Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2215-2226.doi: 10.3864/j.issn.0578-1752.2024.11.013

• HORTICULTURE • Previous Articles     Next Articles

Effect of Nitrogen Form on Root Growth, pH in Root Zones and Cell Wall Components of Pakchoi

HAN RuiFeng(), GUO YuQin(), WANG YuZhuo, CHENG YongSan, HOU LeiPing, ZHANG Yi()   

  1. College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2023-11-16 Accepted:2024-02-19 Online:2024-06-01 Published:2024-06-07
  • Contact: ZHANG Yi

Abstract:

【Objective】Nitrogen (N) is a critical factor in regulating the growth of vegetable crops. The purpose of this study was to explore how different N forms affect root growth and cell wall components in pakchoi, and to identify the relationship between root zone pH changes and PM H+-ATPase, so as to provide a theoretical basis for further research on nitrogen regulation of plant root growth and development.【Method】Pakchoi (Brassica campestris ssp. Chinensis L.) was used as the test material. Three N forms, including nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N), and glycine nitrogen (Gly-N), were utilized in a hydroponic nutrient solution experiment. The intrinsic mechanisms by which inorganic and organic nitrogen regulate the pH in the root zone and the cell wall components on the root growth of pakchoi were explored, and the effects of nitrogen nutrition on root auxin (IAA) and plasma membrane (PM) H+-ATPase were investigated. The root scanning and physiological experiments were used to determine the root morphology indicators, including total root length, volume, surface area, and tip number; along with physiological indicators including medium pH, PM H+- ATPase activity, IAA content, the main components content of cell wall, pectin methylesterase (PME) and vasodilator (EXP) content, and finally the correlation between root morphology and various physiological indicators were analyzed.【Result】Both Gly-N and NO3--N treatments increased the medium pH, and even Gly-N showed a greater capacity for alkalization than the NO3--N treatment, while NH4+-N acidified the medium pH. Compared with NO3--N treatment, Gly-N treatment significantly decreased the dry matter content in shoots and roots, primary root length, total root length, surface area, tip number, root forks, number of internal, and external links of pakchoi by 40.23%, 21.74%, 55.15%, 58.63%, 53.12%, 73.07%, 65.39%, 40.91%, and 73.94%, respectively, and increased the root cell wall extraction rate, pectin, cellulose, EXP content, PM H+-ATPase activity, root/shoot ratio, topological index, and fractal dimension by 22.00%, 47.74%, 25.30%, 109.53%, 15.42%, 30.33%, 11.43%, and 4.32%, respectively. Compared with NO3--N treatment, NH4+-N treatment significantly reduced the plant’s shoot dry matter content, primary root length, root forks, number of internal and external links, root PME activity, and IAA content by 22.98%, 34.30%, 35.32%, 26.22%, 29.02%, 36.38%, and 8.74%, respectively, while enhancing root PM H+-ATPase activity, cell wall extraction rate, pectin, and hemicellulose content by 14.60%, 19.38%, 22.98%, and 74.33%, respectively. The correlation analysis between root morphology indicators and physiological indicators revealed that total root surface area was highly significantly positively correlated with total root length, the total number of root tips and root forks (P<0.01), and also positively with primary root length, and negatively correlated with root diameter, expansin, and topological index (P<0.01), as well as with pectin, cellulose, and fractal dimension (P<0.05). The root diameter showed a strongly significant positive correlation with expansin, cellulose, fractal dimension, and topological index (P<0.01), while significantly positively correlated with pectin (P<0.05).【Conclusion】Both Gly-N and NH4+-N treatments enhanced cell wall content of the root system, thereby inhibited the elongation and growth of pakchoi roots. Among them, Gly-N facilitated the accumulation of pectin and cellulose, and NH4+-N promoted the accumulation of hemicellulose.

Key words: pakchoi, nitrogen form, pH, root growth, cell wall

Fig. 1

Effects of nitrogen form on dry matter content, root/shoot (DW) ratio and appearance of pakchoi N. Nitrate; A. Ammonium; G. Glycine. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 1

Effects of nitrogen form on root basic indicators of pakchoi"

处理
Treatment
主根长
Primordial root length (cm)
总根长
Total root length (cm)
总根系表面积
Total root surface area (cm2)
平均根系直径
Average root diameter (mm)
总根系体积
Total root volume (cm3)
根系活力
Root activity
(μg∙g-1∙h-1 FW)
N 26.53±3.24a 320.50±3.17a 21.65±0.26a 0.23±0.00b 0.26±0.02a 335.25±21.18a
A 17.43±0.49b 315.74±10.88a 21.08±0.73a 0.21±0.01b 0.16±0.02b 194.34±10.91b
G 11.90±0.38c 132.60±12.66b 10.15±0.91b 0.31±0.00a 0.15±0.01b 143.33±13.23b

Table 2

Effects of nitrogen form on root architecture parameters of t pakchoi"

处理
Treatment
根尖数
Root tip number
根分叉数
Root fork number
内部链接数
Altitude
外部链接数
Magtitude
拓扑指数
Topological index
分形维数
Fractal dimension
N 1267.67±137.12a 3502.33±160.68a 95.33±4.26a 698.33±54.72a 0.70±0.00b 1.39±0.01b
A 966.33±132.17a 2265.33±266.83b 70.33±3.71b 495.67±48.07b 0.69±0.01b 1.36±0.02b
G 341.33±45.41b 1212.00±111.54c 56.33±2.96c 182.00±16.92c 0.78±0.01a 1.45±0.00a

Fig. 2

Rhizosphere pH changes and the visualizations of pakchoi under different treatments"

Fig. 3

Effects of nitrogen form on root PM H+-ATPase activity and IAA content of pakchoi"

Table 3

Effects of nitrogen form on root cell wall components of pakchoi"

处理
Treatment
细胞壁含量
Cell wall content
(mg∙g-1 FW)
果胶含量
Pectin content
(μg∙mg-1 DW)
半纤维素含量
Hemicellulose content
(μg∙mg-1 DW)
纤维素含量
Cellulose content
(μg∙mg-1 DW)
细胞壁提取率
Cell wall extraction rate
N 30.47±0.12b 22.54±0.21c 14.88±0.85b 209.89±14.75b 6.09±0.02b
A 36.33±1.92a 27.72±0.95b 25.94±2.02a 191.41±16.34b 7.27±0.38a
G 37.17±1.15a 33.30±2.18a 19.24±0.61b 262.99±6.75a 7.43±0.23a

Fig. 4

Effects of nitrogen form on root PME and EXP activity of pakchoi"

Fig. 5

Correlation between root physiological indexes and root morphological parameters of pakchoi *: P<0.05; **: P<0.01"

[1]
吴召林, 祁娟, 刘文辉, 金鑫, 杨航, 宿敬龙, 李明. 氮素形态及其配比对老芒麦生长及生理特性的影响. 草业科学, 2020, 37(5): 942-951.
WU Z L, QI J, LIU W H, JIN X, YANG H, SU J L, LI M. Effects of nitrogen forms and proportions of nitrogen forms on the growth and physiological characteristics of Elymus sibiricus. Pratacultural Science, 2020, 37(5): 942-951. (in Chinese)
[2]
LEGHARI S J, WAHOCHO N A, LAGHARI G M, HAFEEZLAGHARI A, MUSTAFABHABHAN G, HUSSAINTALPUR K, BHUTTO T A, WAHOCHO S A, LASHARI A A. Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 2016, 10(9): 209-218.
[3]
刘晓嵩. 硝态氮和甘氨酸态氮供应下菠菜氮素吸收与代谢差异研究[D]. 上海: 上海交通大学, 2016.
LIU X S. Nitrogen uptake and metabolism of spinach (Spinacia oleracea L.) under nitrate or Glycine supply[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
[4]
王小丽, 周倩, 黄丹枫. 甘氨酸浓度对普通白菜幼苗生长及氮代谢关键酶活性的影响. 中国蔬菜, 2016(7): 68-74.
WANG X L, ZHOU Q, HUANG D F. Effects of glycine nitrogen concentration on pakchoi seedling growth and key enzyme activity involved in nitrogen metabolism. China Vegetables, 2016(7): 68-74. (in Chinese)
[5]
陈鹏, 张茂星, 张明超, 刘赣, 朱毅勇. 不同氮素营养形态对香蕉生长及其根系质子泵活性的影响. 南京农业大学学报, 2015, 38(1): 101-106.
CHEN P, ZHANG M X, ZHANG M C, LIU G, ZHU Y Y. Influence of nitrate/ammonium ratio on the growth and root plasma membrane H+-ATPase activity of banana. Journal of Nanjing Agricultural University, 2015, 38(1): 101-106. (in Chinese)
[6]
苑婧娴. 氨基酸对小麦幼苗生长及生理特性的影响[D]. 南京: 南京农业大学, 2013.
YUAN J X. Effects of amino acid on growth and physiological traita in wheat seeding[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[7]
宋世威. 有机生产系统中甜瓜氮素营养生理研究[D]. 上海: 上海交通大学, 2008.
SONG S W. Study on nutritional physiology of nitrogen in muskmelon under organic farming system[D]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese)
[8]
马庆旭. 植物对氨基酸的吸收及pH和Cd胁迫对其吸收的影响机制[D]. 杭州: 浙江大学, 2019.
MA Q X. The uptake of amino acids and the effects of pH and Cd stress on plants absorption[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[9]
周小华, 李昆志. 质膜H+-ATPase对2种湿地植物吸收NO3-的影响. 环境工程, 2019, 37(7): 104-107, 158.
ZHOU X H, LI K Z. Effect of plasma membrane H+-ATPase on NO3- uptake in two wetland plants. Environmental Engineering, 2019, 37(7): 104-107, 158. (in Chinese)
[10]
ZHANG M X, WANG Y, CHEN X, XU F Y, DING M, YE W X, KAWAI Y Y, TODA Y, HAYASHI Y, SUZUKI T, ZENG H Q, XIAO L, XIAO X, XU J, GUO S W, YAN F, SHEN Q R, XU G H, KINOSHITA T, ZHU Y Y. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nature Communications, 2021, 12: 735.
[11]
FENG L, YANG T Y, ZHANG Z L, LI F D, CHEN Q, SUN J, SHI C Y, DENG W W, TAO M M, TAI Y L, YANG H, CAO Q, WAN X C. Identification and characterization of cationic amino acid transporters (CATs) in tea plant (Camellia sinensis). Plant Growth Regulation, 2018, 84(1): 57-69.
[12]
曹小闯. 土壤氨基酸态氮对植物的氮营养贡献及其地带性分布规律[D]. 杭州: 浙江大学, 2014.
CAO X C. Contribution of amino acid to plant nitrogen nutrition and zonal distribution of soil amino acids[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[13]
许飞云, 张茂星, 曾后清, 朱毅勇. 水稻根系细胞膜质子泵在氮磷钾养分吸收中的作用. 中国水稻科学, 2016, 30(1): 106-110.

doi: 10.16819/j.1001-7216.2016.5115
XU F Y, ZHANG M X, ZENG H Q, ZHU Y Y. Involvement of plasma membrane H+-ATPase in uptake of nitrogen, phosphorus and potassium by rice root. Chinese Journal of Rice Science, 2016, 30(1): 106-110. (in Chinese)
[14]
刘朝阳, 李贞霞, 于丹. 小白菜营养成分测定分析. 中国园艺文摘, 2014, 30(4): 29-31.
LIU C Y, LI Z X, YU D. Analysis and determination on nutrients of Chinese cabbage. Chinese Horticulture Abstracts, 2014, 30(4): 29-31. (in Chinese)
[15]
韩瑞锋, 梁韵, 黄丹枫. 氮素形态对小白菜根系和硝酸盐含量的影响. 上海交通大学学报(农业科学版), 2017, 35(3): 37-44.
HAN R F, LIANG Y, HUANG D F. Effects of nitrogen form on root morphology and nitrate concentrations of pakchoi. Journal of Shanghai Jiao Tong University (Agricultural Science), 2017, 35(3): 37-44. (in Chinese)
[16]
BARBEZ E, DÜNSER K, GAIDORA A, LENDL T, BUSCH W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): E4884-E4893.
[17]
田辉, 宋海星, 吴秀文, 张振华. 低氮条件下油菜根系伸长与细胞壁组分的变化. 湖南农业大学学报(自然科学版), 2022, 48(4): 386-393.
TIAN H, SONG H X, WU X W, ZHANG Z H. The root elongation and the changes of cell wall components of rapeseed root under low nitrogen conditions. Journal of Hunan Agricultural University (Natural Sciences), 2022, 48(4): 386-393. (in Chinese)
[18]
RAO T P, YANO K, YAMAUCHI A, TATSUMI J. A simple method for quantitative estimation of rhizosphere pH along root axes through visualization. Plant Production Science, 2000, 3(2): 94-100.
[19]
岳小红, 曹靖, 耿杰, 李瑾, 张宗菊, 张琳捷. 盐分胁迫对啤酒大麦幼苗生长、离子平衡和根际pH变化的影响. 生态学报, 2018, 38(20): 7373-7380.
YUE X H, CAO J, GENG J, LI J, ZHANG Z J, ZHANG L J. Effects of different types of salt stress on growth, ion balance and rhizosphere pH changes in beer barley seedlings. Acta Ecologica Sinica, 2018, 38(20): 7373-7380. (in Chinese)
[20]
朱晓芳. 拟南芥细胞壁半纤维素结合铝的机制及其调控[D]. 杭州: 浙江大学, 2014.
ZHU X F. The binding of aluminum by cell wall hemicelluloses and its regulation in Arabidopsis[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[21]
LU F C, WANG C, CHEN M J, YUE F X, RALPH J. A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chemistry, 2021, 23(14): 5106-5112.
[22]
NACRY P, BOUGUYON E, GOJON A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 2013, 370(1): 1-29.
[23]
马玉峰, 周忠雄, 李雨桐, 高雪琴, 乔亚丽, 张文斌, 颉建明, 胡琳莉, 郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响. 中国农业科学, 2022, 55(2): 378-389. doi: 10.3864/j.issn.0578-1752.2022.02.012.
MA Y F, ZHOU Z X, LI Y T, GAO X Q, QIAO Y L, ZHANG W B, XIE J M, HU L L, YU J H. Effects of nitrogen level and form on root morphology of mini Chinese cabbage and its physiological index. Scientia Agricultura Sinica, 2022, 55(2): 378-389. doi: 10.3864/j.issn.0578-1752.2022.02.012. (in Chinese)
[24]
MEIER M, LIU Y, LAY-PRUITT K S, TAKAHASHI H, VON WIRÉN N. Auxin-mediated root branching is determined by the form of available nitrogen. Nature Plants, 2020, 6: 1136-1145.

doi: 10.1038/s41477-020-00756-2 pmid: 32917974
[25]
黄秀, 叶昌, 燕金香, 李福明, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 不同氮吸收效率水稻品种的苗期铵吸收特性及生长差异分析. 中国农业科学, 2021, 54(7): 1455-1468. doi: 10.3864/j.issn.0578-1752.2021.07.011.
HUANG X, YE C, YAN J X, LI F M, CHU G, XU C M, CHEN S, ZHANG X F, WANG D Y. Analysis of ammonium uptake and growth differences of rice varieties with different nitrogen recovery efficiency at seedling stage. Scientia Agricultura Sinica, 2021, 54(7): 1455-1468. doi: 10.3864/j.issn.0578-1752.2021.07.011. (in Chinese)
[26]
丁明. 铵态氮营养下水稻根系质子泵的作用机制[D]. 南京: 南京农业大学, 2019.
DING M. Involvement of plasma membrane H+ATPase of rice roots in the ammonium-nutrition[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[27]
HAN R F, KHALID M, JUAN J X, HUANG D F. Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.). PLoS ONE, 2018, 13(9): e0204488.
[28]
曹小闯, 李晓艳, 朱练峰, 张均华, 禹盛苗, 金千瑜, 吴良欢. 外源甘氨酸态氮、硝态氮和铵态氮的浓度配比对小白菜生长和品质的影响. 农业环境科学学报, 2015, 34(10): 1846-1852.
CAO X C, LI X Y, ZHU L F, ZHANG J H, YU S M, JIN Q Y, WU L H. Effects of different ratios of exogenous glycine, nitrate and ammonium on growth and quality of pakchoi (Brassica chinensis L.). Journal of Agro-Environment Science, 2015, 34(10): 1846-1852. (in Chinese)
[29]
李宏斌. 基于三维可视化模型的植物根系构型和拓扑参数提取[D]. 杨凌: 西北农林科技大学, 2023.
LI H B. Extraction of plant root architecture and topological parameters based on 3D visualization model[D]. Yangling: Northwest A & F University, 2023. (in Chinese)
[30]
ZHU Y N, QI B F, HAO Y W, LIU H C, SUN G W, CHEN R Y, SONG S W. Appropriate NH4+/NO3- ratio triggers plant growth and nutrient uptake of flowering Chinese cabbage by optimizing the pH value of nutrient solution. Frontiers in Plant Science, 2021, 12: 656144.
[31]
ZHANG X C, CHEN L M, WU H H, LIU L L, WAN X C. Root plasma membrane H+-ATPase is involved in low pH-inhibited nitrogen accumulation in tea plants (Camellia sinensis L.). Plant Growth Regulation, 2018, 86(3): 423-432.
[32]
AFZAL M R, ZHANG M X, JIN H Y, WANG G M, ZHANG M C, DING M, RAZA S, HU J, ZENG H Q, GAO X, SUBBARAO G V, ZHU Y Y. Post-translational regulation of plasma membrane H+-ATPase is involved in the release of biological nitrification inhibitors from sorghum roots. Plant and Soil, 2020, 450(1): 357-372.
[33]
MŁODZIŃSKA E, KŁOBUS G, CHRISTENSEN M D, FUGLSANG A T. The plasma membrane H+-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Physiologia Plantarum, 2015, 154(2): 270-282.
[34]
孟永娇. 黄瓜扩张素蛋白基因CsEXPb1的克隆及功能研究[D]. 南京: 南京农业大学, 2016.
MENG Y J. Cloning and functional research of a cucumber expansin gene CsEXPb1[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[35]
宋科. 铵硝混合营养对烤烟苗期根系生长的影响[D]. 北京: 中国农业科学院, 2017.
SONG K. Effects of ammonium and nitrate nutrition on root growth of flue cured tobacco[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[36]
LI L X, VERSTRAETEN I, ROOSJEN M, TAKAHASHI K, RODRIGUEZ L, MERRIN J, CHEN J, SHABALA L, SMET W, REN H, VANNESTE S, SHABALA S, DE RYBEL B, WEIJERS D, KINOSHITA T, GRAY W M, FRIML J. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599: 273-277.
[37]
王生银. 生长素缓解紫花苜蓿铝毒害的作用机制研究[D]. 上海: 上海交通大学, 2017.
WANG S Y. The mechanism of auxin alleviate aluminum toxicity in alfalfa[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
[38]
MAROWA P, DING A M, KONG Y Z. Expansins: Roles in plant growth and potential applications in crop improvement. Plant Cell Reports, 2016, 35(5): 949-965.

doi: 10.1007/s00299-016-1948-4 pmid: 26888755
[39]
PODGÓRSKA A, BURIAN M, GIECZEWSKA K, OSTASZEWSKA- BUGAJSKA M, ZEBROWSKI J, SOLECKA D, SZAL B. Altered cell wall plasticity can restrict plant growth under ammonium nutrition. Frontiers in Plant Science, 2017, 8: 1344.

doi: 10.3389/fpls.2017.01344 pmid: 28848567
[40]
GŁAZOWSKA S, BALDWIN L, MRAVEC J, BUKH C, FANGEL J U, WILLATS W G, SCHJOERRING J K. The source of inorganic nitrogen has distinct effects on cell wall composition in Brachypodium distachyon. Journal of Experimental Botany, 2019, 70(21): 6461-6473.
[41]
RIVAI R R, MIYAMOTO T, AWANO T, TAKADA R, TOBIMATSU Y, UMEZAWA T, KOBAYASHI M. Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Scientific Reports, 2021, 11: 23309.

doi: 10.1038/s41598-021-02570-y pmid: 34857783
[1] CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733.
[2] ZHANG JunFeng, DING JianCheng, WENG YuWei, ZHANG Xiong. Study on the Matching Relationship Between Pattern of Grain Production and Arable Land Resources in Hubei Province Based on Geomorphological Divisions [J]. Scientia Agricultura Sinica, 2024, 57(9): 1748-1765.
[3] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[4] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[5] ZHONG JinPing, ZHENG ZiCheng, LI TingXuan, HE XiaoLing. Effect of Phosphorus Fertilizer Application Rates on the Loss of Colloidal Phosphorus on Purple Soil Slopes [J]. Scientia Agricultura Sinica, 2024, 57(8): 1547-1559.
[6] XU Lei, YU JiaLin, LIU Li, DENG GuangCun, WU XiaoLing. lincRNA Cox2 Regulates BCG-infected Macrophages Glycolysis by miR-129-5p/AMPK [J]. Scientia Agricultura Sinica, 2024, 57(8): 1606-1619.
[7] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[8] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[9] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[10] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[11] XIAO LiuHua, KANG NaiHui, LI ShuCheng, ZHENG ZhiYuan, LUO RaoRao, CHEN JinYin, CHEN Ming, XIANG MiaoLian. Effect of Methyl Jasmonate on Energy Metabolism and Membrane Lipid Metabolism During Resistance to Botryosphaeria dothidea in Kiwifruit [J]. Scientia Agricultura Sinica, 2024, 57(7): 1377-1393.
[12] ZHOU ZhiHui, GU XiaoBo, CHENG ZhiKai, CHANG Tian, ZHAO TongTong, WANG YuMing, DU YaDan. Inversion of Chlorophyll Content of Film-Mulched Maize Based on Image Segmentation [J]. Scientia Agricultura Sinica, 2024, 57(6): 1066-1079.
[13] DONG ZaiFang, DING TengTeng, SHAN YiXuan, LI HongLian, CHEN LinLin, XING XiaoPing. Autophagy-Related Gene FpAtg3 Involves in Growth and Pathogenicity of Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2024, 57(6): 1080-1090.
[14] SONG YaRong, CHANG DanNa, ZHOU GuoPeng, GAO SongJuan, DUAN TingYu, CAO WeiDong. Effect and Mechanism of Phosphate-Solubilizing Bacterial on Activating of Low-Grade Phosphate Rock Powder in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2024, 57(6): 1102-1116.
[15] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!