Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (3): 555-569.doi: 10.3864/j.issn.0578-1752.2024.03.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Wheat and Common Vetch Cover Crops on Chinese Cabbage Seedling Growth and Soil Microbial Community Structure

WANG QingHui(), LI NaiHui, ZHANG YiPing, DI ChengQian, WU FengZhi()   

  1. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030
  • Received:2023-06-29 Accepted:2023-09-04 Online:2024-02-01 Published:2024-02-05

Abstract:

【Objective】 This study aimed to investigate the impact of cover crops (wheat and common vetch) on the growth of Chinese cabbage seedlings and the structure of the soil microbial community. The findings could provide the theoretical and technical support for using wheat and common vetch cover crops to alleviate continuous cropping obstacles in Chinese cabbage production. 【Method】In this experiment, there were four treatments: wheat cover crop treatment (W), common vetch cover crop treatment (P), mixture of wheat and common vetch treatment (WP), and no cover crop treatment (CK). The effects of different cover crop treatments on the growth of Chinese cabbage seedlings were studied. Moreover, the effects of wheat and common vetch cover crops on the microbial community of Chinese cabbage rhizosphere were also investigated through qPCR and Illumina MiSeq techniques. In addition, Spearman correlation analysis was conducted to identify the key soil microbial taxa related to Chinese cabbage growth. Then, the changes in soil chemical properties on soil microbial community structure were explored by environmental factor correlation analysis. 【Result】Compared with CK, the cover crop treatments had positive effects on Chinese cabbage growth and decreased soil electrical conductivity (EC) value. The mixed cover crop treatment significantly decreased soil available potassium content, whereas wheat cover crop treatment increased soil pH. The qPCR results showed that the abundance of soil bacterial community was not significantly affected by the cover crop treatment, but increased the abundance of soil fungal community. Both common vetch cover crop treatment and mixed wheat and common vetch cover crop treatment significantly reduced the abundances of Bacillus spp. and Pseudomonas spp. communities. The Illumina MiSeq analysis showed that the relative abundance of genus TM7a was significantly increased by cover treatments, while the relative abundances of Leptolyngbya_EcFYyyy-00, Lophotrichus, Acaulium, and Sodiomyces were decreased. The mixed cover crop treatment significantly increased the relative abundance of Sphingomonas and Massilia and significantly decreased the relative abundance of Fusarium. Spearman correlation analysis showed that Sphingomonas, TM7a, Massilia, and Gemmatimonas were positively correlated with growth. Leptolyngbya_EcFYyyy-00, Acaulium, Lophotrichus, Sodiomyces, and Fusarium were significantly negatively correlated with the growth of Chinese cabbage. Moreover, these cover crop treatments influenced bacterial and fungal diversity indices. The Shannon index and inverse Simpson index for soil bacterial community and Shannon index of soil fungal community significantly decreased in cover common vetch treatment. In contrast, the inverse Simpson index of soil fungal community was increased. The mixed cover crop treatment increased the fungal Shannon index, while the inverse Simpson index of soil fungal community decreased. Principal Coordinates Analysis (PCoA) showed significant differences in soil microbial community structure, with soil EC value as a major environmental factor affecting the structure.【Conclusion】The cover crop treatments exhibited growth-promoting effects on Chinese cabbage seedlings, and the best effect was found in the mixed cover crop treatment. The relative abundances of some Sphingomonas, TM7a, Massilia, other potential growth-promoting bacteria were increased in the cover crop treatments. The relative abundances of some potential plant pathogens Leptolyngbya_EcFYyyy-00 and Fusarium were decreased and the relative abundance of potential biocontrol agent Chaetomium was increased in the mixed cover crop treatment.

Key words: cover, Chinese cabbage, promote growth, soil chemical properties, microbial community structure

Table 1

qPCR reaction system and procedure"

菌名
Bacterium name
引物
Primer
qPCR反应体系
qPCR reaction system (20 μL)
qPCR反应程序
qPCR reaction procedure
细菌
Bacteria
338F/518R[19] 9 μL 2×SYBR Green,0.4 μL引物,2 μL样品DNA,8.6 μL ddH2O
9 μL 2×SYBR Green, 0.4 μL primer, 2 μL sample DNA, 8.6 μL ddH2O
95 ℃预变性5 min,95 ℃变性50 s,62 ℃退火30 s,72 ℃延伸1 min,72 ℃终延伸10 min,30个循环
Pre-denaturation at 95 ℃ for 5 min, denaturation at 95 ℃ for 50 s, annealing at 62 ℃ for 30 s, extension at 72 ℃ for 1 min, final extension at 72 ℃ for 10 min, 30 cycles
真菌
Fungus
ITS1F/ITS4F[20] 10 μL 2×SYBR Green,1 μL引物,1 μL样品DNA,8 μL ddH2O
10 μL 2×SYBR Green, 1 μL primer, 2 μL sample DNA, 8 μL ddH2O
94 ℃预变性3 min,94℃变性5 s,58 ℃退火20 s,72 ℃延伸20 s,72 ℃终延伸10 min,43个循环
Pre-denaturation at 94 ℃ for 3 min, denaturation at 94 ℃ for 5 s, annealing at 58 ℃ for 20 s, extension at 72 ℃ for 20 s, final extension at 72 ℃ for 10 min, 43 cycles
芽孢杆菌
Bacillus spp.
BacF/BacR[21] 9 μL 2×SYBR Green, 0.6 μL引物,2 μL样品DNA,8.4 μL ddH2O
9 μL 2×SYBR Green, 0.6 μL primer, 2 μL sample DNA, 8.4 μL ddH2O
95 ℃预变性3 min,95 ℃变性10 s,50 ℃退火30 s,72 ℃延伸32 s,72℃终延伸10 min,40个循环
Pre-denaturation at 95 ℃ for 3 min, denaturation at 95 ℃ for 10 s, annealing at 50 ℃ for 30 s, extension at 72 ℃ for 32 s, final extension at 72 ℃ for 10 min, 40 cycles
假单胞菌
Pseudomonas spp.
PsF/PsR[22] 10 μL 2×SYBR Green,2 μL引物,2 μL样品DNA,6 μL ddH2O
10 μL 2×SYBR Green, 2 μL primer, 2 μL sample DNA, 6 μL ddH2O
95 ℃预变性10 min,95 ℃变性10 s,50 ℃退火30 s,72℃延伸32 s,72 ℃终延伸10 min,35个循环
Pre-denaturation at 95 ℃ for 10 min, denaturation at 95 ℃ for 10 s, annealing at 50 ℃ for 30 s, extension at 72 ℃ for 32 s, final extension at 72 ℃ for 10 min, 35 cycles

Fig. 1

Pictures of cabbage growth CK, W, P and WP represent control (non-planted cover crop), cover crop of wheat, cover crop of common vetch, and cover crops of wheat and common vetch, respectively. The same as below"

Fig. 2

Effect of cover crops of wheat and common vetch on the dry biomass of Chinese cabbage Different lowercase letters in the same period indicate significant difference (P<0.05). The same as below"

Table 2

Effects of cover crops of wheat and common vetch on soil chemical properties of Chinese cabbage"

处理
Treatment
EC值
EC Value
(mS·cm-1)
pH 速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
有机碳
Organic carbon
(g·kg-1)
全碳
Total C
(g·kg-1)
全氮
Total N
(g·kg-1)
对照CK 0.44±0.01a 7.04±0.10b 120.81±2.28a 308.15±16.03a 19.67±0.90a 20.29±0.86a 2.46±0.16a
小麦W 0.34±0.01b 7.15±0.01a 120.44±2.86a 283.63±17.15ab 20.47±1.18a 21.96±1.80a 2.50±0.18a
箭筈豌豆P 0.36±0.02b 7.13±0.02ab 121.34±2.01a 273.13±6.52ab 19.46±0.10a 22.13±1.21a 2.50±0.10a
小麦+箭筈豌豆WP 0.35±0.03b 7.05±0.01ab 119.12±1.98a 247.52±35.40b 18.87±0.96a 20.12±1.87a 2.40±0.10a

Fig. 3

Effects of cover crops of wheat and common vetch on soil microbial abundance"

Fig. 4

Effects of cover crops of wheat and common vetch on the relative abundance of soil bacteria (A) and fungi (B) at phylum level"

Table 3

Effects of cover crop of wheat and common vetch on the relative abundance of the top 20 bacterial genera"

属 Genus CK W P WP
鞘氨醇单胞菌属Sphingomonas 4.386±0.474c 5.192±0.205bc 7.292±1.884a 6.771±0.431ab
芽孢杆菌属Bacillus 2.784±0.403b 4.130±0.110a 3.964±0.640a 3.511±0.332ab
RB41 3.840±0.425a 3.258±0.051a 2.895±1.601a 2.711±0.631a
芽单胞菌属Gemmatimonas 1.508±0.154b 1.750±0.123ab 2.043±0.419a 1.927±0.108ab
TM7a 0.574±0.023c 0.917±0.098b 1.220±0.084a 1.104±0.122a
Skermanella 0.927±0.109b 1.394±0.210a 1.205±0.310ab 1.140±0.072ab
Leptolyngbya_EcFYyyy-00 3.117±0.311a 2.282±0.006b 0.805±0.487c 1.222±0.454c
Gaiella 0.727±0.088b 0.843±0.037ab 1.030±0.239a 0.833±0.079ab
Bryobacter 0.755±0.078c 1.046±0.093a 0.893±0.053bc 0.966±0.068ab
溶杆菌属Lysobacter 0.763±0.031b 0.795±0.062ab 0.869±0.226ab 1.051±0.126a
嗜盐囊菌属Haliangium 0.789±0.110ab 0.675±0.063b 0.901±0.152a 0.883±0.049a
慢生根瘤菌属Bradyrhizobium 0.607±0.083b 0.741±0.071ab 0.832±0.185ab 0.883±0.145a
马赛菌属Massilia 0.518±0.049c 0.611±0.019bc 1.163±0.280a 0.818±0.099b
芽球菌属Blastococcus 0.591±0.089b 0.746±0.136ab 0.914±0.175a 0.755±0.156ab
Ellin6055 0.648±0.054a 0.717±0.073a 0.845±0.210a 0.724±0.085a
Flavisolibacter 0.716±0.143a 0.846±0.064a 0.859±0.195a 0.939±0.100a
酸杆菌属Acidibacter 0.604±0.106a 0.717±0.015a 0.654±0.196a 0.699±0.215a
嗜酸菌属Acidovorax 0.948±0.086bc 1.104±0.042ab 0.813±0.151c 1.173±0.083a
Ellin6067 0.596±0.059a 0.651±0.110a 0.713±0.153a 0.683±0.109a
Actinoplanes 0.506±0.070a 0.543±0.019a 0.661±0.141a 0.593±0.029a

Table 4

Effects of cover crop of wheat and common vetch on the relative abundance of the top 20 fungal genera"

属Genus CK W P WP
油壶菌属Olpidium 17.448±3.632a 6.158±0.361b 19.032±0.892a 5.131±0.661b
腐质霉属Humicola 11.457±0.907a 9.157±0.101c 9.518±0.727bc 10.678±0.565ab
被孢霉属Mortierella 1.950±0.299c 12.448±0.413a 8.334±1.222b 9.261±0.986b
镰刀菌属Fusarium 8.535±0.668a 8.470±0.345a 6.131±0.345b 6.757±0.336b
光黑壳属Preussia 5.504±0.511a 4.029±0.026bc 3.246±0.064c 4.195±0.745b
枝鼻菌属Cladorrhinum 5.288±0.186a 3.379±0.121b 5.057±0.459a 5.361±0.202a
瓶毛壳属Lophotrichus 4.342±0.203a 3.070±0.172b 2.502±0.099c 2.576±0.321c
赤霉属Gibberella 0.155±0.031d 4.494±0.175a 0.821±0.068c 2.390±0.140b
被毛枝葡萄孢属Botryotrichum 0.734±0.031d 3.664±0.157a 1.422±0.136c 2.590±0.192b
Plectosphaerella 0.247±0.031c 7.769±0.149a 1.512±0.098b 0.388±0.058c
酵母属Remersonia 1.772±0.222a 0.849±0.109c 1.546±0.132ab 1.387±0.153b
毛壳菌属Chaetomium 0.822±0.126b 0.538±0.092b 0.729±0.046b 2.581±0.463a
闭小囊菌属Kernia 0.869±0.087ab 0.741±0.142bc 1.015±0.089ab 0.667±0.037c
无茎真菌属Acaulium 1.127±0.115a 0.792±0.054b 0.754±0.088b 0.639±0.064b
产油菌属Solicoccozyma 0.675±0.063ab 0.760±0.081a 0.626±0.065b 0.670±0.013ab
Sodiomyces 0.890±0.095a 0.549±0.055bc 0.666±0.118b 0.475±0.048c
曲霉属Aspergillus 0.626±0.123a 0.398±0.048b 0.458±0.066bc 0.577±0.052ab
枝顶孢属Acremonium 0.786±0.027a 0.193±0.032c 0.128±0.023d 0.297±0.047b
Tausonia 0.274±0.034bc 0.846±0.199a 0.331±0.088b 0.090±0.026c
头束霉属Cephalotrichum 0.216±0.061bc 1.008±0.186a 0.102±0.033c 0.323±0.028b

Fig. 5

Effects of cover crops of wheat and common vetch on soil microbial diversity and community structure A: Bacterial alpha diversity index; B: Fungal alpha diversity index; C: Bacterial PCoA; D: Fungal PCoA"

Table 5

Spearman-based correlation analysis of growth and microorganisms"

细菌Bacteria r 真菌Fungi r
鞘氨醇单胞菌属Sphingomonas 0.818** 无茎真菌属Acaulium -0.867***
Leptolyngbya_EcFYyyy-00 -0.79** 瓶毛壳属Lophotrichus -0.811**
TM7a 0.769** Sodiomyces -0.741**
马赛菌属Massilia 0.762** 镰刀菌属Fusarium -0.706*
芽单胞菌属Gemmatimonas 0.706* 油壶菌属Olpidium -0.552
溶杆菌属Lysobacter 0.622* 光黑壳属Preussia -0.503
慢生根瘤菌属Bradyrhizobium 0.613* 毛壳菌属Chaetomium 0.441
嗜盐囊菌属Haliangium 0.559 Tausonia -0.441
Actinoplanes 0.553 被毛枝葡萄孢属Botryotrichum 0.434
芽球菌属Blastococcus 0.483 赤霉属Gibberella 0.378
RB41 -0.483 枝顶孢属Acremonium -0.357
Flavisolibacter 0.445 被孢霉属Mortierella 0.343
Bryobacter 0.434 酵母属Remersonia -0.252
Ellin6055 0.378 枝鼻菌属Cladorrhinum 0.224
Gaiella 0.371 腐质霉属Humicola -0.196
嗜酸菌属Acidovorax 0.336 Plectosphaerella 0.182
Ellin6067 0.336 产油菌属Solicoccozyma -0.154
Skermanella 0.231 闭小囊菌属Kernia -0.147
芽孢杆菌属Bacillus 0.196 曲霉属Aspergillus 0.042
酸杆菌属Acidibacter 0.032 头束霉属Cephalotrichum 0.021

Fig. 6

RDA analysis of soil chemical properties and soil bacteria (A) and fungi (B)"

Table 6

Mantel test of soil chemical properties and soil bacterial and fungal community structure"

化学性质
Soil property
细菌
Bacteria (R)
真菌
Fungi (R)
EC 0.309* 0.464**
pH -0.118 0.164
有效磷 Available P (AP) -0.068 -0.164
有效钾 Available K (AK) 0.141 0.239
有机碳 SOC -0.109 0.018
全碳 TC 0.07 -0.099
全氮 TN -0.19 -0.162
[1]
SALMERÓN M, CAVERO J, ISLA R, PORTER C H, JONES J W, BOOTE K J. DSSAT nitrogen cycle simulation of cover crop-maize rotations under irrigated Mediterranean conditions. Agronomy Journal, 2014, 106(4): 1283-1296.

doi: 10.2134/agronj13.0560
[2]
THORUP-KRISTENSEN K, DRESBØLL D B, KRISTENSEN H L. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. European Journal of Agronomy, 2012, 37(1): 66-82.

doi: 10.1016/j.eja.2011.11.004
[3]
吴凤芝, 方振兴, 田罡铭, 董吉德, 高丽红. 不同作物填闲对辣椒幼苗生长及产量的影响. 东北农业大学学报, 2022, 53(1): 8-15.
WU F Z, FANG Z X, TIAN G M, DONG J D, GAO L H. Effects of cover crops usage on growth and yield of pepper seedlings. Journal of Northeast Agricultural University, 2022, 53(1): 8-15. (in Chinese)
[4]
李乃荟, 龚小雅, 谢华, 杨帆, 付彦祥, 李慧, 杨莲, 吴凤芝. 多种作物混合填闲对黄瓜生长及土壤速效养分的影响. 黑龙江农业科学, 2020(1): 87-91.
LI N H, GONG X Y, XIE H, YANG F, FU Y X, LI H, YANG L, WU F Z. Effects of mixed catch of different cover crops on cucumber growth and soil available nutrient. Heilongjiang Agricultural Sciences, 2020(1): 87-91. (in Chinese)
[5]
谢华, 刘厚泽, 陶望鑫, 程义智, 吴凤芝. 不同填闲作物对黄瓜生长及土壤性质的影响. 北方园艺, 2019(19): 1-6.
XIE H, LIU H Z, TAO W X, CHENG Y Z, WU F Z. Effects of different catch crops on cucumber growth and soil properties. Northern Horticulture, 2019(19): 1-6. (in Chinese)
[6]
田晴, 李敏, 吴凤芝. 基于高通量测序的不同填闲作物对黄瓜连作土壤微生物群落结构的影响. 中国蔬菜, 2018(10): 60-68.
TIAN Q, LI M, WU F Z. Effects of different cover crops on soil microbial community structure in cucumber continuous cropping based on high-throughput sequencing. China Vegetables, 2018(10): 60-68. (in Chinese)
[7]
吴凤芝, 潘凯, 刘守伟. 设施土壤修复及连作障碍克服技术. 中国蔬菜, 2013(13): 39.
WU F Z, PAN K, LIU S W. Remediation of protected soil and overcoming obstacles of continuous cropping. China Vegetables, 2013(13): 39. (in Chinese)
[8]
李超, 王俊, 温萌萌, 张少宏, 邢文超, 付鑫. 绿肥填闲种植对旱作冬小麦农田土壤团聚体有机碳含量的影响. 干旱地区农业研究, 2023, 41(3): 210-217.
LI C, WANG J, WEN M M, ZHANG S H, XING W C, FU X. Effect of green manure cover cropping on soil aggregate-associated organic carbon in a dryland winter wheat field. Agricultural Research in the Arid Areas, 2023, 41(3): 210-217. (in Chinese)
[9]
李正鹏, 宋明丹, 李飞, 詹舒婷, 韩梅. 青藏高原小麦秸秆和箭筈豌豆混合腐解规律和养分释放特征. 农业工程学报, 2021, 37(11): 104-111.
LI Z P, SONG M D, LI F, ZHAN S T, HAN M. Decomposition and nutrient release characteristics of co-incorporated wheat straw and common vetch in Qinghai-Tibetan Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 104-111. (in Chinese)
[10]
QI G F, CHEN S, KE L X, MA G Q, ZHAO X Y. Cover crops restore declining soil properties and suppress bacterial wilt by regulating rhizosphere bacterial communities and improving soil nutrient contents. Microbiological Research, 2020, 238: 126505.

doi: 10.1016/j.micres.2020.126505
[11]
VUKICEVICH E, LOWERY T, BOWEN P, ÚRBEZ-TORRES J R, HART M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agronomy for Sustainable Development, 2016, 36(3): 48.

doi: 10.1007/s13593-016-0385-7
[12]
GRIFFITHS M, DELORY B M, JAWAHIR V, WONG K M, BAGNALL G C, DOWD T G, NUSINOW D A, MILLER A J, TOPP C N. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. Plant, Cell & Environment, 2022, 45(3): 751-770.
[13]
GAO H, TIAN G M, KHASHI U RAHMAN M, WU F Z. Cover crop species composition alters the soil bacterial community in a continuous pepper cropping system. Frontiers in Microbiology, 2021, 12: 789034.

doi: 10.3389/fmicb.2021.789034
[14]
王娜, 李萍, 宗毓铮, 张东升, 郝兴宇. 不同还田方式下北方旱作小麦秸秆腐解规律研究. 核农学报, 2020, 34(7): 1613-1619.

doi: 10.11869/j.issn.100-8551.2020.07.1613
WANG N, LI P, ZONG Y Z, ZHANG D S, HAO X Y. Study on the decomposition mechanism of wheat straw on rain-fed croplands in Northern China under different patterns of straw returning practice. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1613-1619. (in Chinese)

doi: 10.11869/j.issn.100-8551.2020.07.1613
[15]
潘福霞, 鲁剑巍, 刘威, 耿明建, 李小坤, 曹卫东. 三种不同绿肥的腐解和养分释放特征研究. 植物营养与肥料学报, 2011, 17(1): 216-223.
PAN F X, LU J W, LIU W, GENG M J, LI X K, CAO W D. Study on characteristics of decomposing and nutrients releasing of three kinds of green manure crops. Plant Nutrition and Fertilizer Science, 2011, 17(1): 216-223. (in Chinese)
[16]
陈治锋, 邓小华, 周米良, 田峰, 巢进, 蔡云帆, 张明发. 秸秆和绿肥还田对烤烟光合生理指标及经济性状的影响. 核农学报, 2017, 31(2): 410-415.

doi: 10.11869/j.issn.100-8551.2017.02.0410
CHEN Z F, DENG X H, ZHOU M L, TIAN F, CHAO J, CAI Y F, ZHANG M F. Effects of green manures and maize stalks returning back to field on photosynthetic characteristics and economic character of flue-cured tobacco. Journal of Nuclear Agricultural Sciences, 2017, 31(2): 410-415. (in Chinese)

doi: 10.11869/j.issn.100-8551.2017.02.0410
[17]
杨冬艳, 冯海萍, 王学梅. 填闲作物种植及绿肥还田对宁夏新建日光温室土壤环境的影响. 江苏农业科学, 2018, 46(7): 271-275.
YANG D Y, FENG H P, WANG X M. Effects of summer catch crops and green manure application on soil environment of new greenhouse in Ningxia area. Jiangsu Agricultural Sciences, 2018, 46(7): 271-275. (in Chinese)
[18]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[19]
BORYMSKI S, CYCOŃ M, BECKMANN M, MUR L A J, PIOTROWSKA-SEGET Z. Plant species and heavy metals affect biodiversity of microbial communities associated with metal-tolerant plants in metalliferous soils. Frontiers in Microbiology, 2018, 9: 1425.

doi: 10.3389/fmicb.2018.01425 pmid: 30061867
[20]
OP DE BEECK M, LIEVENS B, BUSSCHAERT P, DECLERCK S, VANGRONSVELD J, COLPAERT J V. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE, 2014, 9(6): e97629.

doi: 10.1371/journal.pone.0097629
[21]
GARBEVA P, VAN VEEN J A, VAN ELSAS J D. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecology, 2003, 45(3): 302-316.

doi: 10.1007/s00248-002-2034-8
[22]
GARBEVA P, VAN VEEN J A, VAN ELSAS J D. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiology Ecology, 2004, 47(1): 51-64.

doi: 10.1016/S0168-6496(03)00234-4
[23]
AHMED W, DAI Z L, LIU Q, MUNIR S, YANG J, KARUNARATHNA S C, LI S C, ZHANG J H, JI G H, ZHAO Z X. Microbial cross-talk: Dissecting the core microbiota associated with flue-cured tobacco (Nicotiana tabacum) plants under healthy and diseased state. Frontiers in Microbiology, 2022, 13: 845310.

doi: 10.3389/fmicb.2022.845310
[24]
BOKULICH N A, MILLS D A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high- throughput profiling of fungal communities. Applied and Environmental Microbiology, 2013, 79(8): 2519-2526.

doi: 10.1128/AEM.03870-12
[25]
TER BRAAK C J F. CANOCO-a FORTRAN Program for Canonical Community Ordination by Correspondence Analysis, Principal Components Analysis and Redundancy Analysis. New York: Cornell University Press, 1991.
[26]
PARADIS E, CLAUDE J, STRIMMER K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 2004, 20(2): 289-290.

doi: 10.1093/bioinformatics/btg412 pmid: 14734327
[27]
CARPENTER C M, FRANK D N, WILLIAMSON K, ARBET J, WAGNER B D, KECHRIS K, KROEHL M E. tidyMicro: A pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC Bioinformatics, 2021, 22(1): 41.

doi: 10.1186/s12859-021-03967-2 pmid: 33526006
[28]
BEST D J, ROBERTS D E. Algorithm AS 89:The upper tail probabilities of Spearman’s rho. Applied Statistics, 1975, 24(3): 377.
[29]
GAO J X, PEI H X, XIE H. Synergistic effects of organic fertilizer and corn straw on microorganisms of pepper continuous cropping soil in China. Bioengineered, 2020, 11(1): 1258-1268.

doi: 10.1080/21655979.2020.1840753 pmid: 33124497
[30]
MA W Y, LIAO X L, WANG C, ZHANG Y. Effects of four cropping patterns of Lilium brownii on rhizosphere microbiome structure and replant disease. Plants, 2022, 11(6): 824.

doi: 10.3390/plants11060824
[31]
GAO D M, ZHOU X G, DUAN Y D, FU X P, WU F Z. Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities? Plant and Soil, 2017, 418(1): 459-475.

doi: 10.1007/s11104-017-3307-9
[32]
TOSTI G, BENINCASA P, FARNESELLI M, PACE R, TEI F, GUIDUCCI M, THORUP-KRISTENSEN K. Green manuring effect of pure and mixed barley-hairy vetch winter cover crops on maize and processing tomato N nutrition. European Journal of Agronomy, 2012, 43: 136-146.

doi: 10.1016/j.eja.2012.06.004
[33]
YANG L, ZHOU X, LIAO Y L, LU Y H, NIE J, CAO W D. Co-incorporation of rice straw and green manure benefits rice yield and nutrient uptake. Crop Science, 2019, 59(2): 749-759.

doi: 10.2135/cropsci2018.07.0427
[34]
王德建, 常志州, 王灿, 张刚, 张斯梅. 稻麦秸秆全量还田的产量与环境效应及其调控. 中国生态农业学报, 2015, 23(9): 1073-1082.
WANG D J, CHANG Z Z, WANG C, ZHANG G, ZHANG S M. Regulation and effect of 100% straw return on crop yield and environment. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1073-1082. (in Chinese)
[35]
李元, 司力珊, 张雪艳, 田永强, 郭瑞英, 任华中, 高丽红. 填闲作物对日光温室土壤环境作用效果比较研究. 农业工程学报, 2008, 24(1): 224-229.
LI Y, SI L S, ZHANG X Y, TIAN Y Q, GUO R Y, REN H Z, GAO L H. Comparative study on the effects of catch crops on soil environment in solar greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1): 224-229. (in Chinese)
[36]
吴凤芝, 郭晓, 刘守伟, 周新刚, 衣振华. 夏季填闲对连作黄瓜根区土壤酶活性及土壤化学性状的影响. 东北农业大学学报, 2014, 45(10): 29-34, 73.
WU F Z, GUO X, LIU S W, ZHOU X G, YI Z H. Effect of summer catch mode on root zone soil enzyme activities and soil chemical properties of continuously monocropped cucumber. Journal of Northeast Agricultural University, 2014, 45(10): 29-34, 73. (in Chinese)
[37]
BAREL J M, KUYPER T W, DE BOER W, DOUMA J C, DE DEYN G B. Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration. Journal of Applied Ecology, 2018, 55(1): 299-310.

doi: 10.1111/jpe.2018.55.issue-1
[38]
WANG Y J, HUANG Q Q, GAO H, ZHANG R Q, YANG L, GUO Y R, LI H K, AWASTHI M K, LI G C. Long-term cover crops improved soil phosphorus availability in a rain-fed apple orchard. Chemosphere, 2021, 275: 130093.

doi: 10.1016/j.chemosphere.2021.130093
[39]
ALI S, XIE L N. Plant growth promoting and stress mitigating abilities of soil born microorganisms. Recent Patents on Food, Nutrition & Agriculture, 2020, 11(2): 96-104.
[40]
RAMIREZ-VILLANUEVA D A, BELLO-LÓPEZ J M, NAVARRO- NOYA Y E, LUNA-GUIDO M, VERHULST N, GOVAERTS B, DENDOOVEN L. Bacterial community structure in maize residue amended soil with contrasting management practices. Applied Soil Ecology, 2015, 90: 49-59.

doi: 10.1016/j.apsoil.2015.01.010
[41]
BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486.

doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542
[42]
赵小翠, 刘朋朋, 王倩, 王敬国, 陈清. 夏季种植甜玉米及秸秆还田对设施番茄土壤微生物区系的影响. 中国蔬菜, 2011(S1): 45-50.
ZHAO X C, LIU P P, WANG Q, WANG J G, CHEN Q. Effects of planting sweet corn and returning straw to field in summer on soil microbial flora of protected tomato. China Vegetables, 2011(S1): 45-50. (in Chinese)
[43]
刘思林, 陈俊雪, 杨阳, 陈中文, 卢玲玲, 牟英辉. 紫云英腐解液对牛筋草种子萌发及幼苗生长的影响. 草业学报, 2022, 31(7): 209-219.

doi: 10.11686/cyxb2021188
LIU S L, CHEN J X, YANG Y, CHEN Z W, LU L L, MU Y H. Effects of milkvetch (Astragalus sinicus) decomposition leachates on germination and seedling growth of goosegrass (Eleusine indica). Acta Prataculturae Sinica, 2022, 31(7): 209-219. (in Chinese)

doi: 10.11686/cyxb2021188
[44]
LIU X, ZHANG J L, GU T Y, ZHANG W M, SHEN Q R, YIN S X, QIU H Z. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE, 2014, 9(1): e86610.

doi: 10.1371/journal.pone.0086610
[45]
宋秀丽, 吴舒婷, 李锦辉, 杨锡朗, 周芮, 况丹妮, 李警督, 于海涛, 杨德光. 土壤微生物群落对连作种植制度的响应. 玉米科学, 2022, 30(1): 172-181.
SONG X L, WU S T, LI J H, YANG X L, ZHOU R, KUANG D N, LI J D, YU H T, YANG D G. Response of soil microbial community to continuous cropping system. Journal of Maize Sciences, 2022, 30(1): 172-181. (in Chinese)
[46]
RAVENSCHLAG K, SAHM K, PERNTHALER J, AMANN R. High bacterial diversity in permanently cold marine sediments. Applied and Environmental Microbiology, 1999, 65(9): 3982-3989.

doi: 10.1128/AEM.65.9.3982-3989.1999 pmid: 10473405
[47]
KANOKRATANA P, UENGWETWANIT T, RATTANACHOMSRI U, BUNTERNGSOOK B, NIMCHUA T, TANGPHATSORNRUANG S, PLENGVIDHYA V, CHAMPREDA V, EURWILAICHITR L. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microbial Ecology, 2011, 61(3): 518-528.

doi: 10.1007/s00248-010-9766-7 pmid: 21057783
[48]
KHAN A L, WAQAS M, KANG S M, AL-HARRASI A, HUSSAIN J, AL-RAWAHI A, AL-KHIZIRI S, ULLAH I, ALI L, JUNG H Y, LEE I J. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology, 2014, 52(8): 689-695.

doi: 10.1007/s12275-014-4002-7
[49]
YANG S J, ZHANG X H, CAO Z Y, ZHAO K P, WANG S, CHEN M X, HU X F. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbial Biotechnology, 2014, 7(6): 611-620.

doi: 10.1111/mbt2.2014.7.issue-6
[50]
SPAEPEN S, VANDERLEYDEN J. Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 2011, 3(4): a001438.
[51]
ABOU ALHAMED M F, SHEBANY Y M. Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biology, 2012, 14(5): 859-863.

doi: 10.1111/plb.2012.14.issue-5
[52]
黎妍妍, 冯吉, 王林, 付裕, 李锡宏. 万寿菊-烟草轮作调理植烟土壤细菌群落结构的作用. 中国烟草科学, 2021, 42(1): 14-19.
LI Y Y, FENG J, WANG L, FU Y, LI X H. Effects of marigold- tobacco rotation on bacterial community structure in tobacco rhizosphere soil. Chinese Tobacco Science, 2021, 42(1): 14-19. (in Chinese)
[53]
宁琪, 陈林, 李芳, 张丛志, 马东豪, 蔡泽江, 张佳宝. 被孢霉对土壤养分有效性和秸秆降解的影响. 土壤学报, 2022, 59(1): 206-217.
NING Q, CHEN L, LI F, ZHANG C Z, MA D H, CAI Z J, ZHANG J B. Effects of Mortierella on nutrient availability and straw decomposition in soil. Acta Pedologica Sinica, 2022, 59(1): 206-217. (in Chinese)
[54]
刘亚军, 王文静, 王红刚, 王祁, 胡启国, 储凤丽. 作物轮作对甘薯田土壤微生物群落的影响. 作物杂志, 2021(6): 122-128.
LIU Y J, WANG W J, WANG H G, WANG Q, HU Q G, CHU F L. Effects of crop rotation on soil microbial community in sweet potato field. Crops, 2021(6): 122-128. (in Chinese)
[1] MA JiaYu, WANG Tao, LIU XiaoLi, WANG Li, ZHANG XueCheng, WANG WenTao, KONG FanSheng, HUANG XueJun, WANG ZiYi, WANG YanDong, ZHEN WenChao. Meta-Analysis of Yield Effects and Influencing Factors of Cover Crops on Main Grain Crops in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1871-1880.
[2] XIONG WeiYi, XU KaiWei, LIU MingPeng, XIAO Hua, PEI LiZhen, PENG DanDan, CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[3] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[4] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[5] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[6] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[7] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[8] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[9] ZHU ZhiFeng,LIU Ping,XU RangWei,CHEN ChuanWu,DENG ChongLing,NIU Ying,ZHU Yi,WANG PengWei,DENG XiuXin,CHENG YunJiang. Influence of Plastic Film Covering of Tree Canopy on Fruit Postharvest Storage Performance in Shatangju Tangerine [J]. Scientia Agricultura Sinica, 2021, 54(12): 2630-2643.
[10] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[11] YanHua CHEN,Le WANG,ShuXiang ZHANG,Ning GUO,ChangBao MA,ChunHua LI,MingGang XU,GuoYuan ZOU. Quality Change of Cinnamon Soil Cultivated Land and Its Effect on Soil Productivity [J]. Scientia Agricultura Sinica, 2019, 52(24): 4540-4554.
[12] CHEN Lin,WEI JiZhen,LIU Chen,NIU LinLin,ZHANG CaiHong,LIANG GeMei. Effect of Midgut Specific Binding Protein ABCC1 on Cry1Ac Toxicity Against Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3337-3345.
[13] ZHAO Jie, REN SuWei, LIU Ning, AI XinYu, MA Ji, LIU XiaoNing. Cloning and Expression of Phosphatidylethanolamine Binding Protein in Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2018, 51(8): 1493-1503.
[14] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
[15] YAN Shuo, XIONG XiaoFei, CHU YanNa, LI Zhen, WU PengXiang, YANG QingPo, CUI WeiNa, XU JinTao5, XU LiXia, ZHANG QingWen, LIU XiaoXia. Effects of Predator-Induced Stress from Harmonia axyridis on the Development and Stress Protein Gene Expression of Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2017, 50(21): 4118-4128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!