Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (6): 1117-1136.doi: 10.3864/j.issn.0578-1752.2024.06.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Assessment of Application Efficacy for Agro-Forestry Absorbent Polymers and Their Environmental Risks

WANG XiaoBin(), YAN Xiang(), LI XiuYing(), SUN ZhaoKai, TU Cheng   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-04-21 Accepted:2023-07-04 Online:2024-03-25 Published:2024-03-25
  • Contact: YAN Xiang, LI XiuYing

Abstract:

Since the performing of Seventh Five-Year (1986-1990) National Scientific and Technological Projects in China, when the national dryland farming research projects started, the super-absorbent polymers for agriculture and forestry (SAP-AF), as one of the technical products for drought-resistance and water-retention in agriculture and forestry, have been given concerned. A Chinese agricultural standard of Agro-forestry absorbent polymer (NY 886) was issued in 2004, and then revised three times in 2010, 2016 and 2022, respectively. However, so far there is still no relevant standard or regulation on experiment and assessment for the SAP-AF application efficacy, thus greatly affecting its promotion and application. Based on the literature review on the relevant research and application status of the SAP-AF for more than 30 years (1990-2023), this paper focused on the research about the effects of the SAP-AF application on soil water retention, crop water use, and crop yield, as well as environmental impact. The results showed as follows. (1) The SAP-AF products could enhance the ability to soil water storage and retention (especially for sandy soils), and be beneficial to protecting crop seedlings against drought, water-saving, and yield-increasing, as well as water use efficiency (WUE)-improving in dry-farming areas. (2) The assessment indicators (mainly including soil water storage, crop water consumption, crop yield, and WUE) were proposed to be applicable to evaluate the experiments for the SAP-AF product application efficacy. (3) According to the phenomenon that the SAP-AF application for crops in some regions could not always show a significant effect on yield increase, or sometimes had a negative return, it was proposed that SAP-AF application should formulate corresponding technical regulations, and determine the appropriate product types, and their application methods and dosage for crops. (4) The environmental safety of the SAP-AF products (mainly in the form of polyacrylamide or polyacrylic acid (PAM or PAA)-based materials) mainly involved the biodegradability of the PAM or PAA-based materials and the biological toxicity induced by the residual monomers (acrylamide or acrylic acid (AM or AA)) in the products. The residual AM or AA monomer content detected in the PAM or PAA-related products on the market were partly at the risk of exceeding the allowable limits (accounting for about 22%-100% of the total, referred to as the standard limits for some similar products). The review also indicated that some natural polymer materials such as such as starch grafted based polymer materials would be the replaycement of the SAP-AF in the future. The results of this study provided the reference for the formulation of evaluation standards or regulations for SAP-AF product application efficacy. It was suggested that relevant departments should strengthen the detection of residual monomer and its limit requirements for PAM or PAA-based SAP-AF products, and quantify the biodegradability index of products, in order to provide protection for the environmental safety of agricultural and forestry water protection agent products. It was suggested to strengthen the detection of residual AM or AA monomers, and research on the environmental safety threshold of residual monomers for such PAM or PAA-based SAP-AF products; but also need to further explore the relationship between the product biodegradability indicators in the soils and the safety of soil ecological environment, in order to ensure the product environmental safety.

Key words: agro-forestry absorbent polymer, soil water content, crop water consumption, water use efficiency, environmental safety risk

Table 1

Assessment indicators on the application efficacy of super absorbent polymer (SAP) for agriculture and forestry (2006- 2019)"

试验地点/土壤质地
Sites/Soil texture
年降水量/灌溉量
Annual rainfall/ Irrigation (mm)
作物
Crop
保水剂类型
SAP type
保水剂用量
SAP rate
(kg·hm-2)
土层深度
Soil depth
(cm)
耗水量
ET
(mm)
作物产量
Crop yield
(kg·hm-2)
水分利用效率
WUE
(kg·hm-2·mm-1)
增产率
Yield ±%
WUE增幅
WUE±%
新疆阿克苏干旱区/砂壤土[9]
Arid regions in Aksu, Xinjiang/Sandy loam[9]
45/300 棉花Cotton SAP 15 0-140 299.2 2783 9.3 9.0 9.4
30 0-140 299.4 2875 9.6 12.6 12.9
45 0-140 298.9 2929 9.8 14.8 15.3
0 0-140 300.2 2552 8.5
45/390 15 0-140 390.6 2734 7.0 5.2 4.5
30 0-140 389.6 2883 7.4 11.0 10.4
45 0-140 389.5 2960 7.6 13.9 13.4
0 0-140 387.8 2598 6.7
45/480 15 0-140 481.8 2891 6.0 2.5 1.7
30 0-140 479.4 2924 6.1 3.7 3.4
45 0-140 482.0 2988 6.2 6.0 5.1
0 0-140 477.8 2819 5.9
新疆库尔勒市干旱区/砂质土[10]
Arid desert regions in Korla city, Xinjiang/ Sandy soil[10]
70/435 棉花Cotton γ-PGA a) 20 0-100 565.7 4126 7.3 5.1 8.0
40 0-100 570.9 4558 8.0 16.1 18.2
80 0-100 571.6 4683 8.2 19.3 21.2
160 0-100 593.2 4204 7.1 7.1 4.9
0 0-100 580.8 3924 6.8
70/413 棉花Cotton γ-PGA a) 20 0-100 586.6 3931 6.70 4.1 7.3
40 0-100 610.5 4446 7.28 17.7 16.6
80 0-100 585.2 4376 7.48 15.9 19.8
160 0-100 603.9 4120 6.82 9.1 9.3
0 0-100 604.9 3777 6.24
甘肃民勤县干旱沙漠区/黏壤土[12]
Arid desert regions in Minqin county, Gansu/ Clay loam[12]
110/474 春玉米Spring maize SAP 5 0-100 575.0 15241 26.5 6.7 8.6
15 0-100 564.8 15539 27.5 8.8 12.7
25 0-100 550.9 18333 33.3 28.4 36.4
0 0-100 585.2 14280 24.4
内蒙古河套灌区干旱区/壤质灌淤土[15]
Arid regions in Hetao irrigation area, Inner Mongolia /Irrigation- silted loam[15]
142.7/100 番茄Tomato AM-AA(Na) b) 30 0-80 260.3 71400 274.3 3.5 -0.2
37.5 0-80 260.4 74400 285.7 7.8 3.9
45 0-80 262.4 76600 292.0 11.0 6.2
52 0-80 263.1 76100 289.3 10.3 5.2
0 0-80 250.9 69000 275.0
内蒙古和林县半干旱区/砂壤土[18]
Semi-arid regions in Helin county, Hohhot, Inner Mongolia/Sandy loam[18]
395.4/60 玉米Maize PAAM-Atta c) 45 0-40 511.7 11185 21.9 14.7 13.0
0 0-40 504.4 9754 19.3
45 0-40 531.6 10121 19.0 8.4 3.9
0 0-40 509.8 9339 18.3
内蒙古清水河县半干旱区/砂壤土[19]
Semi-arid regions in Qingshuihe County, Inner Mongolia/Sandy loam[19]
365/0 玉米Maize PAA(K) d) 75 0-100 269.5 5369 19.9 19.9 25.4
PAM e) 75 0-100 272.8 5157 18.9 15.2 19.0
0 0-100 281.8 4476 15.9
宁夏海原县干旱半干旱区/粉砂壤土[20]
Arid semi-arid regions in Haiyuan county, Ningxia/Silty loam[20]
280-450/0 谷子Millet SAP 拌种
Seed-mixed
0-200 346.2 2595 7.50 4.3 4.2
0 0-200 345.7 2487 7.19
拌种
Seed-mixed
0-200 350.5 4725 13.5 8.1 7.2
0 0-200 347.4 4370 12.6
拌种
Seed-mixed
0-200 289.9 4248 14.7 9.3 6.2
0 0-200 281.7 3888 13.8
宁夏中部同心县半干旱区/粉砂壤土[21]
Arid Semi-arid regions in Tongxin county, Ningxia/Silty loam[21]
349.3/0 玉米Maize SAP 10 0-100 301.2 2950 9.80 7.1 6.9
20 0-100 309.0 3685 11.9 33.7 30.1
30 0-100 299.9 3221 10.7 16.9 17.2
40 0-100 292.5 2566 8.8 -6.9 -4.3
0 0-100 300.7 2756 9.16
西藏拉萨河谷区高原半干旱区/砂壤土[23]
Semi-arid Plateau in Lhasa Valley, Tibet/ Sandy loam[23]
428.9/180 青稞Hulless barley Starch-AA f) 30 0-60 382.0 5252 13.7 7.2 14.6
Starch-AA f) 30 0-60 380.8 5568 14.6 13.6 21.9
PAA g) 30 0-60 378.0 4925 13.0 0.5 8.6
PAA g) 30 0-60 381.3 5303 13.9 8.2 16.0
0 0-60 408.7 4901 12.0
陕西安塞黄土高原半干旱区/粉砂质壤土[36]
Semi-arid Loess Plateau in Ansai county, Shaanxi /Silty loam[36]
438/0 玉米Maize PAA/PAM-
Atta h)
45/撒施
Spread
0-200 422.6 8068 19.1 6.7 12.2
45/沟施
Furrow
0-200 391.2 8938 22.9 18.2 34.3
45/穴施
Hole
0-200 390.8 9004 23.0 19.1 35.4
PAM e) 45/撒施
Spread
0-200 422.2 7975 18.9 5.5 11.0
45/沟施
Furrow
0-200 393.4 8926 22.7 18.1 33.3
45/穴施
Hole
0-200 393.4 8840 22.5 16.9 32.0
0 0-200 444.2 7559 17.0
河南禹州半湿润区/壤土[40]
Semi-humid regions in Yuzhou county, Henan/Loam[40]
674.9/0 冬小麦/郑麦9694 Winter wheat/ Zhengmai 9694 PAM e) 30 0-100 228.2 3851 16.9 14.8 16.6
60 0-100 211.3 5056 23.9 50.7 65.3
90 0-100 214.1 4429 20.7 32.0 43.0
0 0-100 231.8 3354 14.5
冬小麦/矮抗58 Winter wheat /Aikang 58 PAM e) 30 0-100 207.1 3868 18.7 19.3 33.8
60 0-100 221.0 4622 20.9 42.5 49.8
90 0-100 205.1 4029 19.6 24.2 40.7
0 0-100 232.3 3243 14.0
河南郑州半湿润偏旱区/砂质土[41]
Semi-humid regions in Zhengzhou, Henan/ Sandy soil[41]
537/47 冬小麦Winter wheat SAP 45 0-60 391.8 4251 10.8 2.9 4.0
0 0-60 396.0 4132 10.4
537/70 45 0-60 408.9 5052 12.4 12.4 15.1
0 0-60 418.7 4496 10.7
537/93 45 0-60 432.1 5888 13.6 15.8 18.3
0 0-60 441.3 5085 11.5
537/117 45 0-60 450.2 5719 12.7 2.2 5.1
0 0-60 462.6 5594 12.1
河南新乡半干旱区/黏壤土[42]
Semi-arid regions in Xinxiang, Henan/Clay loam[42]
481/180 冬小麦Winter wheat PAA(Na) i) 30 0-100 362.6 6772 18.7 2.4 9.5
60 0-100 360.7 6789 18.8 2.7 10.3
Starch-
AA(Na) j)
30 0-100 371.9 6695 18.0 1.3 5.5
60 0-100 365.8 6792 18.6 2.7 8.8
Starch-AA f) 30 0-100 364.5 6794 18.6 2.8 9.3
60 0-100 364.1 6850 18.8 3.6 10.3
PAM e) 30 0-100 359.0 6824 19.0 3.2 11.4
60 0-100 356.3 6940 19.5 5.0 14.2
AM-
Minerals k)
30 0-100 352.1 7096 20.2 7.3 18.1
60 0-100 343.7 7130 20.7 7.9 21.6
0 0-100 387.5 6611 17.1

Table 2

Content of residual acrylamide or acrylic acid (AM or AA) monomers in polyacrylamide or polyacrylate (PAM or PAA)- based products, and relevant standard limits for residual AM or AA in the products"

PAM或PAA相关产品及其标准
PAM or PAA-based product and relevant standard
Residual AM
(%)
Residual AA
(%)
超标
Over-limit (%)
PAM高聚物For polymers[96] 0.10-1.25 100
PAM水处理剂For water treatment chemicals[97] 0.003-0.074 22.2
PAM水处理剂For water treatment chemicals[98] 0.0028-0.44 58.3
PAM食品添加剂For food additive[99] 0-0.43
PAM絮凝剂For flocculants[81] 0.0034-0.1005 62.5
PAA型高吸水树脂For super absorbent resins[100] 0.0031-0.4213
PAA水处理剂For water treatment chemicals[101] 0.97-1.23 100
PAA型卫生用高吸收性树脂For absorbent hygiene resins[102] 0.0614-0.2460 60
PAA型高吸水树脂For superabsorbent polymers[74] 0.039-0.7940
PAA树脂For acrylic resins 0-1.9486 7.7
《水处理剂 阴离子和非离子型聚丙烯酰胺》:GB 17514—2017
Water Treatment Chemicals—Anionic and Non-Ionic Polyacrylamide: GB 17514—2017[89]
≤0.025
《纸尿裤和卫生巾用高吸收性树脂》:GB 22875—2018
Super-Absorbent Polymer for Sanity Towel and Diapers: GB 22875—2018[92]
≤0.08-0.1

Table 3

Degradation products from acrylic acid (AA)-based polymers detected in cropland soils in China"

采样地点
Site
土壤
Soil
主要微塑料聚合物类型
Microplastic polymer type
AA类聚合物
AA-based polymer (%)
中国杭州湾沿海平原[115]
Coastal plain of Hangzhou Bay, China[115]
采集60个土样(水稻、玉米或高粱田)
60 soil samples were collected from farmlands (including rice, corn or sorghum fields)
确定了10个聚合物类型(包括3种共聚物),其中包括AA类聚合物
A total of 10 polymer types were identified (which included three co-polymers), in which AA-type polymer was included
中国上海郊区[116]
Suburb of Shanghai, China[116]
土样采自12个样地的4类土(潮土、
黄棕壤土、水稻土和滨海盐土)
Soil samples were collected from 12 plot soils (including fluvo-aquic soil, yellow- brown loam soil, paddy soil, and coastal saline soil)
主要包括PP、PE、AA、PET和PA等5种聚合物类型(分别占比40.50%、35.44%、15.19%、6.33%和2.53%)
The polymer types identified included PP, PE, AA, PET and PA (accounting for 40.50%, 35.44%, 15.19%, 6.33% and 2.53% of the total, respectively)
15.19
中国陕西长武[117]
Changwu in Shaanxi, China[117]
黄土高原典型小流域耕地土壤
Soil samples were collected from croplands in a typical small watershed of the Loess Plateau
以PET、PU、ALK、AA和PP等5种聚合物类型为主(分别占比25.56%、30.46%、8.48%、5.83%和5.43%)
The polymer types identified included PET, PU, ALK, AA and PP (accounting for 25.56%, 30.46%, 8.48%, 5.83% and 5.43% of the total, respectively)
5.83
中国[118]
China[118]
21个省的30片大型农田土壤
Soil samples were collected from 30 farmlands in 21 provinces
主要包括PP、PE、PES、PAA、PA、PVC和PS等7种聚合物类型(分别占比65.96%、18.29%、12.66%、2.82%、0.13%、0.08%和0.05%)
The polymer types identified included PP, PE, PES, PAA, PA, PVC and PS (accounting for 65.96%, 18.29%, 12.66%, 2.82%, 0.13%, 0.08% and 0.05% of the total, respectively)
2.82
[1]
罗其友. 21世纪北方旱地农业战略问题. 中国软科学, 2000(4): 102-105.
LUO Q Y. Strategic problems of dryland agriculture in North China in the 21st century. China Soft Science, 2000(4): 102-105. (in Chinese)
[2]
张正斌, 段子渊, 徐萍, 张新忠. 中国粮食和水资源安全协同战略. 中国生态农业学报, 2013, 21(12): 1441-1448.
ZHANG Z B, DUAN Z Y, XU P, ZHANG X Z. Synergy strategy of food and water security in China. Chinese Journal of Eco-Agriculture, 2013, 21(12): 1441-1448. (in Chinese)

doi: 10.3724/SP.J.1011.2013.30669
[3]
蔡典雄, 王小彬, Keith SaxtonS. 土壤保水剂对土壤持水特性及作物出苗的影响. 土壤肥料, 1999(1): 13-16.
CAI D X, WANG X B, KEITH S. Effect of soil water-retaining agent on soil water-holding characteristics and crop emergence. Soils and Fertilizers, 1999(1): 13-16. (in Chinese)
[4]
黄占斌. 农用保水剂应用原理与技术. 北京: 中国农业科学技术出版社, 2005.
HUANG Z B. Application Principle and Technology of Agricultural Water-Retaining Agent. Beijing: China Agricultural Science and Technology Press, 2005. (in Chinese)
[5]
肖世和, 蔡典雄. 旱地小麦的引进技术. 北京: 中国农业科技出版社, 2001.
XIAO S H, CAI D X. Introduction Technology of Dryland Wheat. Beijing: China Agriculture Scientech Press, 2001. (in Chinese)
[6]
中华人民共和国农业部. 农林保水剂:NY/T 886—2022. 北京: 中国农业出版社, 2022.
The Ministry of Agriculture of the People's Republic of China. Agro-forestry Absorbent Polymer:NY/T 886—2022. Beijing: China Agriculture Press, 2022. (in Chinese)
[7]
中华人民共和国农业部. 土壤调理剂效果试验和评价要求:NY/T 2271—2016. 北京: 中国农业出版社, 2016.
The Ministry of Agriculture of the People's Republic of China. Soil Amendment—Regulations of Efficiency Experiment and Assessment:NY/T 2271—2016. Beijing: China Agriculture Press, 2016. (in Chinese)
[8]
王小彬, 蔡典雄. 土壤调理剂PAM的农用研究和应用. 植物营养与肥料学报, 2000, 6(4): 457-463.
WANG X B, CAI D X. Research and application of soil conditioner in agriculture. Plant Natrition and Fertilizen Science, 2000, 6(4): 457-463. (in Chinese)
[9]
李磐, 冯耀祖, 钟新才. 施用抗旱保水剂对棉花产量与水分利用效率的影响. 新疆农业科学, 2011, 48(6): 1125-1129.
LI P, FENG Y Z, ZHONG X C. Effects of drought-resistant agents(DRA) and super absorbent polymers(SAP) on the yield and water use efficiency of cotton. Xinjiang Agricultural Sciences, 2011, 48(6): 1125-1129. (in Chinese)
[10]
LIANG J P, SHI W J, HE Z J, PANG L N, ZHANG Y C. Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China. Agricultural Water Management, 2019, 218: 48-59.

doi: 10.1016/j.agwat.2019.03.009
[11]
马静, 单立山, 王洋, 李星辰, 李毅. 保水剂对4种典型荒漠植物种子萌发的影响. 水土保持通报, 2019, 39(2): 38-42.
MA J, SHAN L S, WANG Y, LI X C, LI Y. Effects of water retaining agent on seed germination of four typical desert plants. Bulletin of Soil and Water Conservation, 2019, 39(2): 38-42. (in Chinese)
[12]
丁林, 张新民. 保水剂对春玉米注水播种条件下土壤水分及生长发育的影响. 中国农村水利水电, 2010(11): 56-60.
DING L, ZHANG X M. The effect of soil moisture and growing dynamic of maize after sowing with water use water holding agent. China Rural Water and Hydropower, 2010(11): 56-60. (in Chinese)
[13]
杜太生. 保水剂在节水灌溉中的应用及其对作物生长和水分利用的影响[D]. 杨凌: 西北农林科技大学, 2001.
DU T S. Application of water-retaining agent in water-saving irrigation and its influence on crop growth and water use[D]. Yangling: Northwest A & F University, 2001. (in Chinese)
[14]
SU L Q, LI J G, XUE H, WANG X F. Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought. Journal of Zhejiang University Science B, 2017, 18(8): 696-706.

doi: 10.1631/jzus.B1600350
[15]
张蕊, 耿桂俊, 白岗栓. 保水剂施用量对土壤水分和番茄生长的影响. 中国水土保持科学, 2013, 11(2): 108-113.
ZHANG R, GENG G J, BAI G S. Effects of application rate of super absorbent polymers on soil moisture and Solanum lycopersicum growth. Science of Soil and Water Conservation, 2013, 11(2): 108-113. (in Chinese)
[16]
邹超煜, 白岗栓, 于健, 宋日权. 保水剂对不同作物水分利用效率及产值的影响. 中国农业大学学报, 2015, 20(5): 66-73.
ZOU C Y, BAI G S, YU J, SONG R Q. Effects of super absorbent polymer on water use efficiency and output value of different crops in different regions. Journal of China Agricultural University, 2015, 20(5): 66-73. (in Chinese)
[17]
XU S T, ZHANG L, MCLAUGHLIN N B, MI J Z, CHEN Q, LIU J H. Effect of synthetic and natural water-absorbing soil amendments on photosynthesis characteristics and tuber nutritional quality of potato in a semi-arid region. Journal of the Science of Food and Agriculture, 2016, 96(3): 1010-1017.

doi: 10.1002/jsfa.7188 pmid: 25820940
[18]
YANG W, GUO S W, LI P F, SONG R Q, YU J. Foliar antitranspirant and soil superabsorbent hydrogel affect photosynthetic gas exchange and water use efficiency of maize grown under low rainfall conditions. Journal of the Science of Food and Agriculture, 2019, 99(1): 350-359.

doi: 10.1002/jsfa.9195 pmid: 29882362
[19]
田露, 刘景辉, 郭晓霞, 李立军, 刘霞, 包海军. 抗旱保水材料在内蒙古黄土高原旱作区的蓄水保墒增产效应研究. 节水灌溉, 2013(2): 21-25, 28.
TIAN L, LIU J H, GUO X X, LI L J, LIU X, BAO H J. Water retaining, conserving and yield increasing effects of water saving materials in dry farmland of inner Mongolia loess plateau. Water Saving Irrigation, 2013(2): 21-25, 28. (in Chinese)
[20]
张德奇, 廖允成, 贾志宽, 季书勤, 马庆华. 旱地谷子集水保水技术的生理生态效应. 作物学报, 2006, 32(5): 738-742.
ZHANG D Q, LIAO Y C, JIA Z K, JI S Q, MA Q H. Physiological and ecological effects of water collecting and conservation technique on dry-land millet. Acta Agronomica Sinica, 2006, 32(5): 738-742. (in Chinese)
[21]
马宗仁, 黑旭明, 马宁, 杨铁丁. ZB土壤保水剂不同施用量对旱地玉米产量构成及水分利用的影响. 宁夏农林科技, 2013, 54(12): 63-65.
MA Z R, HEI X M, MA N, YANG T D. Effect of ZBz absorbent polymer on dryland maize yield components and water use efficiency. Ningxia Journal of Agriculture and Forestry Science and Technology, 2013, 54(12): 63-65. (in Chinese)
[22]
HOU X Q, LI R, HE W S, DAI X H, MA K, LIANG Y. Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. Journal of Soils and Sediments, 2018, 18(3): 816-826.

doi: 10.1007/s11368-017-1818-x
[23]
侯亚红, 张华国, 李雪, 达娃卓玛. 4种保水剂在青稞上的增产效果对比试验. 西藏农业科技, 2019, 41(3): 37-40.
HOU Y H, ZHANG H G, LI X, DAWAZHUOMA. Comparative study on yield increasing effects of four water-retaining agents on barley. Tibet Journal of Agricultural Sciences, 2019, 41(3): 37-40. (in Chinese)
[24]
王启基, 王文颖, 景增春, 史惠兰, 王长庭. 保水剂对江河源区退化草地土壤水分和植物生长发育的影响. 草业科学, 2005, 22(6): 52-57.
WANG Q J, WANG W Y, JING Z C, SHI H L, WANG C T. The effect of the search on soil water and plant growth of degraded grassland in the source regions of Yangtze and Yellow Rivers. Pratacultural Science, 2005, 22(6): 52-57. (in Chinese)
[25]
ISLAM M R, REN C Z, ZENG Z H, JIA P F, ENEJI E, HU Y G. Fertilizer use efficiency of drought-stressed oat (Avena sativa L.) following soil amendment with a water-saving superabsorbent polymer. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 2011, 61(8): 721-729.
[26]
向晓明, 刘作新, 郑昭佩. 保水剂包衣对春小麦出苗及产量的影响. 中国农学通报, 2001, 17(3): 38-40.
XIANG X M, LIU Z X, ZHENG Z P. Effect of water absorbents on germination and yield of spring wheat. Chinese Agricultural Science Bulletin, 2001, 17(3): 38-40. (in Chinese)
[27]
杨培岭, 刘洪禄, 李云开. 保水剂在京郊果园的应用试验研究. 灌溉排水, 2002, 21(1): 15-17.
YANG P L, LIU H L, LI Y K. Application effects of supper absorbent polymers in orchards in Beijing suburb. Irrigation and Drainage, 2002, 21(1): 15-17. (in Chinese)
[28]
ISLAM M R, MAO S S, XUE X Z, ENEJI A E, ZHAO X B, HU Y G. A lysimeter study of nitrate leaching, optimum fertilisation rate and growth responses of corn (Zea mays L.) following soil amendment with water-saving super-absorbent polymer. Journal of the Science of Food and Agriculture, 2011, 91(11): 1990-1997.

doi: 10.1002/jsfa.4407
[29]
ISLAM M R, XUE X Z, MAO S S, REN C Z, ENEJI A E, HU Y G. Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in oat (Avena sativa L.) under drought stress. Journal of the Science of Food and Agriculture, 2011, 91(4): 680-686.

doi: 10.1002/jsfa.v91.4
[30]
LIAO R, YANG P, ZHU Y. Effect of superabsorbent polymer on root water uptake and quantification of water uptake from soil profile in dry land. Soil Use and Management, 2017, 33(3): 482-486.

doi: 10.1111/sum.2017.33.issue-3
[31]
王斌瑞, 史常青, 张光灿. 土内保墒措施在黄土高原对油松生长的影响. 干旱区研究, 2000, 17(1): 12-16.
WANG B R, SHI C Q, ZHANG G C. Influence of moisture-holding measures in soil on the growth of Pinus tablaeformis on the loess plateau. Arid Zone Research, 2000, 17(1): 12-16. (in Chinese)
[32]
CAO Y B, WANG B T, GUO H Y, XIAO H J, WEI T T. The effect of super absorbent polymers on soil and water conservation on the terraces of the loess plateau. Ecological Engineering, 2017, 102: 270-279.

doi: 10.1016/j.ecoleng.2017.02.043
[33]
蔡典雄, 张志田, 张镜清, 王小彬, 高绪科. TC土壤调理剂在北方旱地上的使用效果初报. 土壤肥料, 1996(4): 34-36.
CAI D X, ZHANG Z T, ZHANG J Q, WANG X B, GAO X K. Preliminary report on the application effect of TC soil conditioner in northern dry land. Soils and Fertilizers, 1996(4): 34-36. (in Chinese)
[34]
LI X, HE J Z, HUGHES J M, LIU Y R, ZHENG Y M. Effects of super-absorbent polymers on a soil-wheat (Triticum aestivum L.) system in the field. Applied Soil Ecology, 2014, 73: 58-63.

doi: 10.1016/j.apsoil.2013.08.005
[35]
LI X, HE J Z, LIU Y R, ZHENG Y M. Effects of super absorbent polymers on soil microbial properties and Chinese cabbage (Brassica chinensis) growth. Journal of Soils and Sediments, 2013, 13(4): 711-719.

doi: 10.1007/s11368-013-0657-7
[36]
杜社妮, 白岗栓, 赵世伟, 吴瑞俊. 沃特和PAM施用方式对土壤水分及玉米生长的影响. 农业工程学报, 2008, 24(11): 30-35.
DU S N, BAI G S, ZHAO S W, WU R J. Effects of Wote super absorbent and PAM with different application methods on soil moisture and maize growth. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(11): 30-35. (in Chinese)
[37]
赵敏, 高会东, 崔彦宏. 保水剂对夏玉米生长发育和产量的影响. 玉米科学, 2006, 14(6): 125-126.
ZHAO M, GAO H D, CUI Y H. Effect of water absorbent on growth, development and yield of maize. Journal of Maize Sciences, 2006, 14(6): 125-126. (in Chinese)
[38]
高会东, 杜彩云, 梁伟玲. 保水剂对夏花生种子萌发和植株生长的影响. 河南农业科学, 2006, 35(10): 36-37.

doi: 10.3969/j.issn.1004-3268.2006.10.010
GAO H D, DU C Y, LIANG W L. Effect of water absorbent polymer on seed germination and growth of summer peanut. Journal of Henan Agricultural Sciences, 2006, 35(10): 36-37. (in Chinese)
[39]
YANG Y H, WU J C, ZHAO S W, GAO C M, PAN X Y, TANG D W S, VAN DER PLOEG M. Effects of long-term super absorbent polymer and organic manure on soil structure and organic carbon distribution in different soil layers. Soil and Tillage Research, 2021, 206: 104781.

doi: 10.1016/j.still.2020.104781
[40]
杨永辉, 武继承, 李宗军, 管秀娟, 何方. 保水剂对冬小麦生长及水分利用效率的影响. 华北农学报, 2011, 26(3): 173-178.

doi: 10.7668/hbnxb.2011.03.034
YANG Y H, WU J C, LI Z J, GUAN X J, HE F. Effects of water-retaining agent on growth and water use efficiency of winter-wheat. Acta Agriculturae Boreali-Sinica, 2011, 26(3): 173-178. (in Chinese)
[41]
雷巧, 韩燕来, 谭金芳, 苗玉红, 汪强, 李培培, 徐明岗, 李慧. 不同水分条件下保水剂对冬小麦产量及水分利用效率的影响. 中国土壤与肥料, 2014(3): 78-83.
LEI Q, HAN Y L, TAN J F, MIAO Y H, WANG Q, LI P P, XU M G, LI H. Effects of water-retaining agent on yield and water use efficiency of winter wheat under different moisture conditions. Soil and Fertilizer Sciences in China, 2014(3): 78-83. (in Chinese)
[42]
李中阳, 吕谋超, 樊向阳, 杜臻杰, 胡超. 不同类型保水剂对冬小麦水分利用效率和根系形态的影响. 应用生态学报, 2015, 26(12): 3753-3758.
LI Z Y, M C, FAN X Y, DU Z J, HU C. Influences of different kinds of water retentive agents on water use efficiency and root morphology of winter wheat. Chinese Journal of Applied Ecology, 2015, 26(12): 3753-3758. (in Chinese)
[43]
YANG L X, YANG Y, CHEN Z, GUO C X, LI S C. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecological Engineering, 2014, 62: 27-32.

doi: 10.1016/j.ecoleng.2013.10.019
[44]
CHEN X, MAO X Y, LU Q, LIAO Z W, HE Z L. Characteristics and mechanisms of acrylate polymer damage to maize seedlings. Ecotoxicology and Environmental Safety, 2016, 129: 228-234.

doi: 10.1016/j.ecoenv.2016.03.018 pmid: 27057990
[45]
胡娟, 杨永奎, 杨少华, 张贵兰, 黄丽. 保水剂在玉米上的节水效果试验. 农技服务, 2013, 30(3): 256-257.
HU J, YANG Y K, YANG S H, ZHANG G L, HUANG L. Experiment on water-saving effect of water-retaining agent on corn. Agricultural Technology Service, 2013, 30(3): 256-257. (in Chinese)
[46]
ROSTAMPOUR M F, YARNIA M, KHOEE F R, SEGHATOLESLAMI M J, MOOSAVI G R. Physiological response of forage Sorghum to polymer under water deficit conditions. Agronomy Journal, 2013, 105(4): 951-959.

doi: 10.2134/agronj2012.0071
[47]
FALLAHI H R, ZAMANI G, MEHRABANI M, AGHHAVANI- SHAJARI M, SAMADZADEH A. Influence of superabsorbent polymer rates on growth of saffron replacement corms. Journal of Crop Science and Biotechnology, 2016, 19(1): 77-84.

doi: 10.1007/s12892-015-0083-z
[48]
ABRISHAM E S, JAFARI M, TAVILI A, RABII A, ALI ZARE CHAHOKI M, ZARE S, EGAN T, YAZDANSHENAS H, GHASEMIAN D, TAHMOURES M. Effects of a super absorbent polymer on soil properties and plant growth for use in land reclamation. Arid Land Research and Management, 2018, 32(4): 407-420.

doi: 10.1080/15324982.2018.1506526
[49]
SALAVATI S, VALADABADI S A, PARVIZI K H, SAYFZADEH S, HADIDI MASOULEH E. The effect of super-absorbent polymer and sowing depth on growth and yield indices of potato (Solanum tuberosum L.) in hamedan Province, Iran. Applied Ecology and Environmental Research, 2018, 16(5): 7063-7078.

doi: 10.15666/aeer
[50]
JAHAN M, NASSIRI MAHALLATI M, AMIRI M B. The effect of humic acid and water super absorbent polymer application on sesame in an ecological cropping system: a new employment of structural equation modeling in agriculture. Chemical and Biological Technologies in Agriculture, 2019, 6(1): 1-15.

doi: 10.1186/s40538-018-0131-2
[51]
MOGHADAM H R T. Super absorbent polymer mitigates deleterious effects of arsenic in wheat. Rhizosphere, 2017, 3: 40-43.

doi: 10.1016/j.rhisph.2016.12.003
[52]
KHODADADI DEHKORDI D. Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globulus. Applied Ecology and Environmental Research, 2017, 15(4): 1791-1802.

doi: 10.15666/aeer
[53]
FOULADIDORHANI M, SHAYANNEJAD M, SHARIATMADARI H, MOSADDEGHI M R, ARTHUR E. Biochar, manure, and super absorbent increased wheat yields and salt redistribution in a saline-sodic soil. Agronomy Journal, 2020, 112(6): 5193-5205.

doi: 10.1002/agj2.v112.6
[54]
EL-ASMAR J, JAAFAR H, BASHOUR I, FARRAN M T, SAOUD I P. Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils. CLEAN - Soil, Air, Water, 2017, 45(7): 1700251.

doi: 10.1002/clen.v45.7
[55]
RATHORE S S, SHEKHAWAT K, DASS A, PREMI O P, RATHORE B S, SINGH V K. Deficit irrigation scheduling and superabsorbent polymer- hydrogel enhance seed yield, water productivity and economics of Indian mustard under semi-arid ecologies. Irrigation and Drainage, 2019, 68(3): 531-541.

doi: 10.1002/ird.v68.3
[56]
AKHTER J, MAHMOOD K, MALIK K A, MARDAN A, AHMAD M, IQBAL M M. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant, Soil and Environment, 2004, 50(10): 463-469.

doi: 10.17221/4059-PSE
[57]
FERNANDO T N, ARIADURAI S A, DISANAYAKA C K, KULATHUNGE S, ARUGGODA A G B. Development of radiation grafted super absorbent polymers for agricultural applications. Energy Procedia, 2017, 127: 163-177.

doi: 10.1016/j.egypro.2017.08.106
[58]
CHEHAB H, TEKAYA M, MECHRI B, JEMAI A, GUIAA M, MAHJOUB Z, BOUJNAH D, LAAMARI S, CHIHAOUI B, ZAKHAMA H, HAMMAMI M, DEL GIUDICE T. Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia. Agricultural Water Management, 2017, 192: 221-231.

doi: 10.1016/j.agwat.2017.07.013
[59]
AGABA H, BAGUMA ORIKIRIZA L J, OSOTO ESEGU J F, OBUA J, KABASA J D, HÜTTERMANN A. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. CLEAN - Soil, Air, Water, 2010, 38(4): 328-335.

doi: 10.1002/clen.v38:4
[60]
JOHNSON M S, LEAH R T. Effects of superabsorbent polyacrylamides on efficiency of water use by crop seedlings. Journal of the Science of Food and Agriculture, 1990, 52(3): 431-434.

doi: 10.1002/jsfa.v52:3
[61]
JOHNSON M S, PIPER C D. Cross-linked, water-storing polymers as aids to drought tolerance of tomatoes in growing media. Journal of Agronomy and Crop Science, 1997, 178(1): 23-27.

doi: 10.1111/jac.1997.178.issue-1
[62]
MONTESANO F F, PARENTE A, SANTAMARIA P, SANNINO A, SERIO F. Biodegradable superabsorbent hydrogel IncreasesWater retention properties of growing media and plant growth. Agriculture and Agricultural Science Procedia, 2015, 4: 451-458.

doi: 10.1016/j.aaspro.2015.03.052
[63]
SATRIANI A, CATALANO M, SCALCIONE E. The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: a case-study in Southern Italy. Agricultural Water Management, 2018, 195: 114-119.

doi: 10.1016/j.agwat.2017.10.008
[64]
HÜTTERMANN A, ZOMMORODI M, REISE K. Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil and Tillage Research, 1999, 50(3/4): 295-304.

doi: 10.1016/S0167-1987(99)00023-9
[65]
GRABIŃSKI J, WYZIŃSKA M. The effect of superabsorbent polymer application on yielding of winter wheat (Triticum aestivum L.). Agricultural Sciences (Crop Sciences, Animal Sciences), 2019, 2: 55-61.
[66]
VOLKMAR K M, CHANG C. Influence of hydrophilic gel polymers on water relations and growth and yield of barley and canola. Canadian Journal of Plant Science, 1995, 75(3): 605-611.

doi: 10.4141/cjps95-105
[67]
ABDALLAH A M, MASHAHEET A M, BURKEY K O. Super absorbent polymers mitigate drought stress in corn (Zea mays L.) grown under rainfed conditions. Agricultural Water Management, 2021, 254: 106946.

doi: 10.1016/j.agwat.2021.106946
[68]
农业部肥政药政管理办公室. 肥料登记指南(附件5登记肥料肥效试验技术规程(暂行)). 北京: 中国农业出版社, 2001: 58-65.
Administration Office for Fertilizers and Pesticides of the Ministry of Agriculture. Guidelines for Fertilizer Registration (Annex 5 Technical Regulations for Fertilizer Efficiency Test Registration (provisional)). Beijing: China Agriculture Press, 2001: 58-65. (in Chinese)
[69]
陈海丽, 吴震, 刘明池. 不同保水剂的吸水保水特性. 西北农业学报, 2010, 19(1): 201-206.
CHEN H L, WU Z, LIU M C. Analysis of water absorptivity and retention properties of different water retaining agents. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(1): 201-206. (in Chinese)
[70]
王斌瑞, 贺康宁, 史长青. 保水剂在造林绿化中的应用. 中国水土保持, 2000(4): 22-24.
WANG B R, HE K N, SHI C Q. Application of water-retaining agent in afforestation and greening. Soil and Water Conservation in China, 2000(4): 22-24. (in Chinese)
[71]
蔡典雄, 赵兴宝. 保水剂的特点和应用. 中国林业, 2001(4): 30.
CAI D X, ZHAO X B. Characteristics and application of water- retaining agent. Forestry of China, 2001(4): 30. (in Chinese)
[72]
蔡典雄, 赵兴宝. 保水剂及其应用技术. 农业科技通讯, 2000(8): 22.
CAI D X, ZHAO X B. Water retaining agent and its application technology. Bulletin of Agricntural Science and Technology, 2000(8): 22. (in Chinese)
[73]
姜银光, 冯吉, 邱信蛟, 李云开. 不同离子类型对土壤保水剂吸释水特性影响研究. 北京水务, 2012(2): 7-11.
JANG Y G, FENG J, QIU X J, LI Y K. Study on the characteristics of the soil SAP repeated water absorption and release by different types of ions. Beijing Water, 2012(2): 7-11. (in Chinese)
[74]
司徒艳结, 卫尤明, 杨俊颖, 毛小云, 廖宗文, 陈娴. 保水剂对作物生长的不利影响及发生机制. 植物营养与肥料学报, 2022, 28(7): 1318-1328.
SITU Y J, WEI Y M, YANG J Y, MAO X Y, LIAO Z W, CHEN X. Adverse effects of superabsorbent polymers on crop growth and the underlying mechanisms. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1318-1328. (in Chinese)
[75]
World Health Organization WHO. Acrylamide. Environmental Health Criteria (No. 49). International Programme on Chemical Safety (IPCS), Geneva, Switzerland. 1985. http://www.inchem.org/documents/ehc/ehc/ehc49.htm.
[76]
MCDONALD A. Some industrial chemicals: IARC monographs on the evaluation of carcinogenic risks to humans. vol 60. Occupational and Environmental Medicine, 1995, 52(5): 360.
[77]
中华人民共和国国家环境保护总局和国家质量监督检验检疫总局. 危险废物鉴别标准毒性物质含量鉴别:GB 5085.6—2007. 北京: 中国环境科学出版社, 2007.
State Environmental Protection Administration of the People’s Republic of China and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Identification Standards for Hazardous Wastes Identification for Toxic Substance Content:GB 5085.3—2007. Beijing: China Environmental Science Press, 2007. (in Chinese)
[78]
郭非凡, 张秦, 孙振钧, 马丰蕾. 聚丙烯酰胺对蚯蚓的毒性效应. 农业工程学报, 2012, 28(S1): 224-229.
GUO F F, ZHANG Q, SUN Z J, MA F L. Toxicity effects of polyacrylamide to earthworm (Eisenia fetida). Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(S1): 224-229. (in Chinese)
[79]
赵丹, 陈宁, 孙明明, 宋秀娟, 曹秀明. 聚丙烯酰胺对水生生物的毒性研究. 黑龙江科技信息, 2015(14): 122.
ZHAO D, CHEN N, SUN M M, SONG X J, CAO X M. Study on toxicity of polyacrylamide to aquatic organisms. Heilongjiang Science and Technology Information, 2015(14): 122. (in Chinese)
[80]
IGISU H, GOTO I, KAWAMURA Y, KATO M, IZUMI K. Acrylamide encephaloneuropathy due to well water pollution. Journal of Neurology, Neurosurgery, and Psychiatry, 1975, 38(6): 581-584.

pmid: 168322
[81]
MROCZEK E, KONIECZNY P, KLEIBER T, WAŚKIEWICZ A. Response of hydroponically grown head lettuce on residual monomer from polyacrylamide. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2014, 31(8): 1399-1405.
[82]
CHEN J Y, WU J, RAFFA P, PICCHIONI F, KONING C E. Superabsorbent Polymers: from long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives. Progress in Polymer Science, 2022, 125: 101475.

doi: 10.1016/j.progpolymsci.2021.101475
[83]
CHEN X, HUANG L, MAO X Y, LIAO Z W, HE Z L. A comparative study of the cellular microscopic characteristics and mechanisms of maize seedling damage from superabsorbent polymers. Pedosphere, 2017, 27(2): 274-282.

doi: 10.1016/S1002-0160(17)60305-9
[84]
World Health Organization WHO. Acrylic Acid. Environmental Health Criteria (No. 191). International Programme on Chemical Safety (IPCS), Geneva, Switzerland. 1997. https://www.inchem.org/documents/ehc/ehc/ehc191.htm.
[85]
International Agency for Research on Cancer IARC. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1999, 71: 1223-1230.
[86]
International Agency for Research on Cancer IARC. Isobutyl nitrite, β-picoline, and some acrylates. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 2019, 122: 79-152.
[87]
STAPLES C A, MURPHY S R, MCLAUGHLIN J E, LEUNG H W, CASCIERI T C, FARR C H. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters. Chemosphere, 2000, 40(1): 29-38.

pmid: 10665442
[88]
王朝晖, 尹伊伟, 陈善文, 付翔, 颉小勇, 段舜山. 丙烯酸及丙烯酯对水生生物的急性毒性. 暨南大学学报(自然科学与医学版), 2002, 23(5): 75-80.
WANG Z H, YIN Y W, CHEN S W, FU X, XIE X Y, DUAN S S. Studies on acute toxicity of acrylic acid and its esters to aquatic organisms. Journal of Jinan University (Natural Science & Medicine Edition), 2002, 23(5): 75-80. (in Chinese)
[89]
中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 水处理剂阴离子和非离子型聚丙烯酰胺:GB 17514— 2017. 北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. Water Treatment Chemicals—Anionic and Non-ionic Polyacrylamides:GB 17514— 2017. Beijing: China Standard Press, 2017. (in Chinese)
[90]
中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 水处理剂聚丙烯酸:GB 10533—2014. 北京: 中国标准出版社, 2014.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. Water Treatment Chemicals—Polyacrylic Acid:GB 10533—2014. Beijing: China Standard Press, 2014. (in Chinese)
[91]
中华人民共和国工业和信息化部. 洗涤助剂聚丙烯酸钠:QB/T 5481—2020. 北京: 化学工业出版社, 2019.
Ministry of Industry and Information Technology of People’s Republic of China. Detergent Builder—Sodium Polyacrylate:QB/T 5481—2020. Beijing: Chemical Industry Standard Press, 2019. (in Chinese)
[92]
中华人民共和国国家市场监督管理总局和中国国家标准化管理委员会. 纸尿裤和卫生巾用高吸收性树脂:GB 22875—2018. 北京: 中国标准出版社, 2018.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. Super-absorbent Polymer for Sanity Towel and Diapers:GB 22875—2018. Beijing: China Standard Press, 2018. (in Chinese)
[93]
中华人民共和国生态环境部. 环境标志产品技术要求吸收性卫生用品:HJ 1061—2019. 北京: 中国环境科学出版社, 2019.
Ministry of Ecology and Environment of the People’s Republic of China. Technical Requirement for Environmental Labeling Products—Absorbent Hygiene Products:HJ 1061—2019. Beijing: China Environmental Science Press, 2019. (in Chinese)
[94]
中华人民共和国卫生部和中国国家标准化管理委员会. 生活饮用水卫生标准:GB 5749—2022. 北京: 中国标准出版社, 2022.
Ministry of Health of the People’s Republic of China and Standardization Administration of the People’s Republic of China. Standards for Drinking Water Quality:GB 5749—2022. Beijing: China Standard Press, 2022. (in Chinese)
[95]
中华人民共和国国家环境保护总局和国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838—2002. 中华人民共和国国家标准, 北京: 中国环境科学出版社, 2002.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GQuality Standards for Surface Water: B 3838—2002. Beijing: China Environmental Science Press, 2002. (in Chinese)
[96]
王杰, 张凤莲, 丁吉涛. 聚丙烯酰胺残留单体的提取与测定. 黑龙江大学自然科学学报, 1990, 7(4): 69-73.
WANG J, ZHANG F L, DING J T. Extraction and determination of modomer in polyacrylamide. Journal of Natural Science of Heilongjiang University, 1990, 7(4): 69-73. (in Chinese)
[97]
江霜英, 高廷耀. 高效液相色谱法测定聚丙烯酰胺中的单体. 同济大学学报(自然科学版), 2000, 28(2): 228-230.
JIANG S Y, GAO T Y. Determination of acrylamide in polyacrylamide by high performance liquid chromatography. Journal of Tongji University, 2000, 28(2): 228-230. (in Chinese)
[98]
李朝晖. 注意选择饮用水处理用聚丙烯酰胺. 给水排水, 2004, 30(10): 42-43.
LI C H. Pay attention to the selection of polyacrylamide for drinking water treatment. Water & Wastewater Engineering, 2004, 30(10): 42-43. (in Chinese)
[99]
王成龙, 赵金利, 李燕莹, 梁兰兰, 戚平. 超高效液相色谱-四极杆静电场轨道阱高分辨质谱测定聚丙烯酰胺中丙烯酰胺单体的残留. 色谱, 2017, 35(12): 1294-1300.

doi: 10.3724/SP.J.1123.2017.08014
WANG C L, ZHAO J L, LI Y Y, LIANG L L, QI P. Determination and identification of acrylamide residues in poly-acrylamide by ultra-performance liquid chromatography-quadrupole electrostatic field orbitrap high-resolution mass spectrometry. Chinese Journal of Chromatography, 2017, 35(12): 1294-1300. (in Chinese)

doi: 10.3724/SP.J.1123.2017.08014
[100]
李杰, 王海涛, 孙文种, 罗运军, 谭惠民. 高吸水树脂中丙烯酸残留量的测定及其影响因素. 北京理工大学学报, 2004, 24(7): 643-645.
LI J, WANG H T, SUN W Z, LUO Y J, TAN H M. Determination of residual acrylic monomer and its influence on super absorbent resin. Journal of Beijing Institute of Technology, 2004, 24(7): 643-645. (in Chinese)
[101]
符军放, 刘克清, 丁玉, 王蕾, 黄瑞娟, 马政生. 高效液相色谱法测定聚合物水处理剂中残留的单体. 色谱, 2008, 26(6): 772-774.
FU J F, LIU K Q, DING Y, WANG L, HUANG R J, MA Z S. Determination of residual monomers in polymer water treatment chemicals using high performance liquid chromatography. Chinese Journal of Chromatography, 2008, 26(6): 772-774. (in Chinese)
[102]
张莉莉, 江婷, 赵汝松, 苑金鹏, 王珊珊, 李磊. 高效液相色谱法分析高吸水性树脂中的丙烯酸单体. 光谱实验室, 2010, 27(6): 2231-2234.
ZHANG L L, JIANG T, ZHAO R S, YUAN J P, WANG S S, LI L. Analysis of acrylic acid residual in super absorbent polymer by high performance liquid chromatography. Chinese Journal of Spectroscopy Laboratory, 2010, 27(6): 2231-2234. (in Chinese)
[103]
赖莺, 林睿, 蔡鹭欣, 葛秀秀, 黄长春. 微波辅助萃取-气相色谱-质谱法测定丙烯酸树脂中9种残余单体. 色谱, 2012, 30(1): 21-26.
LAI Y, LIN R, CAI L X, GE X X, HUANG C C. Determination of 9 residual acrylic monomers in acrylic resins by gas chromatography- mass spectrometry coupled with microwave assisted extraction. Chinese Journal of Chromatography, 2012, 30(1): 21-26. (in Chinese)

doi: 10.3724/SP.J.1123.2011.09011
[104]
韩昌福, 李大平, 王晓梅. 聚丙烯酰胺生物降解研究进展. 应用与环境生物学报, 2005, 11(5): 648-650.
HAN C F, LI D P, WANG X M. Progress of studies on polyacrylamide biodegradation. Chinese Journal of Applied and Environmental Biology, 2005, 11(5): 648-650. (in Chinese)
[105]
LENTZ R D, ANDRAWES F F, BARVENIK F W, KOEHN A C. Acrylamide monomer leaching from polyacrylamide-treated irrigation furrows. Journal of Environmental Quality, 2008, 37(6): 2293-2298.

doi: 10.2134/jeq2007.0574 pmid: 18948483
[106]
SHANKER R, RAMAKRISHNA C, SETH P K. Microbial degradation of acrylamide monomer. Archives of Microbiology, 1990, 154(2): 192-198.

pmid: 2403264
[107]
王玺洋. 红壤茶园施用PAM对土壤特性及茶叶安全性的影响[D]. 福州: 福建农林大学, 2014.
WANG X Y. Effects of pam application on soil properties and tea safety in tea garden of red soil[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[108]
LANDE S S, BOSCH S J, HOWARD P H. Degradation and leaching of acrylamide in soil. Journal of Environmental Quality, 1979, 8(1): 133-137.
[109]
WILSKE B, BAI M, LINDENSTRUTH B, BACH M, REZAIE Z, FREDE H G, BREUER L. Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environmental Science and Pollution Research, 2014, 21(16): 9453-9460.

doi: 10.1007/s11356-013-2103-1
[110]
DE SOUSA F D B. The role of plastic concerning the sustainable development goals: the literature point of view. Cleaner and Responsible Consumption, 2021, 3: 100020.

doi: 10.1016/j.clrc.2021.100020
[111]
ZHOU B Y, WANG J Q, ZHANG H B, SHI H H, FEI Y F, HUANG S Y, TONG Y Z, WEN D S, LUO Y M, BARCELÓ D. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: multiple sources other than plastic mulching film. Journal of Hazardous Materials, 2020, 388: 121814.

doi: 10.1016/j.jhazmat.2019.121814
[112]
刘梦婷. 上海郊区主要类型土壤中微塑料污染特征研究[D]. 上海: 华东师范大学, 2020.
LIU M T. Study on characteristics of microplastic pollution in main types of soil in suburb of Shanghai[D]. Shanghai: East China Normal University, 2020. (in Chinese)
[113]
郝永丽. 黄土高原典型小流域微塑料空间分布及迁移特征[D]. 杨凌: 西北农林科技大学, 2022.
HAO Y L. Spatial distribution and transport patterns of microplastics in A typical small watershed of the loess plateau[D]. Yangling: Northwest A & F University, 2022. (in Chinese)
[114]
胡佳妮. 农田土壤中微塑料污染特征和典型塑料地膜的环境行为研究[D]. 上海: 华东师范大学, 2021.
HU J N. A study on pollution characteristics of microplastics in agricultural soils and environmental behaviors of typical mulching films[D]. Shanghai: East China Normal University, 2021. (in Chinese)
[115]
WANI W A, PATHAN S, BOSE S. The journey of alternative and sustainable substitutes for “single-use” plastics. Advanced Sustainable Systems, 2021, 5(12): 2100085.

doi: 10.1002/adsu.v5.12
[1] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[2] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[3] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[4] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[5] WANG XiaoBin, YAN Xiang, LI XiuYing, TU Cheng. Environmental Residues of Organosiloxane-Based Adjuvants and Its Environmental Risks for Use as Agrochemical Adjuvants [J]. Scientia Agricultura Sinica, 2024, 57(1): 142-158.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[8] ZHAO KaiNan, WU JinZhi, HUANG Ming, LI YouJun, WANG HongTao, HUANG XiuLi, WU ShanWei, ZHANG Jun, ZHAO ZhiMing, ZHAO WenXin, LI ShuJing, LI Shuang, LI WenNa. Effects of Supplemental Irrigation After Regreening and Nitrogen Fertilizer Application Rates on Wheat Yield, Water and Nitrogen Use Efficiency in Dryland [J]. Scientia Agricultura Sinica, 2023, 56(17): 3383-3398.
[9] JIAO ZhiHui, CHEN GuiPing, FAN Hong, ZHANG JinDan, YIN Wen, LI HanTing, WANG QiMing, HU FaLong, CHAI Qiang. Water Use Characteristics of Increased Plant Density and Reduced Nitrogen Application Maize in Oasis Irrigated Area [J]. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099.
[10] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[11] LI Qian, QIN YuBo, YIN CaiXia, KONG LiLi, WANG Meng, HOU YunPeng, SUN Bo, ZHAO YinKai, XU Chen, LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[12] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[13] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[14] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[15] XIONG RuoYu,XIE JiaXin,TAN XueMing,YANG TaoTao,PAN XiaoHua,ZENG YongJun,SHI QingHua,ZHANG Jun,CAI Shuo,ZENG YanHua. Effects of Irrigation Management on Grain Yield and Quality of High-Quality Eating Late-Season Indica Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1512-1524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!