Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1363-1376.doi: 10.3864/j.issn.0578-1752.2024.07.012

• HORTICULTURE • Previous Articles     Next Articles

Functional Analysis of VvARF18 Gene in Red Globe Grape

YUAN Miao(), ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong()   

  1. College of Enology and Horticulture, Ningxia University, Yinchuan 750021
  • Received:2023-05-11 Accepted:2024-02-29 Online:2024-04-01 Published:2024-04-09
  • Contact: ZHANG YaHong

Abstract:

【Objective】Auxin response factor (ARF) is a significant regulatory factor in the auxin signaling pathway and plays an important role in plant growth and development as well as various physiological processes. Analysis of the Red Globe grape VvARF18 promoter, heterologous expression, endogenous hormone content and its expression in response to hormones was made in order to explore the mechanism of VvARF18 gene in the auxin (IAA) signaling pathway and flower bud differentiation process in Red Globe grapes. 【Method】The VvARF18 gene sequence was obtained by homologous cloning by using facility Red Globe grape flower buds as experimental materials. The cis-acting elements of the promoter were analyzed using the online database PLACE. The plant overexpression vector pC2300-VvARF18 was constructed based on the pCAMBIAI2300 plant expression vector by double enzyme digestion and homologous recombination method. The recombinant vector pC2300-VvARF18 was transformed into Agrobacterium tumefaciens strain GV3101 by using electrical shock method. The tobacco leaves were used as explants and transferred into tobacco by Agrobacterium-mediated callus transformation method, and positive transgenic seedlings were obtained by PCR. The quantitative real-time PCR (qRT-PCR) was used to analyze the expression level of VvARF18 transgenic tobacco lines, and the transgenic lines with high expression level were screened and cultured to T3 generation, and treated with IAA and GA3 to analyze the expression level of VvARF18. The content of IAA, GA, ABA and CTK in flower buds and leaves of transgenic tobacco were determined by enzyme-linked immunosorbent assay. 【Result】VvARF18 of Red Globe grape located on chromosome 13, and contained 3 exons and 2 introns. There are multiple cis-acting elements in the VvARF18 promoter region that respond to light, plant hormones, and stress. The phenotypic analysis found that the process of flower bud differentiation was faster in transgenic tobacco than in wild-type tobacco. The qRT-PCR results showed that the expression of VvARF18 showed an increasing and then decreasing trend during the four periods of flower bud development in transgenic tobacco, and the highest expression level was reached in the S3 stage. The results of IAA, CTK, GA and ABA determination in flower buds and leaves of transgenic tobacco plants showed that the content of four plant hormones in flower buds and leaves of transgenic tobacco plants were higher than those of wild-type plants. The change trend of GA/IAA during the four periods of transgenic tobacco flower bud development were consistent with the expression trend of VvARF18. The expression level of VvARF18 in transgenic tobacco plants treated with IAA and GA3 decreased with the increase of IAA treatment concentration and also decreased with the extension of GA3 treatment time. 【Conclusion】Grape VvARF18 negatively regulated auxin to participate in the process of plant flower bud differentiation, which could interact with key factors in the gibberellin signaling pathway to synergistically regulate hormone levels in plant flower buds and had a facilitative effect on plant flower bud differentiation.

Key words: Red Globe grape, VvARF18, transgenic plants, flower bud differentiation, phytohormone

Table 1

List of primers"

引物名称 Primer name 引物序列 Primer Sequence (5′-3′) 引物用途 Primer use
Q-VvARF18-F ATGCTGAACACGCCTATGGGAATG 实时荧光定量
qRT-PCR
Q-VvARF18-R CACAGTAACGAGGGACGGAGAAAC
pC2300-VvARF18-F GAGAACACGGGGGACGAGCTCATGGATCCCATGAAGGAGCTG 过表达载体构建
Overexpression vector construction
pC2300-VvARF18-R CTTGCTCACCATGGTGTCGACGGGTGTTGCTGCCGAATCG
CaMV35S-F GCTCCTACAAATGCCATCA 农杆菌检测
Agrobacterium testing
CaMV35S-R GATAGTGGGATTGTGCGTCA
ACTIN-F GGCTTACATTGCTCTTGACTATGAAC 烟草的内参基因
Internal reference gene of tobacco
ACTIN-R ATCAGGCAGCTCGTAGCTCTTCT

Fig. 1

Protein sequence of VvARF18 * indicates the stop codon"

Table 2

Analysis of the VvARF18 gene promoter cis-acting elements"

顺式作用元件
Cis-element
序列
Sequence (5'-3')
功能
Function
数量
Number
TGACG-motif TGACG 参与MeJA反应的顺式作用调节元件Cis-acting regulatory element involved in the MeJA-responsiveness 1
LTR CCGAAA 参与低温反应的顺式作用元件 Cis-acting element involved in low-temperature responsiveness 2
CGTCA-motif CGTCA 参与MeJA反应的顺式作用调节元件 Cis-acting regulatory element involved in the MeJA-responsiveness 1
G-Box CACGTT 参与光响应的顺式调节元件 Cis-acting regulatory element involved in light responsiveness 1
G-box CACGTC 参与光响应的顺式调节元件 Cis-acting regulatory element involved in light responsiveness 1
MBS CAACTG 参与干旱诱导MYB结合位点 MYB binding site involved in drought-inducibility 2
CAAT-box CAAAT 在启动子和增强子区域的共同顺式作用元件 Common cis-acting element in promoter and enhancer regions 12
AE-box AGAAACAA 光响应模块的一部分 Part of a module for light response 2
TATA-box TATA 在转录起始的-30 附近的核心启动子元件 Core promoter element around -30 of transcription start 10
AuxRR-core GGTCCAT 参与生长素反应性的顺式调控元件 Cis-acting regulatory element involved in auxin responsiveness 1
ABRE ACGTG 参与脱落酸反应的顺式元件 Cis-acting element involved in the abscisic acid responsiveness 2
CCAAT-box CAACGG MYBHv1结合位点 MYBHv1 binding site 1
Box 4 ATTAAT 参与光反应的保守DNA模块的一部分 Part of a conserved DNA module involved in light responsiveness 7
P-box CCTTTTG 赤霉素反应元件 Gibberellin responsive element 1
TCCC-motif TCTCCCT 部分光响应元件 Part of a light responsive element 2
GT1-motif GGTTAAT 光响应元件 Light responsive element 4
ARE AAACCA 厌氧诱导所必需的顺式调节元件 Cis-acting regulatory element essential for the anaerobic induction 4

Fig. 2

Construction and genetic transformation of plant overexpression vector pC2300-VvARF18 A: schematic diagram of the construction process of plant overexpression vector pC2300-VvARF18. B: PCR detection of recombinant vector pC2300-VvARF18 in bacterial solution. M: DL4500 bp DNA marker; Lanes 1-3: PCR detection of pC2300-VvARF18 bacterial solution. C: Agrobacterium tumefaciens-mediated tissue culture of tobacco leaves. a: tobacco leaf co-cultures; b: inducing callus tissue of transgenic tobacco; c: screened positive plants; d: differentiation process; e: rooted cultured transgenic plants"

Fig. 3

Expression analysis of VvARF18 in transgenic tobacco plant OE#1-10 indicate different strains of transgenic plant。*: P<0.05;**: P<0.01"

Fig. 4

Expression analysis of VvARF18 gene in flower buds differentiation of transgenic tobacco WT: Wild-type tobacco; OE: Transgenic tobacco. Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 5

Hormone content in flower buds of transgenic tobacco at different developmental stages"

Fig. 6

Ratio of hormone content in flower buds of transgenic tobacco at different developmental stages"

Fig. 7

Hormone content in different leaf tissues of transgenic tobacco"

Fig. 8

Expression patterns of VvARF18 in response to exogenous IAA and GA3 treatment"

[1]
王博, 罗惠格, 覃富强, 陈祥飞, 朱维, 谢太理, 曹雄军, 白先进. 葡萄花芽分化研究进展. 南方农业学报, 2023, 54(3): 957-968.
WANG B, LUO H G, QIN F Q, CHEN X F, ZHU W, XIE T L, CAO X J, BAI X J. Research progress of grape flower bud differentiation. Journal of Southern Agriculture, 2023, 54(3): 957-968. (in Chinese)
[2]
刘帅, 徐伟荣, 张亚红, 刘鑫, 郭松涛, 胡莉. 基于转录组研究补光对设施‘红地球’葡萄萌芽的影响. 果树学报, 2021, 38(3): 305-317.
LIU S, XU W R, ZHANG Y H, LIU X, GUO S T, HU L. Effects of supplementary light on the bud burst of ‘Red Globe’ grape under protected cultivation based on transcriptome sequencing. Journal of Fruit Science, 2021, 38(3): 305-317. (in Chinese)
[3]
张克坤, 刘凤之, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 冀晓昊, 王海波. 不同光质补光对促早栽培‘瑞都香玉’葡萄果实品质的影响. 应用生态学报, 2017, 28(1): 115-126.

doi: 10.13287/j.1001-9332.201701.003
ZHANG K K, LIU F Z, WANG X D, SHI X B, WANG B L, ZHENG X C, JI X H, WANG H B. Effects of supplementary light with different wavelengths on fruit quality of ‘Ruidu Xiangyu’ grape under promoted cultivation. Chinese Journal of Applied Ecology, 2017, 28(1): 115-126. (in Chinese)
[4]
MORGAN D C, STANLEY C J, WARRINGTON I J. The effects of simulated daylight and shade-light on vegetative and reproductive growth in kiwifruit and grapevine. Journal of Horticultural Science, 1985, 60(4): 473-484.

doi: 10.1080/14620316.1985.11515654
[5]
郑婷, 张克坤, 张培安, 贾海锋, 房经贵. 葡萄营养生长与生殖生长间的转变研究进展. 植物生理学报, 2020, 56(7): 1361-1372.
ZHENG T, ZHANG K K, ZHANG P A, JIA H F, FANG J G. Recent progress in the study of transition between vegetative and reproductive growth in grapevine. Plant Physiology Journal, 2020, 56(7): 1361-1372. (in Chinese)
[6]
贾楠. 葡萄花芽分化及其主要影响因素的研究进展. 河北果树, 2020(1): 1-3.
JIA N. Review on grape floral bud differentiation and its major influencing factors. Hebei Fruits, 2020(1): 1-3. (in Chinese)
[7]
ZHANG D, REN L, YUE J H, WANG L, ZHUO L H, SHEN X H. GA4 and IAA were involved in the morphogenesis and development of flowers in Agapanthus praecox ssp. orientalis. Journal of Plant Physiology, 2014, 171(11): 966-976.

doi: 10.1016/j.jplph.2014.01.012
[8]
WANG Y D, ZHANG T, WANG R C, ZHAO Y D. Recent advances in auxin research in rice and their implications for crop improvement. Journal of Experimental Botany, 2018, 69(2): 255-263.

doi: 10.1093/jxb/erx228 pmid: 28992208
[9]
VANNESTE S, FRIML J. Auxin: A trigger for change in plant development. Cell, 2009, 136(6): 1005-1016.

doi: 10.1016/j.cell.2009.03.001 pmid: 19303845
[10]
李艳林, 高志红, 宋娟, 王万许, 侍婷. 植物生长素响应因子ARF与生长发育. 植物生理学报, 2017, 53(10): 1842-1858.
LI Y L, GAO Z H, SONG J, WANG W X, SHI T. Auxin response factor (ARF) and its functions in plant growth and development. Plant Physiology Journal, 2017, 53(10): 1842-1858. (in Chinese)
[11]
GUILFOYLE T J. The PB1 domain in auxin response factor and Aux/IAA proteins: A versatile protein interaction module in the auxin response. The Plant Cell, 2015, 27(1): 33-43.

doi: 10.1105/tpc.114.132753 pmid: 25604444
[12]
LI S B, XIE Z Z, HU C G, ZHANG J Z. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science, 2016, 7: 47.
[13]
OKUSHIMA Y, OVERVOORDE P J, ARIMA K, ALONSO J M, CHAN A, CHANG C, ECKER J R, HUGHES B, LUI A, NGUYEN D, ONODERA C, QUACH H, SMITH A, YU G X, THEOLOGIS A. Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. The Plant Cell, 2005, 17(2): 444-463.

doi: 10.1105/tpc.104.028316
[14]
孙亭亭, 张磊, 陈乐, 龚达平, 王大伟, 陈雅琼, 陈蕾, 孙玉合. 普通烟草ARF基因家族序列的鉴定与表达分析. 植物遗传资源学报, 2016, 17(1): 162-168.

doi: 10.13430/j.cnki.jpgr.2016.01.024
SUN T T, ZHANG L, CHEN L, GONG D P, WANG D W, CHEN Y Q, CHEN L, SUN Y H. Identification and expression analysis of the ARF gene family in Nicotiana tabacum. Journal of Plant Genetic Resources, 2016, 17(1): 162-168. (in Chinese)
[15]
WANG D K, PEI K M, FU Y P, SUN Z X, LI S J, LIU H Q, TANG K, HAN B, TAO Y Z. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007, 394(1/2): 13-24.

doi: 10.1016/j.gene.2007.01.006
[16]
VAN HA C, LE D T, NISHIYAMA R, WATANABE Y, SULIEMAN S, TRAN U T, MOCHIDA K, VAN DONG N, YAMAGUCHI- SHINOZAKI K, SHINOZAKI K, TRAN L S P. The auxin response factor transcription factor family in soybean: Genome-wide identification and expression analyses during development and water stress. DNA Research, 2013, 20(5): 511-524.

doi: 10.1093/dnares/dst027 pmid: 23810914
[17]
WU J, WANG F Y, CHENG L, KONG F L, PENG Z, LIU S Y, YU X L, LU G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Reports, 2011, 30(11): 2059-2073.

doi: 10.1007/s00299-011-1113-z
[18]
LIU S Q, HU L F. Genome-wide analysis of the auxin response factor gene family in cucumber. Genetics and Molecular Research, 2013, 12(4): 4317-4331.

doi: 10.4238/2013.April.2.1 pmid: 23613275
[19]
WAN S B, LI W L, ZHU Y Y, LIU Z M, HUANG W D, ZHAN J C. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Reports, 2014, 33(8): 1365-1375.

doi: 10.1007/s00299-014-1622-7
[20]
欧春青, 姜淑苓, 王斐, 赵亚楠. 梨全基因组生长素反应因子(ARF)基因家族鉴定及表达分析. 中国农业科学, 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012.
OU C Q, JIANG S L, WANG F, ZHAO Y N. Genome-wide identification and expression analysis of auxin response factor(ARF) gene family in pear. Scientia Agricultura Sinica, 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012. (in Chinese)
[21]
ELLIS C M, NAGPAL P, YOUNG J C, HAGEN G, GUILFOYLE T J, REED J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132(20): 4563-4574.

doi: 10.1242/dev.02012
[22]
LIU X G, DINH T T, LI D M, SHI B H, LI Y P, CAO X W, GUO L, PAN Y Y, JIAO Y L, CHEN X M. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. The Plant Journal, 2014, 80(4): 629-641.

doi: 10.1111/tpj.12658 pmid: 25187180
[23]
NAGPAL P, ELLIS C M, WEBER H, PLOENSE S E, BARKAWI L S, GUILFOYLE T J, HAGEN G, ALONSO J M, COHEN J D, FARMER E E, ECKER J R, REED J W. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, 132(18): 4107-4118.

doi: 10.1242/dev.01955 pmid: 16107481
[24]
WANG B, XUE J S, YU Y H, LIU S Q, ZHANG J X, YAO X Z, LIU Z X, XU X F, YANG Z N. Fine regulation of ARF17 for another development and pollen formation. BMC Plant Biology, 2017, 17(1): 243.
[25]
KUMAR R, TYAGI A K, SHARMA A K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285(3): 245-260.

doi: 10.1007/s00438-011-0602-7 pmid: 21290147
[26]
袁华招, 赵密珍, 吴伟民, 于红梅, 钱亚明, 王壮伟, 王西成. 葡萄生长素响应基因家族生物信息学鉴定和表达分析. 遗传, 2015, 37(7): 720-730.
YUAN H Z, ZHAO M Z, WU W M, YU H M, QIAN Y M, WANG Z W, WANG X C. Genome-wide identification and expression analysis of auxin-related gene families in grape. Hereditas, 2015, 37(7): 720-730. (in Chinese)
[27]
白云赫, 王文然, 董天宇, 管乐, 宿子文, 贾海锋, 房经贵, 王晨. Vvi-miR160s介导VvARF18应答赤霉素调控葡萄种子的发育. 中国农业科学, 2020, 53(9): 1890-1903. doi: 10.3864/j.issn.0578-1752.2020.09.015.
BAI Y H, WANG W R, DONG T Y, GUAN L, SU Z W, JIA H F, FANG J G, WANG C. Vvi-miR160s in mediating VvARF18 response to gibberellin regulation of grape seed development. Scientia Agricultura Sinica, 2020, 53(9): 1890-1903. doi: 10.3864/j.issn.0578-1752.2020.09.015. (in Chinese)
[28]
LIU K D, YUAN C C, LI H L, LIN W H, YANG Y J, SHEN C J, ZHENG X L. Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.). BMC Genomics, 2015, 16: 901.

doi: 10.1186/s12864-015-2182-0
[29]
李艳林, IQBAL S, 侍婷, 宋娟, 倪照君, 高志红. 梅PmARF17克隆及其在花发育中与内源激素的调控模式. 中国农业科学, 2021, 54(13): 2843-2857. doi: 10.3864/j.issn.0578-1752.2021.13.013.
LI Y L, IQBAL S, SHI T, SONG J, NI Z J, GAO Z H. Isolation of PmARF17 and its regulation pattern of endogenous hormones during flower development in Prunus mume. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857. doi: 10.3864/j.issn.0578-1752.2021.13.013. (in Chinese)
[30]
DE JONG M, WOLTERS-ARTS M, GARCÍA-MARTÍNEZ J L, MARIANI C, VRIEZEN W H. The solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SLARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. Journal of Experimental Botany, 2011, 62(2): 617-626.

doi: 10.1093/jxb/erq293
[31]
袁苗, 徐伟荣, 刘鑫, 党仕卓, 周娟, 张亚红. ‘红地球’葡萄花芽分化过程中VvARF18基因克隆与表达分析. 植物生理学报, 2023, 59(6): 1184-1194.
YUAN M, XU W R, LIU X, DANG S Z, ZHOU J, ZHANG Y H. Cloning and expression analysis of VvARF18 gene during flower bud differentiation in ‘Red Globe’ grape. Plant Physiology Journal, 2023, 59(6): 1184-1194. (in Chinese)
[32]
肖迪, 刘轶, 李开隆, 郑密, 曲冠证. 小黑杨PsnHB13基因在烟草中的遗传转化与功能分析. 植物研究, 2020, 40(4): 593-601.

doi: 10.7525/j.issn.1673-5102.2020.04.014
XIAO D, LIU Y, LI K L, ZHENG M, QU G Z. Genetic transformation and function analysis of PsnHB13 gene isolated from Populu ssimonii × P. nigra in Nicotiana tabacum. Bulletin of Botanical Research, 2020, 40(4): 593-601. (in Chinese)

doi: 10.7525/j.issn.1673-5102.2020.04.014
[33]
刘鑫, 张亚红, 袁苗, 党仕卓, 周娟. ‘红地球’葡萄花芽分化过程中的转录组分析. 中国农业科学, 2022, 55(20): 4020-4035. doi: 10.3864/j.issn.0578-1752.2022.20.013.
LIU X, ZHANG Y H, YUAN M, DANG S Z, ZHOU J. Transcriptome analysis during flower bud differentiation of Red Globe grape. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. doi: 10.3864/j.issn.0578-1752.2022.20.013. (in Chinese)
[34]
吴文浩, 曹凡, 刘壮壮, 彭方仁, 梁有旺, 谭鹏鹏. NAA对薄壳山核桃扦插生根过程中内源激素含量变化的影响. 南京林业大学学报(自然科学版), 2016, 40(5): 191-196.

doi: 10.3969/j.issn.1000-2006.2016.05.030
WU W H, CAO F, LIU Z Z, PENG F R, LIANG Y W, TAN P P. Effects of NAA treatment on the endogenous hormone changes in cuttings of Carya illinoinensis during rooting. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(5): 191-196. (in Chinese)
[35]
LAKEHAL A, CHAABOUNI S, CAVEL E, LE HIR R, RANJAN A, RANESHAN Z, NOVÁK O, PĂCURAR D I, PERRONE I, JOBERT F, GUTIERREZ L, BAKÒ L, BELLINI C. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Molecular Plant, 2019, 12(11): 1499-1514.

doi: 10.1016/j.molp.2019.09.001
[36]
ZHENG Y, ZHANG K, GUO L, LIU X, ZHANG Z. AUXIN RESPONSE FACTOR3 plays distinct role during early flower development. Plant Signaling & Behavior, 2018, 13(5): e1467690.
[37]
王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展. 中国农学通报, 2021, 37(33): 112-119.

doi: 10.11924/j.issn.1000-6850.casb2021-0563
WANG X, WANG S H, YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2021-0563
[38]
段娜, 贾玉奎, 徐军, 陈海玲, 孙鹏. 植物内源激素研究进展. 中国农学通报, 2015, 31(2): 159-165.

doi: 10.11924/j.issn.1000-6850.2014-2335
DUAN N, JIA Y K, XU J, CHEN H L, SUN P. Research progress on plant endogenous hormones. Chinese Agricultural Science Bulletin, 2015, 31(2): 159-165. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2014-2335
[39]
SONG J, GAO Z H, HUO X M, SUN H L, XU Y S, SHI T, NI Z J. Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Acta Physiologiae Plantarum, 2015, 37(8): 145.
[40]
刘伟, 赵懿琛, 廖震, 赵德刚. 朝仓花椒ARF基因家族的鉴定及表达分析. 植物生理学报, 2020, 56(7): 1627-1640.
LIU W, ZHAO Y C, LIAO Z, ZHAO D G. Identification and expression analysis of auxin response factor (ARF) gene family in Zanthoxylum piperitum var. inerme. Plant Physiology Journal, 2020, 56(7): 1627-1640. (in Chinese)
[41]
赵通, 陈翠莲, 程丽, 张继强, 刘生虎, 郭荣, 朱祖雷, 朱燕芳, 王延秀. ‘李光杏’花芽分化时期内源激素及碳氮比值的动态研究. 干旱地区农业研究, 2020, 38(3): 97-104.
ZHAO T, CHEN C L, CHENG L, ZHANG J Q, LIU S H, GUO R, ZHU Z L, ZHU Y F, WANG Y X. Dynamic study on endogenous hormones and C/N ratio during flower-bud differentiation of Li-Guang Apricot. Agricultural Research in the Arid Areas, 2020, 38(3): 97-104. (in Chinese)
[42]
阿布都卡尤木∙阿依麦提, 樊丁宇, 岳婉婉, 赵婧彤, 郝庆. 枣花芽分化过程中营养物质和内源激素含量及抗氧化酶活性变化研究. 西北植物学报, 2021, 41(1): 142-150.
ABUDOUKAYOUMU∙ AYIMAITI, FAN D Y, YUE W W, ZHAO J T, HAO Q. Changes of nutrients, endogenous hormones and antioxidant enzymes activities during flower bud differentiation process of Ziziphus jujuba. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 142-150. (in Chinese)
[43]
TANG Y H, BAO X X, LIU K, WANG J, ZHANG J, FENG Y W, WANG Y Y, LIN L X, FENG J C, LI C W. Genome-wide identification and expression profiling of the auxin response factor (ARF) gene family in physic nut. PLoS ONE, 2018, 13(8): e0201024.
[44]
CHEN J W, LI Y, LI Y H, LI Y Q, WANG Y, JIANG C Y, CHOISY P, XU T, CAI Y M, PEI D, JIANG C Z, GAN S S, GAO J P, MA N. Auxin response factor 18-histone deacetylase 6 module regulates floral organ identity in rose (Rosa hybrida). Plant Physiology, 2021, 186(2): 1074-1087.

doi: 10.1093/plphys/kiab130
[45]
OH E, ZHU J Y, BAI M Y, ARENHART R A, SUN Y, WANG Z Y. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife, 2014, 3: e03031.

doi: 10.7554/eLife.03031
[1] TIAN QingLan, ZHOU JunNiu, WU YanYan, LIU JieYun, HUANG WeiHua, ZHANG YingJun, XIE WenLian, WEI GuangTan, MOU HaiFei. Observation of Flower Bud Differentiation Process and Fitting of Flower Growth Model of Passion Fruit [J]. Scientia Agricultura Sinica, 2024, 57(4): 765-778.
[2] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[3] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[4] YunHe BAI,WenRan WANG,TianYu DONG,Le GUAN,ZiWen SU,HaiFeng JIA,JingGui FANG,Chen WANG. vvi-miR160s in Mediating VvARF18 Response to Gibberellin Regulation of Grape Seed Development [J]. Scientia Agricultura Sinica, 2020, 53(9): 1890-1903.
[5] LIU Qi,MEI YanHao,LI Qi,MA HongXiu,WU YongJun,YANG ZhenChao. Effects of End of Day Far-Red Light on Growth, Histiocyte Morphology and Phytohormones Content of Pumpkin Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(20): 4248-4258.
[6] CHEN Hao,ZHANG RunGuang,FU LuYing,ZHANG YouLin. Effects of 1-MCP and Na2S2O5 Composite Preservative on Postharvest Physiology and Storage Quality of Red Globe Grapes [J]. Scientia Agricultura Sinica, 2019, 52(7): 1192-1204.
[7] ZHANG Xun, HAO JianPing, WANG Pu, ZHANG Ping, CHEN LuJie. Effects of Low Temperature on Maize Superior and Inferior Kernels Development During Grain Filling in Vitro [J]. Scientia Agricultura Sinica, 2018, 51(12): 2263-2273.
[8] GUO YaLu, MA XiaoFei, SHI JiaNan, ZHANG Liu, ZHANG JianShuo, HUANG Teng, WU PengCheng, KANG HaoXiang, GENG GuangHui, CHEN Hao, WEI Jian, DOU ShiJuan, LI LiYun, YIN ChangCheng, LIU GuoZhen . Western Blot Detection of CAS9 Protein in Transgenic Rice [J]. Scientia Agricultura Sinica, 2017, 50(19): 3631-3639.
[9] WANG Hai-bo, ZHAO Jun-quan, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi. The Influence of Changes of Endogenous Hormones in Shoot on the Grapes Flower Bud Differentiation in Greenhouse [J]. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705.
[10] NIU Dong-Dong-1, HAO Yu-Jie-2, RONG Rui-Juan-1, WEI Han-Fu-2, LAN Jin-苹1、Shi-Jia-Nan-1, WEI Jian-1, LI Xue-Jiao-1, YANG Shuo-1, XI Wen-Hui-2, WU Peng-Cheng-2, LIU Li-Juan-1, WU Lin-3, LIU Si-Qi-3, YIN Chang-Cheng-2, LIU Guo-Zhen-1. Detection of GUS Protein and Its Expression Pattern in Transgenic Rice Plants [J]. Scientia Agricultura Sinica, 2014, 47(14): 2715-2722.
[11] LIU Qing-1, TONG Jian-Hua-1, SHI Qi-1, PENG Ke-Qin-1, WANG Ruo-Zhong-1, LIN Wan-Huang-1, MohammedHumayunKabir1 , SHEN Ge-Zhi-2, XIAO Lang-Tao-1. Dynamic Changes of Phytohormones as Influenced by Different Plant Growth Substances in a Dwarf-Multi-Tiller Rice Mutant [J]. Scientia Agricultura Sinica, 2014, 47(13): 2519-2528.
[12] ZHANG Li, NIU Xiang-Li, ZHANG Hui-Ying, LIU Yong-Sheng. Functional Analysis via Overexpressing Xyloglucan Endotransglycosylase Gene OsXTH11 in Rice [J]. Scientia Agricultura Sinica, 2012, 45(16): 3231-3239.
[13] SUN Xia, WANG Xiu-Feng, ZHENG Cheng-Shu, XING Shi-Yan, SHU Huai-Rui. The cDNA Cloning and Analysis of Sequence Information and Quantitative Express of Chrysanthemum Rhythms Clock Output Gene CmGI (GIGANTEA) [J]. Scientia Agricultura Sinica, 2012, 45(13): 2690-2703.
[14] LI Bo,YU Jing-juan,ZHAO Qian,ZHU Deng-yun,AO Guang-ming
. Transformation of the Gene pf40 in Maize#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3334-3338 .
[15] . Effects of Growth Age on Flower Bud Differentiation and Quality of Cut Chrysanthemum ‘Jinba’ [J]. Scientia Agricultura Sinica, 2008, 41(6): 1755-1760 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!