Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (3): 437-450.doi: 10.3864/j.issn.0578-1752.2017.03.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of EST-SSR Fingerprinting Based on Fluorescence Detection Technology for Italian Ryegrass

LIU Huan1, ZHANG XinQuan1, MA Xiao1, ZHANG RuiZhen2, HE GuangWu2, PAN Ling1, JIN MengYa1

 
  

  1. 1Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130; 2Grassland Station of Sichuan Province, Chengdu 610041
  • Received:2016-08-04 Online:2017-02-01 Published:2017-02-01

Abstract: 【Objective】In this study, a Italian ryegrass (Lolium multiflorum Lam.) variety identification system based on fluorescently labeled ETS-SSR markers was developed to provide a high-throughput DNA profiling means for identification of Italian ryegrass varieties, which can provide valuable information for the use of Italian ryegrass production and an effective method of protecting farmers’ benefits and breeders’ rights.【Method】Using three Italian ryegrass varieties (Tetragold, ChangjiangNo.2 and Aubade) with high difference of phenotypic traits, 30 primers were screened from the original 200 EST-SSR primers by polyacrylamide gel electrophoresis, which had clear amplification bands, rich polymorphism and stable amplification. Markers selected were labeled at the 5′ end of forward primer using fluorescent tags FAM, DNA analyzer was employed to detect different allelic variations of 200 individual PCR-amplified fragments by capillary electrophoresis. After further screening, 25 out of 30 fluorescent markers were chosen based on stable amplification to construct a high throughput identification system for Lolium multiflorum L..【Result】DNA fingerprint of ten Italian ryegrass materials were constructed using 25 EST-SSR primers for variety identification. A total of 127 alleles were amplified by 25 primer pairs, and the amplification fragment length ranged from 51 to 249. The effective number of alleles ranged from 2 to 11 on each pair of primers among them, primer N101 with 11 specific alleles was the most of all primers and each pair of primers had 4.00 specific alleles on average. The ratio of polymorphism sites ranged from 33.33% to 100.00%. The average value of polymorphic information content (PIC) was 0.702, the largest Shannon’s value (I) was 3.322 (N101) and the average value was 1.929, the Nei’s genetic diversity (H) ranged from 0.159 to 0.500 and the average value was 0.318. The amount of identified materials was from 0 to 10, and 14 of 25 primer pairs had 25 specific amplification sites among ten varieties (strains). Taken together, the results showed that the N101 fluorescence primer had the highest identification capability, which can identify these varieties (strains) directly. In addition, specific alleles were detected in primer ‘N101’ in three varieties such as Changjiang No.2, Ganxuan No.1 and Chuannong No.2. But due to high variation exists in same variety and different varieties of Lolium multiflorum L., in order to identify other materials, 6 EST-SSR primers (N54, N101, N146, N151, N154, N156) with good amplification and detection effect were chosen from 25 primers, the numbers of stable alleles were no less than 19, and the varieties “Double Barrel” and “Abundant” with 22 alleles were the most of all materials. Six high-efficiency primers were used for construction of DNA fingerprint spectrum including the standard model, fingerprint code and QR encodes of fingerprint spectrum. In this study, the fingerprint code and the unique QR encode for ten varieties of Italian ryegrass were firstly obtained using EST-SSR molecular marker with the aid of capillary electrophoresis and fluorescence labeling technology.【Conclusion】In this study, a SSR high-throughput identification system was constructed according to six pairs high efficiency primers, in which the ‘N101’ fluorescence primer having the most polymorphism can directly apply to identification of 10 Italian ryegrass varieties (strains).

Key words: Italian ryegrass (Lolium multiflorum Lam.), EST-SSR marker, fingerprinting, fluorescence detection, capillary electrophoresis

[1]    董宽虎, 沈益新. 饲草生产学. 北京: 中国农业出版社, 2003: 113-117.
DONG K H, SHEN Y X. Forage Production. Beijing: China Agriculture Press, 2003: 113-117. (in Chinese)
[2]    BOLARIC S, BARTH S, MELCHINGER A E, POSSELT U K. Genetic diversity in European perennial ryegrass cultivars investigated with RAPD makers. Plant Breeding, 2005, 124(2): 161-166.
[3]    ROLDAN-RUIZ I, VAN EUWIJK F A, GILLILAND T J, DUBREUIL P, SILLMANN C, LALLEMAND J, LOOSE M D, BARIL C P. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.)varieties. Theoretical and Applied Genetics, 2001, 103(8): 1138-1150.
[4]    GUSTAVO. DNA Markers. New York: Wiley-vch Press, 1998.
[5]    International Union for the Protection of New Varieties of Plants. Guidelines for DNA-profiling: Molecular markers selection and database construction. Geneva: UPOV, 2006.
[6]    International Union for the Protection of New Varieties of Plants. Possible use of molecular markers in the examination of distinctness, uniformity and stability. Geneva: UPOV, 2011.
[7]    HIRATA M, CAI H W, INOUE M, YUYAMA N, MIURA Y, KOMATSU T, TAKAMIZO T, FUJIMORI M. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theoretical and Applied Genetics, 2006, 113(2): 42-47.
[8]    PASAKINSKENE I, GRIFFITHS C M, BETTANY A J E. Simple-sequence repeats as primers to generate species-specific DNA markers in Lolium and Festuca grasses. Theoretical and Applied Genetics, 2000, 100(4): 384-390.
[9]    赵欣欣, 张新全, 苗佳敏, 黄琳凯, 季杨. 多花黑麦草杂交种SSR分子标记鉴定及表型比较分析. 农业生物技术学报, 2013(7): 811-819.
ZHAO X X, ZHANG X Q, MIAO J M, HUANG L K, JI Y. Identification by SSR molecular markers and comparative analysis in morphological characterization in Lolium multiflorum hybrid progenies. Journal of Agricultural Biotechnology, 2013(7): 811-819. (in Chinese)
[10]   罗永聪, 马啸, 张新全. 利用SSR技术构建多花黑麦草品种指纹图谱. 农业生物技术学报, 2013, 21(7): 799-810.
LUO Y C, MA X, ZHANG X Q. DNA Fingerprinting of annual ryegrass (Lolium multiflorum Lam.) varieties using SSR makers. Journal of Agricultural Biotechnology, 2013, 21(7): 799-810. (in Chinese)
[11]   黄婷, 马啸, 张新全, 张新跃, 张瑞珍, 符开欣. 多花黑麦草DUS测定中SSR标记品种鉴定比较分析. 中国农业科学, 2015, 48(2): 381-389.
HUANG T, MA X, ZHANG X Q, ZHANG X Y, ZHANG R Z, FU K X. Comparation of SSR molecular markers analysis of annual ryegrass varieties in DUS testing. Scientia Agricultura Sinica, 2015, 48(2): 381-389. (in Chinese)
[12]   PRAKASH P G, GOWDA M B, KUNDUR P J, VIMARSHA H S, SHASHIDHAR H E. Upgraded horizontal polyacrylamide gel units for DNA marker genotyping. Indian Journal of Science and Technology, 2015, 8(9): 822.
[13]   程本义, 夏俊辉, 龚俊义, 杨仕华. SSR荧光标记毛细管电泳检测法在水稻DNA指纹鉴定中的应用. 中国水稻科学, 2011, 25(6): 672-676.
CHENG B Y, XIA J H, GONG J Y, YANG S H. Application of capillary electrophoresis detection with fluorescent SSR markers in rice DNA fingerprint identification. Chinese Journal of Rice Science, 2011, 25(6): 672-676. (in Chinese)
[14]   陈雅琼, 李凤霞, 李锡坤, 徐军, 张磊, 王绍美, 孙玉合. 烟草SSR荧光标记与毛细管电泳检测技术研究. 中国烟草科学, 2011, 32(2): 66-70.
CHEN Y Q, LI F X, LI X K, XU J, ZHANG L, WANG S M, SUN Y H. Fluorescent detection and capillary electrophoresis in tobacco SSR. Chinese Tobacco Science, 2011, 32(2): 66-70. (in Chinese)
[15]   易红梅. 基于毛细管电泳荧光标记的玉米品种SSR高通量检测体系的建立研究[D]. 北京: 首都师范大学, 2006.
YI H M. Establishment a high throughput detection system of SSR markers fitting for maize variety based on capillary electrophoresis detection with fluorescent[D]. Beijing: Capital Normal University, 2006. (in Chinese)
[16]   , 李锋, 吴金锋, 谷铁城, 陈碧云, 高桂珍, 闫贵欣, 李俊, 乔江伟, 汪念, 伍晓明. SSR荧光标记毛细管电泳法与国家冬油菜区试指纹鉴定平台的构建. 中国油料作物学报, 2014, 36(2): 150-159.
XU K, LI F, WU J F, GU T C, CHEN B Y, GAO G Z, YAN G X, LI J, QIAO J W, WANG N, WU X M. Fingerprint identification platform of capillary electrophoresis detection with fluorescent SSR markers on national winter rapeseed varieties (lines) field trials. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 150-159. (in Chinese)
[17]   SANCHEZ-PEREZ R, BALLESTER J, DICENTA F, ARUS P, MARTINEZ-GOMEZ P. Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: Implications for the assessment of genetic diversity and relatedness in almond. Scientia Horticulturae, 2006, 108(3): 310-316.
[18]   张利达, 唐克轩. 植物EST-SSR标记开发及其应用. 基因组学与应用生物学, 2010, 29(3): 534-541.
ZHANG L D, TANG K X. Development of plant EST-SSR markers and its application. Genomics and Applied Biology, 2010, 29(3): 534-541. (in Chinese)
[19]   赵岩, 孔凡美, 丁承强, 李斯深. EST-SSR标记在结缕草中的通用性. 中国草地学报, 2008, 30(3): 69-73.
ZHAO Y, KONG F M, DING C Q, LI S S. Transferability of EST-SSR markers in zoysiagrasses. Chinese Journal of Grassland, 2008, 30(3): 69-73. (in Chinese)
[20]   黄秀, 曾捷, 聂刚, 刘欢, 黄琳凯, 张新全, 蒋晓梅, 张瑜, 张博涛. 牛鞭草品种EST-SSR指纹图谱构建及遗传多样性分析. 热带亚热带植物学报, 2014, 22(2): 165-171.
HUANG X, ZENG J, NIE G, LIU H, HUANG L K, ZHANG X Q, JIANG X M, ZHANG Y, ZHANG B T. Construction of fingerprinting and genetic diversity analysis of Hemarthia cultivars by EST-SSR. Journal of Tropical and Subtropical Botany, 2014, 22(2): 165-171. (in Chinese)
[21]   温莹, 逯晓萍, 任锐, 米福贵, 韩平安, 薛春雷. 高丹草EST-SSR标记的开发及其遗传多样性. 遗传, 2013, 35(2): 225-232.
WEN Y, LU X P, REN R, MI F G, HAN P A, XUE C L. Development of EST-SSR marker and genetic diversity analysis in Sorghum bicolor×Sorghum sudanenes. Hereditas, 2013, 35(2): 225-232. (in Chinese)
[22]   王凤格, 易红梅, 赵久然, 吕波, 堵苑苑, 田红丽. 植物品种鉴定DNA指纹方法总则(NY/T2594-2014). 北京: 中国人民共和国农业部, 2014.
WANG F G, YI H M, ZHAO J R, LÜ B, DU Y Y, TIAN H L. General guideline for identification of plant varieties by DNA fingerprinting(NY/T2594-2014). Beijing: Ministry of Agriculture of the People's Republic of China, 2014. (in Chinese)
[23]   梁宏伟, 王长忠, 李忠, 罗相忠, 邹桂. 聚丙烯酰胺凝胶快速、高效银染方法的建立. 遗传, 2008, 30(10): 1379-1382.
LIANG H W, WANG C Z, LI Z, LUO X Z, ZOU G. Improvement of the silver-stained technique of polyacrylamide gel electrophoresis. Hereditas, 2008, 30(10): 1379-1382. (in Chinese)
[24]   张富民, 葛颂. 群体遗传学研究中的数据处理方法I.RAPD数据的AMOVA分析. 生物多样性, 2002, 10(4): 438-444.
ZHANG F M, GE S. Data analysis in population genetics I. analysis of RAPD data with AMOVA. Biodiversity Science, 2002, 10(4): 438-444. (in Chinese)
[25]   YEH F C, YANG R C, BOYLE T. Pop gene, Version 1.31 Microsoft Windows-based Freeware for Population Genetic Analysis, Quick User-guide. University of Alberta: Center for the International Forestry Research, 1999.
[26]   NEI M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the USA, 1973, 70(12): 2223-3321.
[27]   陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011, 44(10): 2081-2093.
CHEN C W, CAO K, WANG L R, ZHU G R, FANG W C. Molecular ID establishment of main China peach varieties and peach related species. Scientia Agricultura Sinica, 2011, 44(10): 2081-2093. (in Chinese)
[28]   宋海斌, 崔喜波, 马鸿艳, 朱子成, 栾非时. 基于SSR标记的甜瓜品种()DNA指纹图谱库的构建. 中国农业科学, 2012, 45(13): 2676-2689.
SONG H B, CUI X B, MA H Y, ZHU Z C, LUAN F S. Construction of DNA fingerprint database based on SSR marker for varieties (lines) of Cucumis melo L.. Scientia Agricultura Sinica, 2012, 45(13): 2676-2689. (in Chinese)
[29]   王凤格, 赵久然, 郭景伦, 佘花娣, 陈刚. 比较三种DNA指纹分析方法在玉米品种纯度及真伪鉴定中的应用. 分子植物育种, 2003, 5(1): 655-661.
WANG F G, ZHAO J R, GUO J L, SHE H D, CHEN G. Comparison of three DNA fingerprint analyzing methods for maize cultivars' identification. Molecular Plant Breeding, 2003, 5(1): 655-661. (in Chinese)
[30]   岳静, 朱志成, 申雅娟, 张卉, 王汝宝. 利用SSR标记技术鉴定玉米品种真实性的研究. 中国农学通报, 2011, 27(12): 201-204.
YUE J, ZHU Z C, SHEN Y J, ZHANG H, WANG R B. Study on identifying the authenticity of maize varieties by SSR markers. Chinese Agricultural Science Bulletin, 2011, 27(12): 201-204. (in Chinese)
[31]   MORGANTE M, OLIVIERI A M. PCR-amplified microsatellites as markers in plant genetics. The Plant Journal, 1993, 3(1): 175-182.
[32]   ROJAS G, MENDEZ M A, MUNOZ C, LEMUS G, HINRICHSEN  P. Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars. Electronic Journal of Biotechnology, 2008, 11(5): 4-5.
[33]   DANIN-POLEGY, REIS N, BAUDRACCO-ARNAS S, PITRAT M, STAUB J E, OLIVER M, ARUS P, DE VICENTE C M, KATZIR N. Simple sequence repeats in Cucumis mapping and map merging. Genome, 2000, 43: 963-974.
[34]   AKKAYA M S, SHOEMAKER R C, SPECHT J E, BHAGWAT A A, CREGAN P B. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Science, 1995, 35(5): 1439-1445.
[35]   葛亚英, 张飞, 沈晓岚, 刘建新, 王炜勇, 田丹青, 张智. 丽穗凤梨ISSR遗传多样性分析与指纹图谱构建. 中国农业科学, 2012, 45(4): 726-733.
GE Y Y, ZHANG F, SHEN X L, LIU J X, WANG W Y, TIAN D Q, ZHANG Z. Analysis of genetic diversity and construction of fingerprint of Vriesea by ISSR. Scientia Agricultura Sinica, 2012, 45(4): 726-733. (in Chinese)
[36]   HECKENBERGER M, BOHN M, ZIEGLE J S, JOE L K, HAUSER J D, HUTTON M, MELCHINGER A E. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: I. Genetic and technical sources of variation in SSR data. Molecular Breeding, 2002, 10: 181-191.
[37]   徐宗大, 赵兰勇, 张玲, 杨志莹. 玫瑰SRAP遗传多样性分析与品种指纹图谱构建. 中国农业科学, 2011, 44(8): 1662-1669.
XU Z D, ZHAO L Y, ZHANG L, YANG Z Y. Analysis of genetic diversity and construction of fingerprint of Rosa rugosa by SRAP. Scientia Agricultura Sinica, 2011, 44(8): 1662-1669. (in Chinese)
[38]   蒋林峰, 张新全, 黄琳凯, 马啸, 罗登, 张宗瑜, 蒙芬. 中国鸭茅主栽品种DNA指纹图谱构建. 植物遗传资源学报, 2014, 15(3): 604-614.
JIANG L F, ZHANG X Q, HUANG L K, MA X, LUO D, ZHANG Z Y, MENG F. Construction of DNA fingerprinting of dominant orchardgrass (Dactylis glomerata) varieties of China. Journal of Plant Genetic Resources, 2014, 15(3): 604-614. (in Chinese)
[39]   ARCHAK S, GAIKWARDA B, GAUTAM D, RAO E V V B, SWAMY K R M, KARIHALOO J L. DNA fingerprinting of Indian cashew (Anacardium occodentale L.) varieties using RAPD and ISSR techniques. Euphytica, 2003, 130(3): 397-404.
[40]   FANG D Q, ROOSE M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical and Applied Genetics, 1997, 95(3): 408-417.
[1] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[2] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
[3] Lin CHEN,RuiMing LIN,FengTao WANG,YunXing PANG,Xue LI,AiPing ZHAO,YanXia ZHANG,JinLing ZHANG,WenXing LI,SuQin HE,Jing FENG,Yun LI,CaiYi WEN,ShiChang XU. Genetic Diversity of Dactylobotrys graminicola and Its Pathogenicity to Hordeum vulgare var. nudum Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 213-224.
[4] LI Yi, MA XianFeng, TANG Hao, LI Na, JIANG Dong, LONG GuiYou, LI DaZhi, NIU Ying, HAN RuiXi, DENG ZiNiu. SSR Markers Screening for Identification of Citrus Cultivar and Construction of DNA Fingerprinting Library [J]. Scientia Agricultura Sinica, 2018, 51(15): 2969-2979.
[5] LI ZhiYuan, YU HaiLong, FANG ZhiYuan, YANG LiMei, LIU YuMei, ZHUANG Mu, Lü HongHao, ZHANG YangYong. Development of SNP Markers in Cabbage and Construction of DNA Fingerprinting of Main Varieties [J]. Scientia Agricultura Sinica, 2018, 51(14): 2771-2787.
[6] WANG FengGe, LI Xin, YANG Yang, YI HongMei, JIANG Bin, ZHANG XianChen, HUO YongXue, ZHU Li, GE JianRong, WANG Rui, REN Jie, WANG Lu, TIAN HongLi, ZHAO JiuRan. SSR Analyser:A Special Software Suitable for SSR Fingerprinting of Plant Varieties [J]. Scientia Agricultura Sinica, 2018, 51(12): 2248-2262.
[7] WANG Qing-Biao, ZHANG Yang-Yong, ZHUANG Mu, YANG Li-Mei, LIU Yu-Mei, 吕Hong-Hao , FANG Zhi-Yuan. EST-SSR Fingerprinting of Fifty Cabbage Representative Varieties from China [J]. Scientia Agricultura Sinica, 2014, 47(1): 111-121.
[8] YANG Rui, GAO Xiang, CHEN Qi-Jiao, LI Xiao-Yan, DONG Jian, MENG Min, ZHAO Wan-Chun, SHI Yin-Gang, CHEN Liang-Guo. Study on the Characteristics of the Low-Molecular-Weight Glutenin Subunits in the Formation of the Wheat Varieties [J]. Scientia Agricultura Sinica, 2013, 46(9): 1745-1755.
[9] MA Qing-Hua-1, CHEN Xin-2, ZHAO Tian-Tian-1, LIU Qing-Zhong-2, WANG Gui-Xi-1. Analysis of the Genetic Relationship of the Main Cultivars of Ping’ou Hybrid Hazelnut (C. heterophylla×C. avellana) by FISH-AFLP Markers [J]. Scientia Agricultura Sinica, 2013, 46(23): 5003-5011.
[10] MENG Min-1, DONG Jian-12, GAO Xiang-12, ZHAO Wan-Chun-12, LI Xiao-Yan-12, CHEN Qi-Jiao-12, CHEN Liang-Guo-12, SHI Yin-Gang-12. Seperation and Identification Systems for Waxy Protein Originated from Rye (Secale cereale L.) Seeds [J]. Scientia Agricultura Sinica, 2013, 46(21): 4496-4505.
[11] SONG Hai-Bin, CUI Xi-Bo, MA Hong-Yan, ZHU Zi-Cheng, LUAN Fei-Shi. Construction of DNA Fingerprint Database Based on SSR       Marker for Varieties(Lines) of Cucumis melo L. [J]. Scientia Agricultura Sinica, 2012, 45(13): 2676-2689.
[12] KUANG Meng,YANG Wei-hua,XU Hong-xia,WANG Yan-qin,ZHOU Da-yun,FENG Xin-ai
. Construction of DNA Fingerprinting and Analysis of Genetic Diversity with SSR Markers for Cotton Major Cultivars in China
[J]. Scientia Agricultura Sinica, 2011, 44(1): 20-27 .
[13] PEI Ying-fang,LIU Yan-lin. Application of DNA Molecular Markers in Genetic Diversities of Saccharomyces cerevisiae Strains
[J]. Scientia Agricultura Sinica, 2010, 43(5): 1023-1030 .
[14] LIU Xiao-yong,LIU Hai-jun,CHEN Ke-ping,YAO Qin. Identification of Mass Spectral Data Using Mascot Program and Silkworm EST Data #br# [J]. Scientia Agricultura Sinica, 2010, 43(12): 2561-2569 .
[15] ZHANG Yuan-yuan,SHU Ai-ping,CAO Gui-lan,HAN Long-zhi
.

Fingerprinting Analysis of Indica Rice Landraces from Different Provinces of China

[J]. Scientia Agricultura Sinica, 2010, 43(11): 2189-2196 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!