41]
NGUYEN T L T, HERMANSEN J E, MOGENSEN L. Fossil energy and GHG saving potentials of pig farming in the EU. Energy Policy, 2010, 38(5): 2561-2571.

doi: 10.1016/j.enpol.2009.12.051
[42]
DOLMAN M A, VROLIJK H C J, DE BOER I J M. Exploring variation in economic, environmental and societal performance among Dutch fattening pig farms. Livestock Science, 2012, 149(1/2): 143-154.

doi: 10.1016/j.livsci.2012.07.008
[43]
CHRISTEL C. Environmental Assessment of Future Pig Farming Systems: Quantifications of Three Scenarios from the Food 21 Synthesis Work: SIK Institutet för livsmedel och bioteknik. 2004.
[44]
DALGAARD R, SCHMIDT J, HALBERG N, CHRISTENSEN P, THRANE M, PENGUE W A. LCA of soybean meal. The International Journal of Life Cycle Assessment, 2008, 13(3): 240-254.

doi: 10.1065/lca2007.06.342
[45]
NGUYEN T L T, HERMANSEN J, MOGENSEN L. Environmental assessment of Danish pork. Aarhus : Aarhus University, 2011.
[46]
RECKMANN K, TRAULSEN I, KRIETER J. Life Cycle Assessment of pork production: a data inventory for the case of Germany. Livestock Science, 2013, 157(2/3): 586-596.

doi: 10.1016/j.livsci.2013.09.001
[47]
WILLIAMS A, AUDSLEY E, SANDARS D. >Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities: Defra Project Report, 2006: 205.
[48]
PEREZ R. Analysis of sustainability in the pig production chain: life cycle assessment of contrasting scenarios[D]. Newcastle: Newcastle University, 2010.
[49]
ANTON K, HANS B, TOMMIE P. Carbon footprints of conventional and organic pork. Netherlands: Blonk Milieu Advies BV, 2009.
[50]
BASSET-MENS C, VAN DER WER F H M G. Scenario-based environmental assessment of farming systems: the case of pig production in France. Agriculture, Ecosystems & Environment, 2005, 105(1/2): 127-144.

doi: 10.1016/j.agee.2004.05.007
[51]
GARCIA-LAUNAY F, VAN DER WERF H M G, NGUYEN T T H, LE TUTOUR L, DOURMAD J Y. Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig production using Life Cycle Assessment. Livestock Science, 2014, 161: 158-175.

doi: 10.1016/j.livsci.2013.11.027
[52]
DEVERS L, KLEYNHANS T E, MATHIJS E. Comparative life cycle assessment of Flemish and Western Cape pork production. Agrekon, 2012, 51(4): 105-128.

doi: 10.1080/03031853.2012.741208
[53]
JACOBSEN R, VANDERMEULEN V, VAN HUYLENBROECK G, GELLYNCK X. Carbon footprint of pigmeat in Flanders. International Journal of Agricultural Sustainability, 2014, 12(1): 54-70.

doi: 10.1080/14735903.2013.798896
[54]
WIEDEMANN S, MCGAHAN E, GRIST S, GRANT T. Environmental assessment of two pork supply chains using life cycle assessment. Australian Government (Rural Industries Research and Development Corporation), Australia, 2010.
[55]
OGINO A, OSADA T, TAKADA R, TAKAGI T, TSUJIMOTO S, TONOUE T, MATSUI D, KATSUMATA M, YAMASHITA T, TANAKA Y. Life cycle assessment of Japanese pig farming using low-protein diet supplemented with amino acids. Soil Science and Plant Nutrition, 2013, 59(1): 107-118.

doi: 10.1080/00380768.2012.730476
[56]
CEDERBERG C. Greenhouse gas emissions from Swedish consumption of meat, milk and eggs 1990 and 200. SIK-report, 2009, 793.
[57]
BLONK H., LAFLEUR M., VAN ZEIJTS H. Towards an Environmental infrastructure of the Dutch food industry: exploring the information conversion of five food commodities. the Netherlands IVAM Environmental Research. University of Amsterdam, Amsterdam. 1997.
[58]
STRID ERIKSSON I, ELMQUIST H, STERN S, NYBRANT T. Environmental systems analysis of pig production - the impact of feed choice (12 pp). The International Journal of Life Cycle Assessment, 2005, 10(2): 143-154.

doi: 10.1065/lca2004.06.160
[59]
OLEA R, GUY J, EDGE H, STOCKDALE E, EDWARDS S. Pig meat supply chain: life cycle Analysis of contrasting pig farming scenarios. Annals Applied Biology, 2009, 95: 91-96.
[60]
STONE J J, DOLLARHIDE C R, BENNING J L, GREGG CARLSON C, CLAY D E. The life cycle impacts of feed for modern grow-finish Northern Great Plains US swine production. Agricultural Systems, 2012, 106(1): 1-10.
[61]
ISO, Environmental Management-Life Cycle Assessment - Principles and Framework. International Organization for Standardization. 2006, 14040.
[62]
CASSIDY E S, WEST P C, GERBER J S, FOLEY J A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environmental Research Letters, 2013, 8(3): 034015.

doi: 10.1088/1748-9326/8/3/034015
[63]
WIEDEMANN S G, MCGAHAN E J, MURPHY C M. Environmental impacts and resource use from Australian pork production assessed using life-cycle assessment. 1. Greenhouse gas emissions. Animal Production Science, 2016, 56(9): 1418.

doi: 10.1071/AN15881
[64]
董红敏, 李玉娥, 陶秀萍, 彭小培, 李娜, 朱志平. 中国农业源温室气体排放与减排技术对策. 农业工程学报, 2008, 24(10): 269-273.
DONG H M, LI Y E, TAO X P, PENG X P, LI N, ZHU Z P. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273. (in Chinese)
[65]
朱志平, 董红敏, 尚斌, 康国虎, 朱海生, 石谊. 规模化猪场固体粪便收集系数与成分测定. 农业工程学报, 2006, 22(S2): 179-182.
ZHU Z P, DONG H M, SHANG B, KANG G H, ZHU H S, SHI Y. Measurement of solid manure collection coefficient and composition on a concentrated pig farm. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(S2): 179-182. (in Chinese)
[66]
DALGAARD R. The environmental impact of pork production from a life cycle perspective. University of Aarhus & Aalborg University, 2007.
[1] CHEN Niu, YU ChengMin, CUI BaiMing, REN CaiXia, YANG LiYing, DONG Yu, LIU Lin, ZHENG YinYing. Isolation, Genome Determination and Lysis Function Analysis of Phage Kuerle of Erwinia amylovora [J]. Scientia Agricultura Sinica, 2024, 57(2): 295-305.
[2] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[3] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[4] CUI DengShuai, XIONG SanYa, ZHENG Hao, LI LongYun, YU NaiBiao, HUANG ZhiYong, XIAO ShiJun, GUO YuanMei. Comparing Methods for Correcting Days to 100 kg of Sows in Licha Black Pig and Its Intercross with Berkshire [J]. Scientia Agricultura Sinica, 2023, 56(6): 1177-1188.
[5] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[6] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[7] AN Yong, QIN ShiZhen, SHI ZhaoGuo, GONG LiYuan, ZHANG Shuai, JI Feng. Influences of Phosphorus Level in Diet of Parent Pigeons on Biochemical Index, Untargeted Metabolomics Profile of Serum, and Gene Expression of Phosphate Transporters in Squabs [J]. Scientia Agricultura Sinica, 2023, 56(23): 4772-4788.
[8] LIU Chang, CUI ZiXu, ZUO Zhou, YUN HongMei, NIU Jin, YANG Yang, GUO XiaoHong, LI BuGao, GAO PengFei, ZHAO Yan, CAO GuoQing. Effects of Dietary Fiber Level on Intestinal Barrier Function, Colonic Microbiota and Metabolites in Pigs [J]. Scientia Agricultura Sinica, 2023, 56(22): 4532-4551.
[9] FAN ZiYao, LI Kui, LI JiaYang, HUANG SanWen. The Conception of Eco-Circular Agriculture of "Rice-Potato-Pig" [J]. Scientia Agricultura Sinica, 2023, 56(20): 4067-4071.
[10] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[11] HOU LiangYu, ZHANG ZhenTao, HUANG ZhaoFu, LI LuLu, GUO YaNan, MING Bo, XIE RuiZhi, HOU Peng, XUE Jun, WANG KeRu, LI ShaoKun. Reforming the Cropping System to Achieve Maize Mechanical Grain Harvesting in Northern Huang-Huai-Hai Area of China [J]. Scientia Agricultura Sinica, 2023, 56(19): 3788-3798.
[12] LIU Lei, SHI JianShuo, ZHANG GuoYin, GAO Jing, LI Pin, REN Yanli, WANG LiYing. Effects of Long-Term Application of Organic Fertilizer on Rare and Abundant Bacterial Sub-Communities in Greenhouse Tomato Soil [J]. Scientia Agricultura Sinica, 2023, 56(18): 3615-3628.
[13] DU BingChen, WANG Ming, LIU ChunGuo, WANG ShiDa, WEI XinYu, LU YaMan, SUN ZhenZhao, LIU ZaiSi, WEI LiLi, WANG JingFei, YANG DeCheng. Construction of Infectious cDNA Clone of GETV SC483 Strain [J]. Scientia Agricultura Sinica, 2023, 56(17): 3479-3486.
[14] WANG Dong, CHEN WanZhao, LI HongBo, QIN Lei, XU QiQi, LIU ZePeng, XIA LiNing. Analysis of Drug Resistance and Epidemic Characteristics of optrA/lsa(E) in Enterococcus faecalis from Pig Farms in Aksu Area of Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(16): 3213-3225.
[15] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!